第一篇:含砷工业废水治理
含砷工业废水的治理技术
学院:化学化工学院 专业:环境工程 班级:研103班 学号:1004303003 姓名:蓝丽娜
指导老师:吴烈善
含砷工业废水的治理技术
【摘 要】:本文简要介绍了含砷废水的来源、特点与危害,对近年来国内报道的几种含砷废水处理的方法进行了介绍,并对其优缺点进行了分析,总结了目前处理含砷废水存在问题,同时对其行业进行了展望。常规处理含砷废水方法分为三类即化学法、物化法和生化法。
【关键词】:含砷废水;化学法;物化法;生化法;问题及展望
砷是一个广泛存在并且具有准金属特性的元素, 有与硫一起聚集在硫化矿床中的趋势,在元素的地球化学分类中,一般被列为亲铜(硫)元素,呈灰色斜方六面体结晶,有金属光泽,不溶于水,极易氧化, 最常见的是砷黄中铁矿(FeAsS)。砷和砷的化合物一般都有毒,尤以三氧二砷(俗称信石,砒霜等)的毒性最为剧烈,是一种色粉状或块状物,无臭、无味[1]。砷在地壳中含量并不大,但是它在自然界中到处都有。砷在地壳中有时以游离状态存在,不过主要是以硫化物矿的形式存在如雌黄(As2S3)、雄黄(As2S2)和砷黄铁矿(FeAsS)。无论何种金属硫化物矿石中都含有一定量砷的硫化物。
随着金属矿的大量开发,以及砷在工业上的广泛应用,砷伴随主要元素被开发出来,进入废水中的砷数量相当大,再加上砷自然释放:矿物及岩石的风化、火山的喷发、温泉的上溢水等因素,已经造成了砷对环境的极大污染。工业中砷的污染主要来源于采矿、化工、冶金、化学制药、农药生产、纺织、玻璃、制革等部门的工业废水、废气。有色金属硫化矿的冶金过程及黄金提取过程中往往产生各种含砷废液,如砷黄铁矿型难浸金矿的硝酸催化氧化过程中80%~95%的砷进入溶液,使氧化浸出溶液中的砷高达15 ~30g/L[2]。据统计,约有30%左右的砷在冶金工业生产过程中进入废气、废水中。贵州省曾发生过化肥厂排放含砷废水,导致下游发生大面积砷中毒[3]。
含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为5.0时,溶液中砷主要以无机砷的形态存在,当pH为6.5时,有机砷为其主要存在形态。含砷废水中砷的存在形态也受水体氧化还原电位的影响,对于大多数水体,通常具有适中的Eh值(0.2~0.6)并且pH值呈中性,因此水体中最主要的是亚砷酸(H3AsO3);当富氧水体具有较高Eh值(0.6以上)时,以砷酸离子(H2AsO4-、HAsO42-)为主;在生物甲基化的作用下,也有一些砷以有机物形态存在,如甲基砷、二甲基砷等[4]。砷的形态不同其毒性也不同,据研究表明,废水中三价砷的毒性是五价砷的60倍以上;而甲基化的有机砷毒性比无机砷低得多。但由于含砷废水的来源并不单一,其成分也是复杂多变的。
砷是一种有毒致癌物质,也是致癌、致突变因子,对动物有致畸作用[5]。砷会对人体健康造成危害,其可通过与蛋白和酶的琉基相互作用(使蛋白质和酶在细胞内变性)以及增加细胞内的活性氧引起细胞损伤而产生毒性。砷化合物可通过呼吸道、食道和皮肤接触进入人体,进入人体的三价砷化合物能和硫基作用,抑制蛋白酶的活性并致癌;而五价砷其结构类似磷化合物,能干扰人体代谢。它 可以在体内发生蓄积,造成远期危害,可以侵犯不同性别的任何年龄组,侵犯身体的各个系统器官,如呼吸系统、消化系统、心血管系统、神经系统等[6]。砷对人体内许多器官都会造成损伤,是环境中重要的致癌物。长期饮用高砷水,会引起花皮病或皮肤角质化等皮肤病、黑脚病、神经病、血管损伤,以及增加心脏病发病。
综观砷的污染现状及危害,含砷废水的有效治理刻不容缓,研究、开发高效经济的含砷废水处理技术,具有重大的社会、经济和环境意义。目前,国内外许多环境科学家都在研究和开发新的高效除砷技术和除砷材料。常规处理含砷废水方法分为三类即物理法、化学法和生化法,另外还有近年兴起的联合两种或以上方法的综合法。从工业废水中脱砷的方法和技术有许多种,目前国内最常用的方法主要有中和沉淀法、硫化物沉淀法、铁氧体沉淀法和絮凝沉淀法等。但这些方法中有的仍不能达到彻底治理的效果,有的会造成二次污染。其它处理含砷废水的方法还有活性吸附法、萃取法、浮选法、离子交换法、膜分离法、电解法、氧化法、反渗透法、活体生物法和吸附法等等。本文将对近年来国内外报道的几种含砷废水处理的方法做简单介绍。
1、化学法
目前国内外处理含砷废水的主要方法有化学沉淀法、铁氧体法、氧化法等,这些方法适用于处理高浓度含砷废水。但生成的污泥易造成二次污染。关于化学法方面的研究,目前已经比较成熟,很多人曾在这方面做了深入的研究。
1.1化学沉淀法 化学沉淀法是含砷废水的主要处理方法。该法是利用化学反应直接产生沉淀,然后过滤除去砷。砷能够与许多金属离子形成难溶化合物,例如砷酸根或亚砷酸根与钙、三价铁、三价铝等离子均可形成难溶盐,经过滤后即可去除液相中的砷。由于亚砷酸盐的溶解度一般都比砷酸盐的高得多,不利于沉淀反应的进行,因此在实际中都需预先将三价砷氧化为五价,最常用的氧化剂是氯,也可将活性碳作为催化剂用空气氧化[7]。沉淀剂的种类很多,最常用的是钙盐、铁盐、镁盐、铝盐、氯化物等。根据沉淀剂的种类或沉淀方式的差异,可将沉淀法分为:石灰中和法、硫化物沉淀法、混凝沉淀法(亦称吸附胶体沉淀法或共沉淀法)等,见表1[8]。但该化学沉淀法并不是采用单一的处理方式,而通常是几种处理方式的综合,如钙盐与铁盐相结合,铁盐与铝盐相结合等等。这种综合处理能提高砷的去除率。化学沉淀法又可细分为两类:一类是将砷沉淀为一种中间产物,然后再转化成砷产品出售,这种方法可以避免砷沉淀物长期存放过程中可能产生的二次污染;另一类是将砷沉淀为稳定的化合物后存放,这种方法是目前处理砷浓度较高的工业废水使用的最普遍的方法。上世纪90年代以前,大多采用简单的石灰乳中和沉淀法处理含砷废水,但所得的含砷沉淀物(包括砷酸钙等)在尾矿池中反溶,使每升尾矿池废水中砷质量浓度高达几克[9],因此目前已较少采用。较理想的除砷方法,从技术上讲,不仅必须确保处理后外排水达到环保要求,而且所得砷沉淀物具有高稳定性,适宜长期存放。
化学沉淀法的优点是:工艺简单,投资少,操作方便,适用于矿、企排放的砷含量较高的废水。在经济条件相对较差的地区,有很高的经济效益,是首选除砷方法。缺点是:由于化学沉淀法要加入大量的沉淀剂,产生大量的含砷废渣无法利用,长期堆积则容易造成二次污染问题,如产生大量废渣,而这些废渣目前尚无较好的处理方法。并且化学沉淀法所得的含砷、铁、钙的沉淀物其稳定性仍不够高,这就要求存放时要采取较严格的措施以防止砷的二次污染,而这会导致存放费用增加。所以对其在工程上的应用和以后的可持续发展都存在巨大的负面作用,其应用受到一定的限制。
1.2氧化法 由于在pH< 9.5的大多数水体中,As(Ⅲ)处于非离子状态,表现出电中性。因此,那些对As(Ⅴ)的脱除非常有效的方法,如絮凝、沉淀、吸附等对As(Ⅲ)的处理常常收效甚微。鉴于没有一种简单的方法可以直接去除As(Ⅲ),因此氧化便成为去除As(Ⅲ)时不可缺少的步骤。另外,研究表明砷化物的毒性有很大差异,以亚砷酸盐类存在的As(Ⅲ)比以砷酸盐形式存在的As(Ⅴ)的毒性要高出60倍。各种形态的砷化物的毒性为AsH3>As(Ⅲ)>As(Ⅴ)>甲基砷(MMA)>二甲基砷(DMA),因此,利用氧化剂将As(Ⅲ)氧化成As(Ⅴ),既可提高去除效果,又可降低毒性[10]。
Pettine等人用H2O2作为As(Ⅲ)的氧化剂,发现在pH为7.5-10.3的范围,氧化率随着pH的升高而增大。As(Ⅲ)和H2O2的反应式如下[11]: As(OH)3+ H2O2→HAsO42-+2H++H2O AsO(OH)2-+ H2O2→HAsO42-+H++H2O Driehaus等人用MnO2作为氧化剂,对As(Ⅲ)进行氧化。MnO2在环境中具有相当强的氧化性,并且能控制自然界和人体内铁、钴、铬和砷的移动性及其毒性。As(Ⅲ)与Mn(Ⅲ),Mn(Ⅳ)在pH为7的时候的氧化还原反应式如下[12]: H3AsO3+MnO2→HAsO42-+Mn2++H2O H3AsO3+2MnOOH+2H+→HAsO42-+2Mn2++3H2O Myoung-Jin Kim和Jerome Nriagu分别用臭氧、纯氧(99.9%)和空气氧化As(Ⅲ)。研究发现用臭氧氧化能够在<20 min的时间内完成,96%的As(Ⅲ)在10 min之内被氧化为As(Ⅴ),说明臭氧对砷的氧化能力很强。相对来说,纯氧和空气的氧化作用就要慢得多[13]。
氧化法的优缺点:氧化是去除As(Ⅲ)时不可缺少的步骤,利用氧化剂将As(Ⅲ)氧化成As(Ⅴ),既可提高去除效果,又可降低毒性。氧化法除砷对三价砷 来说,是一种行之有效的方法,但往往是反应动力学缓慢,投资较高,因此在某种程度上限制其应用。并且该技术只是对砷污染水体进行预处理,还需要配合其他技术才能达到去除砷的目的。
1.3铁氧体法
铁氧体法处理含砷废水就是向废水中投加铁盐,通过控制pH、氧化、加热等条件,使废水中的砷离子与铁盐生成稳定的铁氧体共沉淀物,然后采用固液分离的手段, 达到去除砷离子的目的。
铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣。Nakazawa Hiroshi 等研究指出,在热的含砷废水中加铁盐(FeSO4或Fe2(SO4)3),在一定pH下,恒温加热1 h。用这种沉淀法比普通沉淀法效果更好。特别是利用磁铁矿中Fe3+盐处理废水中As(III)、As(V),在温度90℃,不仅效果很好,而且所需要的Fe3+浓度也降到小于0.05mg/L。赵宗升从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,可以得出当1.03≤pH≤5.35时,水中五价砷(As5+)与三价铁(Fe3+)形成FeAsO4沉淀物[14]。铁氧体法是在低pH值的条件下,向水溶液中加入过量的三氯化铁(FeCl3)溶液,使水溶液中的砷酸根离子与铁离子形成溶解度很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。
铁氧体法的优缺点:多用于处理含砷浓度较低的饮用水, 它的工艺过程简单,处理条件温和, 治理效果明显,处理污水应用面广,且得到的铁砷沉淀物毒性低,化学稳定性强,产渣率低,含砷品位高,可以进行砷回收而不易造成渣的二次污染[15]。
2、物化法
物化法一般是采用离子交换、吸附、萃取、反渗透、膜分离、浮选、电凝聚、光催化氧化等方法除去废液中的砷。该类方法是近年来发展较快的方法。有众多学者在这方面做了深入的研究,并取得了显著的成果,但实用的尚不多见。物理法只能处理浓度较低、处理量不大、组成单纯且有较高回收价值的废水,而工业废水的成分较复杂,所以物理法实用化程度较低。下面对几种物化方法的进行概述:
2.1离子交换法
离子交换法可有效地脱除砷。Suzuki等人用单斜晶的水合锆氧化物充填多孔树脂,可将含砷质量浓度降到0.1mg/L,达到工业排放标准[16]。Vagliasindi等人在固定化反应器中填入强碱性的树脂作吸附剂对砷进行吸附[17]。生物高分子物质可有效地除去废水中的金属阳离子,但是对金属阴离子如As,Cr(Ⅳ),Se的去除率很有限。Min和Hering将海藻酸珠粒用CaCl2和FeCl3溶液处理,利用Fe(Ⅲ)提高吸附能力,改善凝胶珠粒的物性,从而提高对砷酸盐和亚砷酸盐的去除率[18]。但是溶液中的硫化物、硒、氟化物、硝酸盐会与砷竞争,从而影响离 子交换的效果。另外,悬浮的土壤和含铁沉淀物会堵塞离子交换床,当处理液中此类物质的含量较高的时候,需要对其进行预处理。
离子交换法的优缺点:由于离子交换法只能处理浓度较低、处理量不大、组成单纯且有较高回收价值的废水,其处理工艺比较复杂,成本较高,所以难以企业化。
2.2光催化氧化法近年来,光催化氧化成为环境领域的研究热点。光催化氧化技术是利用光催化剂吸收光能,然后在一定条件下以特定的波长释放,使水中溶解的氧离子化,进而使As(Ⅲ)得到氧化。Ement和Khoe用紫外光照射氧化As(Ⅲ),在体系中通人氧,并加入可溶性Fe(Ⅲ)来吸收氧化生成的As(V),达到了较好的效果[19]。Ti02也是一种高效能、低成本的光催化剂,在太阳光的照射下,大部分As(Ⅲ)都能氧化为As(V),从而达到除砷效果。
光催化氧化法的优缺点:该技术的优势在于光催化剂加人处理体系后,催化反应可以较快进行,光催化剂理论上可永久使用。该技术只是对含砷污染水体进行预处理,还需要配合其他技术才能达到去除砷的目的。目前的研究多局限于光催化剂吸收紫外光,然后放出能量,实现As(Ⅲ)的催化氧化,对于吸收可见光并释放能量氧化As(Ⅲ)的效果并不理想。
2.3吸附法
吸附法是一种简单易行的废水处理技术,一般适合于处理量大、浓度较低的水处理体系。该方法是以具有高比表面积、不溶性的固体材料作吸附剂,通过物理吸附作用、化学吸附作用或离子交换作用等机制将水中的砷污染物固定在自身的表面上,从而达到除砷的目的。
Guha等人报道,可以用作砷吸附剂的材料有天然珊瑚、膨润土、沸石、红泥、椰子壳、涂层砂、活性氧化铝和活性炭以及天然或合成的金属氧化物及其水合氧化物等。Sone A Jtungan等人采用红泥和膨润土改型的方法提高砷的吸附容量,使五价砷的去除率达96.5%,三价砷的去除率达87.5%。使用天然无机矿砂往往是考虑因地制宜和综合利用,尤其是砷含量高的地区土壤和水体的修复。该方法的特点是具有成本低廉,材料充足,就地取材的优势,在某些场合有较好的效果[20]。张昱、杨敏等[21]合成了一种铈铁复合材料。该材料优点是成本低廉,对砷具有良好的去除效果,去除后水体中金属离子溶出少,符合国家水质标准,是很有发展前景的砷的新型吸附材料。
吸附法的优点是,将废水中的有害物去除,而不增加水体的盐度,是高砷废水二次处理常用的方法。缺点是,吸附剂与砷的化合物之间有较强地吸附作用,这往往使吸附剂的再生、回收和再利用上存在一定的难度。另外,在废水处理时还要考虑到共存离子的竞争作用,例如当溶液中存在磷酸盐、硫酸盐、硅酸盐、氟化物等物质时,这些物质容易与砷竞争吸附位点,导致吸附效果降低。因此,在处理之前需将这些物质去除,增加处理步骤。
2.4膜分离法 膜分离法是以高分子或无机半透膜为分离介质,以外界能量为推动力,利用多组分流体中各组分在膜中传质选择性的差异,实现对其进行分离、分级、提纯或富集的方法,包括微滤、超滤、纳米过滤和反渗透等。其中纳滤膜是有前景的除砷技术之一,它拥有比反渗透膜更高的产水量和更低的能耗,且不需要任何化学药剂,非常适合于小型水厂以及用水终端。
膜分离法的优缺点:膜过程是一种物理分离,这种方法节能,无二次污染,一般在常温下操作[22]。用纳米过滤和反渗透法处理含砷废水,在理想操作条件下能达到>90%的处理效率,但是在实验条件更接近于现实情况下去除率显著降低,而且成本很高。反渗透法还需要大量回流水(大约占流出量的20%-25%),这在水缺乏的地区很难解决。并且该技术对设备、膜、操作条件的要求都很苛刻;阻挡层带负电荷的膜对于AS(V)的去除有效,对以电中性形态存在于水体中的As(Ⅲ)的去除效果并不理想,需要对原水进行预氧化处理,成本很高。所以目前运用该技术大规模治理水体砷污染的时机还不成熟。
3、生化法 与传统物理化学方法相比。微生物法处理含砷废水具有经济、高效且无二次污染等优点,已成为公认最具有发展前途的方法。
与其他毒性重金属如Pb,Cd,Cr等一样,砷也能被水体中的微生物所富集和浓缩。但是与这些重金属不同的是,砷不但能被水中的生物体蓄积,而且也会被这些生物体氧化和甲基化。由于甲基化的砷如甲基砷、二甲基砷、三甲基砷的毒性比无机砷低得多,所以,水体中的微生物对砷富集的过程也是一个对砷降毒、脱毒的过程。利用这一特性可采用生化法对高浓度的含砷废水进行处理。生物法除砷具有操作简单,系统运行经济、高效,且二次污染小等优点,因此用生物技术来处理污水中的重金属离子将有很大的研究前景。
生化法在当代研究中主要有微生物吸附法、活性污泥法、植物修复技术、菌藻共生体、投菌活性污泥法、厌氧生物法等等。下面对几种生化方法的进行简单介绍:
3.1微生物法
微生物除砷是指从受砷污染或者未受砷污染的环境中筛选得到抗耐砷菌,利用抗耐砷菌实现去除环境中的砷。主要的除砷机理为微生物吸附、微生物作为电子传递体或接受体氧化三价砷、微生物分泌各种酶使砷甲基化。因为有机砷的毒性远小于无机砷,所以微生物甲基化成为了新的研究热点。
微生物法的优缺点:微生物是一种易培养获得的材料,它对废水中的砷具有较强的去除力,并能同时去除废水中的营养物,而且处理效率高、费用较低,有望成为含砷废水的主要处理方法。但是,有关微生物除砷的理论和应用研究还处于起步阶段,加强微生物除砷机理研究、针对不同废水水质的工艺开发研究、以及含砷废渣的无害化处理研究,对于提高砷的综合治理效果具有明显的意义[8]。3.2植物修复技术
植物修复是利用植物清除土壤中的污染物质或使污染物质无毒化的技术。包 括植物提取、植物挥发、根际过滤和植物固定。
L.Q.Ma等分别发现凤尾蕨植物——蜈蚣草能超富集As。M.Srivastava等又发现了P.biaurita L.、P.quadriaurita Retz和P.ryukyuensisi Tagawa三种砷的超富集植物。S.Tu等首先将蜈蚣草用于水体砷污染的修复,并获得专利。研究发现,蜈蚣草能够有效去除地下水中的砷。一株蜈蚣草3d就可以将砷质量浓度50㎎/m3、体积为600mL地下水中的砷降至10㎎/m3[23]。
植物修复技术的优缺点:植物修复具有成本低、效果良好、不破坏环境等优点,已成为普遍推崇的重金属污染治理方法。但是植物除砷由于植物生长的周期长,对含砷废水的吸收速度慢,有的还必需结合土壤来转化,并且含砷植物的处理也是十分棘手的问题,所以目前的植物法处理大规模的含砷废水时机尚不成熟。
3.3菌藻共生体 国外研究表明,生物迁移转化作为一种新的微生物法处理重金属废水。与传统方法相比。具有高效、费用低等优点。用小球藻的生物迁移转化处理重金属废水的工艺有一些已投人工程运作。
菌藻共生体对砷的去除机理可认为是藻类和细菌的共同作用。研究表明,在去除金属过程中,微生物的表面起着重要作用。菌藻共生体中,藻类和细菌表面存在许多功能团,如羟基、氨基、羧基、巯基等。这些功能团可与水中砷共价结合。砷先与藻类和细菌表面上亲和力最强的功能团结合。然后与较弱的结合,吸附在细胞表面的砷再慢慢渗入细胞内原生质中。因而在藻类和细胞吸附砷中,可能经过快吸附过程和较慢吸附两过程后,吸附作用才趋于平衡[24]。
菌藻共生体法的优缺点:菌藻共生体是一种易培养获得的材料。其对废水中的砷具有较强的去除力。并能同时去除废水中的营养物。因此其在含砷废水处理中有着广阔的前景。
4、存在问题和展望 目前. 我国水体砷污染比较严重,虽然水体除砷技术已取得了长足发展,但理论和应用方面还存在 如下需要解决的问题。
(1)As(Ⅲ)和As(V)同步去除技术问题。水体中As(Ⅲ)占有相当大的比例,而很多除砷技术只对As(V)的去除效果较好。如何进一步改进现有的修复技术,使As(Ⅲ)和As(V)的去除率达到最大,是需要解决的技术瓶颈。
(2)降低水体砷治理成本。一方面需要开发廉价、易于取得或制备、生物化学稳定性高、吸附容量大、选择性高、再生能力强的新型除砷材料(包括天然材料);另一方面,需要提高设备的运行效率和工艺水平,降低能耗和成本。
(3)广泛推广生物修复技术。生物修复技术主要是微生物修复技术和植物修复技术。广泛筛选适用于不同砷污染水平、不同的气候条件、地质条件、水体利用情况、污染物的化学性质和数量的微生物和植物基因型,开展生物去除砷的机理研究。开发经济合理、高效可行的生物修复技术。
(4)技术综合集成问题。目前,单单一种修复技术不能达到满意的修复效果,往往是多种修复技术结合使用可使效果大大提高。如微生物原位修复需要电动力技术为微生物输送营养物质、电子受体等。渗滤墙技术中的渗滤墙材料可以加人化学药剂或者以某种特定植物覆盖于渗滤墙上,提高修复效果。
(5)加强对水环境污染物环境化学和水体修复机理的研究。由于污染物迁移机理的复杂性、多样性,使得其修复模型的建立困难重重。应该加强对其机理性的研究,建立完善的模型,为制定修复计划提供可靠依据。
(6)制定含砷废水修复技术标准,完善相关法规和政策。根据我国实际,参考国际标准,制定适合于我国的相关技术标准和规程,同时,制定相关政策法规,完善废水治理奖惩政策,将废水砷污染的治理纳入法制化的轨道。
总之,每一种除砷技术都有其优缺点,对不同的含砷废水应选用适当的方法进行处理。随着环保意识的提高和科学技术的不断发展,我们期望一种对环境危害更小,经济性更好的处理方法能早日问世,造福企业与社会。
参考文献:
[1]曹会兰.砷对人体的危害与防治[J].化学世界,2003,44(10):559-560.[2]廖祥文.含砷工业废水处理技术现状及展望[J].矿产综合利用2006,8:27-30.[3]杨洁,顾海红,赵浩.含砷废水处理技术进展[J].工业水处理,2003,23(6):14-18.[4] 王颖,吕斯丹,李辛,吴英杰.去除水体中砷的研究进展与展望[J].环境科学与技术,2010,33(9):102-107.[5]提芸,张旭,佟迪,肖佟.砷污染的危害及除砷方法探讨[J].辽宁化工,2008,37(9):629-631.[6]赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学2002,29(5):651-652.[7]余青原,王琳,张宝伟.浅析水中砷的去除[J].山西建筑,2007,33(1):182-185.[8]王颖,吕斯丹,李辛,吴英杰.去除水体中砷的研究进展与展望[J].环境科学与技术,2010,33(9):102-107.[9]许根福.处理高砷浓度工业废水的化学沉淀法[J].湿法冶金,2009,28(1):12-17.[10]Ferguson JF,Gavis J.A review of the arsenic cycle in natural waters [J].Water Research,1972,6:1 259-1 274.[11]PettineM.Arsenic oxidation byH2O2in aqueous solutions[J].Geochim-ica et Cosmochimica Acta,1999,63(18):2 727-2 735.[12]Driehaus W,Reiner Seith.Oxidation of arsenate(Ⅲ)with manganese oxides in water treatment[J].Water Research,1995,29(1):297-305.[13]Kim Myoung-Jin,Jerome Nriagu.Oxidation of arsenite in groundwater using ozone and oxygen[J].The Science of Total Environment,2000, 247(1):71-79.[14]张志,康壮武.氧化-混凝工艺处理碱性含砷废水的技术改造[J].环境科学与管理,2008,33(6):98-100.[15]邢大荣,艾有年,松荣云等.用聚合硫酸铁除去水中砷的试验[J].环境与健康杂志,2002,19(3):218-219.[16]Suzuki TM,Bomani J O ,MatsunagaH,et al.Removal ofAs(Ⅲ)and As(V)by a porous spherical resin loadedwithmonoclinic hydrous zirco-nium oxide[J].Chemistry Letters,1997:1 119.[17]Vagliasindi F G A,Benjamin M.Arsenic removal in fresh and NOM-preloaded ion exchange packed bed adsorption reactors[J].Water Sci-ence and Technology,1998,38(6):337-343.[18]Min JH,Hering JG.Arsenate sorption byFe(Ⅲ)-doped alginate gels [J].Water Research,1998,32(5):1544-1552.[19]Emett M T,Khoe G H.Photochemical oxidation of arsenic by oxygen and iron in acidic solution[J].Water Research,2001,35(13):649—656. [20]梁慧锋,刘占牛.除砷技木研究现状[J].邢台学院学报,2005,20(2):96-99.[21]张昱,杨敏,高迎新等.用于地下水中砷去除的铈铁复合材料的制备和作用机制[J].中国科学(B)辑,2003,33(2):127-132.
[22]Marcel Mulder.膜技术基本原理[M].北京:清华大学出版社,1999.374 [23]马琳,涂书新.含砷废水修复技术的研究现状和展望[J].工业水处理,2009,29(7):1-6.[24]廖敏.菌藻共生体去除废水中砷初探[J].环境污染与防治,1997,19(2):ll-l2.
第二篇:含砷废水处理技术总结
含砷废水处理技术总结
发布时间:2010-2-21 11:35:43 中国污水处理工程网 化学法处理含砷废水
处理含砷废水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。
中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。
铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣[5]。Nakazawa Hiroshi 等研究指出[6],在热的含砷废水中加铁盐(FeSO4或Fe2(SO4)3),在一定pH下,恒温加热1 h。用这种沉淀法比普通沉淀法效果更好。特别是利用磁铁矿中Fe3+盐处理废水中As(III)、As(V),在温度90℃,不仅效果很好,而且所需要的Fe3+浓度也降到小于0.05mg/L。赵宗升曾[7]从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,发现在低pH值条件下,废水中的砷酸根离子与铁离子形成溶解积很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。
马伟等报道[8],采用硫化法与磁场协同处理含砷废水,提高了硫化渣的絮凝沉降速度和过滤速度,并提高了硫化剂的利用率。研究发现经磁场处理后,溶液的电导率增加,电势降低,磁化处理使水的结构发生了变化,改变了水的渗透效果。国外曾[9]有人提出在高度厌氧的条件下,在硫化物沉淀剂的作用下生成难溶、稳定的硫化砷,从而除去砷。化学沉淀法作为含砷废水的一种主要处理方法,工程化比较普遍,但并不是采用单一的处理方式,而是几种处理方式的综合处理,如钙盐与铁盐相结合,铁盐与铝盐相结合等等。这种综合处理能提高砷的去除率。但由于化学法普遍要加入大量的化学药剂,并成为沉淀物的形式沉淀出来。这就决定了化学法处理后会存在大量的二次污染,如大量废渣的产生,而这些废渣的处理目前尚无较好的处理处置方法,所以对其在工程上的应用和以后的可持续发展都存在巨大的负面作用。2 物化法处理含砷废水
物化法一般都是采用离子交换、吸附、萃取、反渗透等方法除去废液中的砷。物化法大都是些近年来发展起来的较新方法,实用的尚不多见,但是有众多学者在这方面做了深入的研究,并取得了显著的成果。
陈红等曾[10]利用MnO2对含As(III)废水进行了吸附实验,结果表明,MnO2对As(III)有着较强的吸附能力,其饱和吸附量为44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),阴离子的存在使MnO2吸附量有所下降,一些阳离子(如Ga3+、In3+)可增加其吸附量,吸附后的MnO2经解吸后可重复使用。胡天觉等报道[11],合成制备了一种对As(III)离子高效选择性吸附的螯合离子交换树脂,用该离子交换柱脱砷:含As(III)5 g/L的溶液脱砷率高于99.99%,脱砷溶液中砷含量完全达标,而且离子交换柱用2mol/L的氢氧化钠(含5% 硫氢化钠)作洗脱液洗涤,可完全回收As(III)并使树脂再生循环利用。
刘瑞霞等[12]也曾制备了一种新型离子交换纤维,该离子交换纤维对砷酸根离子具有较高的吸附容量和较快的吸附速度。实验表明该纤维具有较好的动态吸附特性,30mL 0.5mol/L氢氧化钠溶液可定量将96.0 mg/g吸附量的砷从纤维上洗脱。
另外,还有不少人作了用钢渣、选矿尾渣、高炉冶炼矿渣等废渣处理含砷废水的研究,取得了不错的成果。但由于物化法只能处理浓度较低,处理量不大,组成单纯且有较高回收价值的废水,而工业废水的成分较复杂,所以物化法的工程化程度较低。3 微生物法处理含砷废水
与传统物理化学方法相比,用微生物法处理含砷废水具有经济、高效且无害化等优点,已成为公认最具发展前途的方法。3.1 活性污泥
国内外诸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金属离子,尤其是重金属离子,他们与ECP的络合更为稳定。关于吸附机制,在ECP的复杂成分中吸附重金属离子的似乎是糖类。Brown和Lester(1979)指出ECP中的中性糖和阴离子多糖有着吸附不同金属离子的结合点位,不同价态或不同电荷的金属离子可以在不同的点位与 ECP结合,如中性糖的羟基、阴离子多聚物的羟基都可能是金属的结合位[13]。Kasan、Lester、Modak和Natarajam等认为:活性污泥对重金属离子的吸附有两种机制即表面吸附和胞内吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲壳素、壳聚糖等)含有配位基团—OH,—COOH,—NH2,PO43-和—HS等,他们与金属离子进行沉淀、络合、离子交换和吸附,其特点是快速、可逆和不需要外加能量,与代谢无关;胞外吸收通过金属离子和胞内的透膜酶、水解酶相结合而实现,速度较慢需要能量,而且与代谢有关[14]。
此外,Ralinske指出:好氧生物能大量富集各种重金属离子,这些离子积累于细胞外多聚物中,并在厌氧条件下释放回液相中[15]。这就有利于我们在二沉池中分离和沉降重金属离子。在活性污泥法处理含砷废水的实验中,存在许多影响因素,主要影响因素如下:(1)砷的浓度及价态
不同价态的砷对活性污泥的毒性不同。实验表明,As(III)对脱氢酶的毒性比As(V)平均大53倍。As(III)对蛋白酶活性的毒性约为As(V)的75倍。还有,As(III)对活性污泥脲酶活性的毒害作用是As(V)的35倍[16]。所以处理含砷废水时有必要将As(III)氧化成As(V)。实验还表明,活性污泥对低浓度砷的去除率高于对高浓度砷的去除率,这是由于污泥的吸附能力有限所造成的。此外,重金属离子浓度小于5mg·L-1时,活性污泥法对污水中有机物的处理效果不受重金属影响,当重金属离子浓度大于30mg·L-1时,活性污泥法污水中有机物的处理效果则大大受到影响[9]。(2)有机负荷
有机负荷对活性污泥去除五价砷也有较大的影响,有机负荷高,去除率也高。主要有两方面的原因:一是污水中的有机物本身可和五价砷相结合,降低了污水中砷的浓度;二是有机物浓度高有利微生物生长繁殖,这进一步提高活性污泥对五价砷的去除率[17]。此外,有机负荷高还可以防止污泥膨胀。因为在高有机负荷环境中絮状菌比大多数丝状菌有更强的吸附和存贮营养物能力,能够充分利用高浓度的底物迅速增殖,具有较高的比生长速率,抑制了丝状菌的生长。在低负荷下混合液中底物浓度长时间都低,由于缺少足够的营养底物,絮状菌的生长受到抑制,而丝状菌具有较大的比表面积,当环境不利于微生物的生长时,丝状菌会从菌胶团中伸展出来以增加其摄取营养物质的表面积。一方面,伸出絮体之外的丝状菌更易吸收底物和营养,其生长速率高于絮状菌,从而成为活性污泥中的优势菌种;另一方面,丝状菌越多,其菌丝越长,活性污泥越不易沉降,SVI越高,导致了污泥膨胀[18]。(3)pH pH 对金属去除影响很大,因为pH不仅影响金属的沉降状态,而且影响吸附点的电荷。一般pH 升高有利于污泥对阳离子金属的吸附。直至产生氢氧化物沉淀,反之则有利于对呈负电荷状态存在的金属的吸附。但是,过高或过低的pH对微生物生长繁殖不利,具体表现在以下几个方面:①pH过低(pH=1.5),会引起微生物体表面由带负电变为带正电,进而影响微生物对营养物的吸收。②过高或过低的 PH还可影响培养基中有机化合物的离子化作用,从而间接影响微生物。③酶只有在最适宜的pH时才能发挥其最大活性,极端的pH使酶的活性降低,进而影响微生物细胞内的生物化学过程,甚至直接破坏微生物细胞。④过高或过低的pH均降低微生物对高温的抵抗能力[19]。(4)生物固体停留时间(Qc)
Qc对阳离子金属去除有较大影响,因为活性污泥表面常被难溶性或微溶性的多聚物所包围(如多糖),这些多聚物表面的电荷可使金属迅速地得以去除。已经证实,细菌多聚物产生和细菌生长相有关,稳定相和内源呼吸阶段多聚物产量最大,而Qc增大,污泥中细菌处于稳定相和内源呼吸阶段,有利于对金属的去除[17]。(5)污泥浓度
污泥浓度高,吸附点也随着增加,从而有利于金属的去除。从去除金属的角度出发,高有机负荷,高污泥浓度的运行方式最为理想。
活性污泥法处理含砷废水,不论在处理费用,还是二次污染,或者工程化方面,都比传统处理方法具有相当突出的优势。虽然在理论研究方面还不是十分完善,但是在处理机制和影响因素方面都已达成一定的共识。如果在处理工艺上再进行一定的改进,如往污泥中投加优势菌种,可以改善污水的处理效果;此外,还可以引进生活污水进行混合处理并进行曝气,这样不仅降低了砷的浓度以及砷对污泥的毒害作用,同时还解决了活性污泥的营养源问题,为活性污泥法处理含砷废水的工程化应用开辟了一片新天地。3.2 菌藻共生体
国外研究表明,生物迁移转化作为一种新的微生物法处理重金属废水,与传统方法相比,具有更高效,费用更低等优点。用小球藻的生物迁移转化处理重金属废水的工艺,有一些已投入工程运作[20]。
菌藻共生体对砷的去除机理可认为是藻类和细菌的共同作用。许多研究表明,在去除金属过程中,微生物的表面起着重要作用[21-22]。菌藻共生体中,藻类和细菌表面存在许多功能键[23-24],如羟基、氨基、羧基、硫基等。这些功能键可与水中砷共价结合,砷先与藻类和细菌表面上亲和力最强的键结合,然后与较弱的键结合,吸附在细胞表面的砷再慢慢渗入细胞内原生质中。因而在藻类和细胞吸附砷中,可能经过快吸附过程和较慢吸附两过程后,吸附作用才趋于平衡。
廖敏等人曾研究了菌藻共生体对废水中砷的去除效果。研究发现:培养分离所得菌藻共生体中以小球藻为主,此时菌藻共生体积累砷达7.47 g/kg干重。在引入菌藻共生体并培养16h后,其对无营养源的含As(III),As(V)的废水除砷率达80%以上,并趋于平衡,含营养源的As(III)、As(V)的废水中,菌藻共生体对As(V)的去除率大于As(III),对As(V)去除率超过70%,但对As(III)的去除率也在50%以上,在除砷过程中同时出现砷的解吸现象。在无营养源条件下,对As(III)、As(V)混合废水的除砷率超过80%[25]。菌藻共生体是一种易培养获得的材料。其对废水中的砷具有较强的去除力,并能同时去除废水中的营养物,因此其在含砷废水的处理运用中有着广阔的前景。3.3 投菌活性污泥法 投菌活性污泥法[26](Application of Bio-Augmentation Process with Liquid Live microorganisms)是将具有强活力的细菌投入到曝气池里去,使曝气池混合液内的各种细菌处于最佳活性状态,这样.不仅投入了吸气池内所缺少的细菌,在流入污水水质不变的条件下,微生物氧化作用显著,而且,当污水水质改变,环境变异的情况下,微生物仍能适应,保持活性,其氧化代谢过程依然充分,投入菌液后使曝气池耐冲击负荷,提高污水处理厂的处理效果,改善了出水水质。
投菌活性污泥法(LLMO)是出之一种新的概念,它是根据在同一环境里,最适宜的细菌能自然繁殖,同样,污水处理厂曝气池混合液内的细菌也会自然繁殖到一定数目,自然界无处不可找到细茵,然而,在同一环境里并非可以找到一切细菌这一原则,作为理论指导,从自然界土壤内筛选出污水厂中的有用细菌制成液态的或固态的产品。液态菌液微生物成活率高;固态菌使用前需先用水溶成液态,细菌的成活率较液态菌液低,使用时按一定比例将液态菌液投入曝气池内或投到需用处,投菌活性污泥法(LLMO)在国外已收到良好的应用效果。因此,我们可望通过向活性污泥中投加对砷具有高耐受力,对砷具有特殊处理效果的混合菌种,达到对砷的高效处理,净化工业含砷废水。
第三篇:砷污染 案例
郴州砷污染事故阴影犹在 政府缺席土壤污染防治(2)“我们承认,新的污染源还没有完全有效控制,历史遗留问题也没有根本解决,土壤污染问题形势依然严峻”
依旧是个未知数
事发后,由郴州市、苏仙区两级政府组成的联合调查组调查结果表明,离村庄不远的郴州砷制品厂,因生产过程中将不允许外排的闭路循环废水直接排放,导致部分村民不同程度地发生砷污染急性中毒和亚急性中毒,相继有380名村民住院治疗,两人死亡。
随后,经长沙市土地肥料测试中心监测:大部分水田轻度污染,暂不能继续种植水稻,需要长时间施大量磷肥改良土壤或改造成旱地种植其他农作物。其中,轻度污染189亩、中度污染107亩、无污染175亩。水田污染损失以10年间接和直接损失鉴定为84.7万元。
“砷中毒事件发生后的两年时间里,百姓都不敢下田。”5月5日,邓家塘村村长段华峰在接受本刊记者采访时回忆说。
邓家塘村12组组长李国金告诉本刊记者,2002年,受污严重的几个村民小组将污染企业告上了法庭,村民得到赔偿后,地方政府鲜有过问土地使用情况。
对于受污水田如何修复,需要多久,依旧是个未知数。
邓家塘乡乡长李旭平亦向本刊记者坦承,事发至今,乡政府已经换届几任领导,在他任上,没有专门检测过,这么多年来,受污染土壤的砷金属含量是否降低,他也不知情。
为解决农田大面积抛荒,村委会采取了土地流转的方式,将农田承包给租户,用于稻谷培种、种植烤烟等非农作物,出租农田的村民每年每亩可得到120元左右的租金。
中科院地理科学与资源研究所环境修复中心主任陈同斌告诉本刊记者,土壤一旦发生污染,短时间内很难修复,相比水、大气、固体废弃物等环境污染治理,土壤污染是最难解决的。
郴州市、苏仙区两级环保局及农业局工作人员在接受本刊记者采访时表示,重金属污染一直是他们严控重管的领域,对土壤污染的治理修复,他们仍处在探索阶段,尚未找到可供大面积全面推广,且百姓容易接受的方法。
时至今日,离事发已11年,近一个轮回,砷污染的阴影依然没有消散。
当地村民和政府的一块心病
有湖南“南大门”之称的郴州,虽然总面积只有1.94万平方公里,约占全国国土面积1/500,但却拥有着储量居全国首位的钨、钕、铋和钼,储量居全国第三位和第四位的锡和锌,储量居全国第十三位的铅,郴州也因此被誉为“有色金属之乡”。
然而,赞誉的背后却一半是海水,一半是火焰——有色金属产业给郴州带来巨大财富的同时,也带来了严重的环境污染。
在上世纪末本世纪初前后的十多年里,郴州市临武县三十六湾处于掠夺式开采阶段,高峰时,这块仅49平方公里的土地上,有10万采矿大军蚁聚于此,疯狂掘金。郴州市环保局副局长张继耀告诉本刊记者,最后动用武装警察力量,以及采取多部门联合执法方式,非法矿区才勉强得以取缔。
张继耀至今仍记得,2010年1月下旬,国家发改委组织环保部、科技部等8部委来湘调研,看到三十六湾被挖得千疮百孔的山头后,一位官员眉头紧锁,表情严肃地说了四个字:“触目惊心!”
这种粗放式排放留下的后遗症成了当地村民与政府的一块心病。郴州市农业局主任科员何红军接受本刊记者采访时说,郴州土壤重金属的自然背景值比湖南省有色金属平均值要高出两倍多,而土壤污染影响是根本性的,如不加以有效防治,仅靠土壤自然恢复,一般需要两三百年。
中国环境科学研究院研究员薛南冬博士告诉本刊记者,土壤重金属具有生物累积性,可以直接或间接威胁人类健康,粮食、蔬菜乃至饮用水中的重金属含量与土壤重金属污染直接相关,耕地重金属污染成了威胁农产品质量和人类健康的隐患。
土壤修复的科学探索
“与河流比,土壤重金属污染更加严重一些,且土壤污染更加复杂。”陈同斌告诉本刊记者。
事实上,如何有效消除环境中的重金属污染物,已成为世界性难题。一位受访专家告诉本刊记者,全世界已发现400多种超富集植物,但大多数超富集植物都有生物量小、生长缓慢、抵抗力弱、种子少、缺乏与当地植物竞争的能力等缺点,因此,能够真正应用于植物修复技术的超富集植物并不多。目前,土壤重金属污染最有效方法是寻找超富集植物进行植物修复。
从1997年开始调查土壤污染状况的陈同斌发现,耕地污染包括有机物污染、无机物污染等,中国的土壤污染以重金属污染为主。
陈同斌说,只要找到合适的植物,就能对应不同的重金属。1999年,他在中国本土发现了世界上第一种砷的超富集植物——蜈蚣草。
时隔一年后,恰逢邓家塘砷污染事件爆发。陈同斌通过对该村土壤检测,结果显示,砷含量超出国家《土壤环境质量标准》规定的污染标准1倍至30多倍,大部分在两三倍,相比于污染前的土壤含砷量,污染后的土壤含砷量增加5倍至100倍。
在全国考察重金属污染时,陈同斌也发现,最严重的就是砷污染。砷是一种有毒的物质,其三价的氧化物俗称“砒霜”,能让接触者患皮肤病或癌症等。
这一年,陈同斌便带领重金属污染土壤植物修复团队在湖南郴州建立了世界上第一个砷污染修复基地。
他告诉本刊记者,蜈蚣草是一种通过孢子繁殖的蕨类植物,通过根系,将土壤中的重金属吸收到体内,并转移到地上部分。通过蜈蚣草的吸附、收割,三至五年内,这片土地就可以修复。
为了缩短净化的时间,原本一年割一茬的蜈蚣草,现每年割三茬。经陈同斌测算,蜈蚣草一年一亩地大约能吸附7公斤到13公斤的含砷量。
陈同斌还透露,去年10月,由国家总投入2450多万元的蜈蚣草修复项目,已经在广西环江地区、云南个旧、湖南、江西等地成规模展开,总修复农田面积达到1000~2000亩,“这已成为世界范围内最大面积的重金属污染农田修复”。
经过长期的摸索,陈同斌将修复技术从单纯的超富集植物修复技术逐步发展成超富集植物与经济作物间作的边修复、边生产的新型修复模式,即将蜈蚣草与经济作物套种的方法——一行种植农作物,一行种植蜈蚣草,以此来增加农民的经济收入。
陈同斌介绍,除了蜈蚣草之外,超富集植物还有东南景天,这是在广东种植的专门修复镉中毒农田的植物,现东南景天在全国也有上百亩的试验基地。
在西北,数百亩盐碱土地上,种植了被称作吸毒解毒高手的竹柳,它不仅耐寒、耐旱、耐涝、抗盐碱,还可以吸收城市污水,消除氮磷钾。
现实中的难题
从理论上说,植物修复技术对重金属污染土壤修复是可行的,但是,在实践推行中,却遇到了问题。
何红军告诉本刊记者,因科研需要,他们之前在郴州市苏仙区白露塘镇连续6年试种“蜈蚣草”,部分含砷的污染土壤得到改善,但是,百姓的积极性并不高,推广难度大。何红军解释,蜈蚣草种植时间长,加上成本大,没有经济效益,百姓宁愿抛荒,也不愿作这种尝试。
何红军说,一方面是百姓不买账,另一方面,种植蜈蚣草所需的经费,地方政府也无法给予支持。
陈同斌对大面积使用这种方法,亦持保留态度——问题出在资金上。
他说,使用植物修复法平均每亩的价格达到了两万元,而且还要连续种植数年,“对于农民来说,这个负担很沉重,除非政府能有补贴”。
陈同斌告诉本刊记者,2001年,他们租了邓家塘村15亩地,租金为200元/亩。但种植约4年后,陈同斌退出了郴州。对于退出的理由,陈同斌说,除邓家塘没有大规模的种苗基地外,另一个主要原因是当地政府支持力度不大。
对这一说法,邓家塘乡乡长李旭平事后在接受本刊记者采访时回应,如果没有上级部门的专项资金拨付,乡政府无能为力。
陈同斌举例说,广西环江受污染土地达万亩,如果要全部修复,总投资至少需要几千万到1亿元,这对当地财政来说是个不小的数目。
公开报道显示,在广西,蜈蚣草就和制造工业乙醇的能源甘蔗种在一起。在其他地方,蜈蚣草还能和桑树、苎麻一起套种,为农民带来一定的经济收入。
问题是,在郴州,套种也遇到了阻碍。
张继耀告诉本刊记者,2009年,该局在郴州市嘉禾县进行试点,种植了200多亩苎麻,为解决销售问题,环保局通过协调,指定了一家定点加工企业,但由于种植面积小,没有形成规模,加之百姓传统的种植习惯问题,以及利润不高,“该厂至今没有开工生产”。
更令人悲观的是,植物修复法也并非万能之策。
陈同斌告诉本刊记者,当前受污染的土壤,多数是量大面广的中低浓度污染,植物修复法是首选,效果也较为明显。可是,土壤中的高浓度污染物,则无法解决,即便采用植物修复法,时间漫长,也不是上乘之举,只能采取种植非农作物的方法。
还在等待答案
薛南冬认为,摸清家底应该成为土壤污染防治的第一步。我国的土壤污染分布广,局部地区突出,只有调查清楚全国土壤污染的现状及其危害,才能找出原因并提出对策和治理措施,才能出台防治土壤污染的法律。
谈及邓家塘蓄积11年的问题如何解决时,在接受本刊记者采访时,郴州市苏仙区环保局副局长雷湘一个劲地倒苦水,她说,“历史遗留问题较多,缺乏技术支撑,以及土壤污染治理专项资金,是摆在基层环保部门面前的现实困境。”
“邓家塘村这种情况,基本解决不了。”雷湘直言。
在本刊记者采访过程中,不管是百姓还是官员,资金短缺是提及最多的一个词眼,这也是农村环境治理面临的难题之一。
何红军亦表示,土壤污染修复面临最大的困难在于,一是经费没保证,设备没保障;二是人力和能力都十分有限。
雷湘认为,光靠县区环保机构还不够,应延伸至基层乡镇一级,目前,环保机构的构架像一个倒金字塔结构,越到基层,环保工作人员越匮乏。而乡镇往往掌握着最底层的环保信息,人员的配比不能满足发展要求。
相关数据显示,在环保机构中,多数省级环保部门没有负责农村环保的环境保护专门处室,县级环保部门工作力量更为薄弱,绝大多数乡镇没有专门的环保机构和人员编制,缺乏必要的监测、监察设备。
在张继耀看来,日后的工作重点及重心应遵循“不欠新账,多还旧账”的治理原则,从源头上控制污染源。
“土壤治理修复的关键在于技术问题,要做到百姓接受,方便实施,利于推广的方法,现在还未找到”,张继耀说。
张继耀向本刊记者透露,他们上报了多个土壤修复项目,但这样的民生工程,上级部门拨付下来的治理资金却很少,往往都将重点放到了源头治理上。张继耀分析说,上级部门或许考虑到,土壤修复其一是资金数额大,其二是害怕效果不明显。
同时,张继耀还表示,“我们承认,新的污染源还没有完全有效控制,历史遗留问题也没有根本解决,土壤污染问题形势依然严峻。”
薛南冬告诉本刊记者,对于土壤重金属污染,必须贯彻“以防为主,防治结合”的环保方针。控制与消除土壤重金属污染源,是防止污染的根本措施。即控制进入土壤中的污染物的数量与速度,通过其自然净化作用而不致引起土壤污染。控制与消除工业“三废”排放。对工业“三废”进行净化处理、回收处理,化害为利,并严格控制污染物排放量与浓度,使之符合排放标准。对于已受重金属污染的土壤,应该改种非粮食作物并调整耕作制度,降低人类健康风险,重金属污染严重的土壤,在进行农业生产前,建议先用植物修复技术进行修复。
陈同斌认为,要解决土壤污染修复问题,除了资金、设备问题之外,还要加强信息公开工作,“在很多城市,对土壤污染问题相关信息不公开,百姓不知情,甚至有些政府官员,都不知道哪些地方有污染,污染到什么程度。”
本刊记者离开郴州后收到一位邓家塘村村民的一封电子邮件,上面写着:“11年以后,对于田土和身体中的毒素,当地政府还没有给我们一个明确的文件。我们这个田土到底能不能耕种?”
08中国环保十大事件:阳宗海砷污染引政府行政问责
中国网 china.com.cn 时间: 2009-01-01 发表评论>> 2008年是让所有中国人刻骨铭心的一年,中国人民在经历一次次磨练的同时,中国的环境也承受了严峻的考验。回首即将过去的一年,我国环保事业有太多的事情值得记取,我们从中选取了10件较有影响的环保事件,以记录2008年中国环保事业的发展轨迹。
1、防治土壤污染全面启动,土壤修复刻不容缓
1月8日,原国家环保总局在北京召开第一次全国土壤污染防治工作会议,局长周生贤指出,当前,我国土壤污染防治面临的形势十分严峻,部分地区土壤污染严重,土壤污染类型多样,呈现新老污染物并存、无机有机复合污染的局面。
会议提出,切实解决当前突出的土壤环境问题。要做好以下几方面工作:一是搞好全国土壤污染状况调查;二是强化农用土壤环境监管与综合防治。严格控制污水灌溉,强化对农药、化肥、除草剂等农用化学品的环境管理;三是加强城市建设用地和遗弃污染场地环境监管;四是拓宽土壤污染防治资金投入渠道。按照“谁污染、谁治理,谁投资、谁受益”的原则,促进企业对污染场地进行综合治理;五是增强土壤污染防治科技支撑能力。大力研究开发污染土壤修复技术,开发污染土壤修复设备;六是建立健全土壤环境保护法律法规和标准体系;七是加强土壤环境监管体系和能力建设;八是加大宣传教育力度。
2、国家环境保护部挂牌,环保部门有了发言权
3月27日,中华人民共和国环境保护部揭牌仪式举行,原环保总局局长周生贤出任部长。环保总局由局升格为部,标志着环保部门由国务院直属单位变为国务院的组成部分,过去只能列席国务院会议的环保部门,如今有了发言权。
环保部的成立,充分表明了党和国家对环保工作的高度重视,把环境问题纳入国务院的重大决策中,更多地参与国家的综合决策。环境保护部成为国务院组成机构,有利于从最先决策源头更好地控制环境污染、环保地位的确立。环境保护部今后的职能配置将朝着统筹协调、宏观调控、监督执法和公共服务4个方向强化。
在 “三定”方案的职责调整中,明确了加强环境政策、规划和重大问题的统筹协调职责,加强环境治理和对生态保护的指导、协调、监督的职责,加强落实国家减排目标、环境监管的职责。同时,将水污染物排放许可证审批和发放职责交给地方环境保护行政主管部门。
3、地震灾区生态环境遭破坏,恢复重建预计7年
5月12日四川汶川发生大地震后,国家环境保护部副部长潘岳表示,汶川大地震受灾地区位于岷山—横断山生物多样性保护关键地区,是生物多样性丰富、生态环境非常敏感的地区,是长江上游重要的生态屏障,地震对灾区脆弱的生态环境造成了极大破坏,可能会严重损害灾区生态系统的基础。
潘岳从四方面阐述了灾害对灾区生态环境的破坏:导致山体滑坡、泥石流等次生地质环境灾害;防疫过程中使用的大量消毒剂、灭菌剂以及生活垃圾、生活污水、腐烂动物尸体等,威胁到河流水环境和群众饮用水的安全;破坏了当地生态系统的平衡。
地震发生后,环保部立即启动一级应急响应,与灾区省市环保部门密切协调、配合与联动,有力地保障了灾区的饮用水安全和核安全,未发生次生重大环境事件。
9月,《四川省汶川地震灾区生态环境恢复重建规划》通过审定正式出台。根据规划,四川地震灾区计划用7年实施生态环境恢复重建。
4、“限塑令”全国展开,节能环保意识深入民众
6月1日起,我国正式实施“限塑令”。
2007年12月31日,国务院办公厅发布《关于限制生产、销售、使用塑料购物袋的通知》。《通知》指出,我国每年都要消耗大量的塑料购物袋。塑料购物袋在为消费者提供便利的同时,由于过量使用及回收处理不到位等原因,也造成了严重的能源资源浪费和环境污染。
《通知》规定:从2008年6月1日起,在全国范围内禁止生产、销售、使用厚度小于0.025毫米的塑料购物袋;自2008年6月1日起,在所有超市、商场、集贸市场等商品零售场所实行塑料购物袋有偿使用制度,一律不得免费提供塑料购物袋。
“限塑令”实施后,全国市场塑料袋的使用数量大幅减少。人们开始逐步习惯自备布袋或自备塑料袋的购物方式,商家也从原先的无偿提供塑料袋过渡到有偿提供,甚至国家质检总局规定了直接接触食品的塑料袋的卫生指标和标识等规定。
5、云南阳宗海砷污染事件,引发政府行政问责
今年6月以来,云南九大高原湖泊之一的阳宗海水体中的砷浓度超出饮用水安全标准,导致严重污染,直接危及2万人的饮水安全。从7月8日起,沿湖周边人民群众及相关企业全面停止从中取水作为生活饮用水。目前,卫生部门未发现人畜砷中毒现象。
9月12日,云南省政府常务会议专题研究阳宗海水污染情况,决定立即实施 “三禁”,即禁止饮用阳宗海的水、禁止在阳宗海内游泳、禁止捕捞阳宗海的水生产品;立即采取坚决果断措施,查处污染企业,严肃追究相关责任人的责任,切实截断污染源;立即全面启动阳宗海砷污染综合治理措施,力争用3年左右时间将阳宗海水质恢复到砷浓度值≤0.05毫克/升。
与此同时,云南省对26名涉及阳宗海砷污染事件的政府相关人员实施了行政问责,其中12人被给予免职处分。
为强化环境执法,昆明市公安局环境保护分局成立,这一机构的设置在全国尚属首次。
6、农村环境提上议程,“以奖促治”成重要战略
7月24日,国务院首次召开全国农村环境保护工作电视电话会议,全面部署农村环境保护工作,表明了我国把农村环境保护与城市环境保护统筹考虑、全面推进的决心。会议确定了我国农村环境保护的主要目标:到2010年,农村饮用水水源地水质有所改善,农业面源污染防治取得一定进展,严重的农村环境健康危害得到有效控制。农村生活污水处理率、生活垃圾处理率、畜禽粪便资源化利用率、测土配方施肥技术覆盖率、低毒高效农药使用率均提高 10%以上。到2015年,农村人居环境和生态状况明显改善,农村环境监管能力显著提高。
根据会议的部署,2008年中央财政安排5亿元支持农村环境综合整治。农村环保专项资金已陆续下达各地,旨在推进农村环境综合治理的“以奖促治”行动也在全国各地相继启动,将有600个环境问题突出的村庄得到治理、100个生态示范创建村镇得到奖励、400万群众直接受益。
7、实现绿色奥运,北京兑现了承诺
2008年8月8日,第二十九届奥林匹克运动会在北京盛大召开。这一天,全世界的目光都聚集到了北京,为办好这次世纪盛会,实现绿色奥运的承诺,中国政府及人民做出了不懈的努力。北京先后投入1000多亿元改善环境,有力促进了北京的环保建设。
据统计,北京奥运会实施了358个“绿色奥运”项目,包括新能源项目69项、建筑节能项目168项、水资源项目121项。奥运工程共建设了9个太阳能热水系统。
据介绍,在200万平方米的奥运工程中,有26.7%的面积使用可再生能源等绿色能源。168个建筑节能项目所节约的能源,相当于每年减少20万吨二氧化碳的排放。
2007年北京全年收获246个蓝天,比1998年的100个蓝天多了146个,2008年更是提前1个月完成了全年的蓝天指标。奥运会和残奥会期间,北京市 空 气 质 量 达 标 率 为100%。
8、循环经济促进法通过,助推我国经济模式转变
8月29日,十一届全国人大常委会第四次会议表决通过了《中华人民共和国循环经济促进法》,国家主席胡锦涛签署第4号主席令予以公布,自2009年1月1日起施行。
法律规定,从事工艺、设备、产品及包装物设计,应当按照减少资源消耗和废物产生的要求,优先选择采用易回收、易拆解、易降解、无毒无害或者低毒低害的材料和设计方案,并应当符合有关国家标准的强制性要求;工业企业应当采用先进或者适用的节水技术、工艺和设备,制定并实施节水计划,加强节水管理,对生产用水进行全过程控制;国家鼓励和支持企业使用高效节油产品。
法律规定,企业应当按照国家规定,对生产过程中产生的粉煤灰、煤矸石、尾矿、废石、废料、废气等工业废物进行综合利用;企业应当发展串联用水系统和循环用水系统,提高水的重复利用率,并采用先进技术、工艺和设备,对生产过程中产生的废水进行再生利用。
9、“环境一号”成功发射,我国民用卫星添“新星”
9月6日,我国在太原卫星发射中心用“长征二号丙”运载火箭,以一箭双星的方式将“环境一号”卫星A星、B星成功送入太空,为中国民用卫星大家庭又添“耀眼新星”。本次发射的 “环境一号”卫星A星、B星,由两颗中分辨率的光学小卫星组成,是环境卫星星座建设的第一步,是我国继气象、海洋、国土资源卫星之后一个全新的民用卫星,拥有光学、红外、超光谱多种探测手段,是目前国内民用卫星中技术较复杂、指标较先进的对地观测系统之一。
“环境一号”A、B星的成功发射,是落实党中央、国务院关于加强环境保护工作、提升我国环保能力和综合减灾、构建灾害和环境监测预报体系的重大举措,为建立天地一体化的环境保护技术支撑体系奠定了坚实基础,为完善环境污染与生态变化以及灾害监测、预警、评估、应急救助指挥体系提供了良好平台。同时,也将极大推动我国环境保护和减灾救灾领域的国际交流与合作。10、3500亿保护生态环境,成扩大内需重要措施
11月27日,国家新闻办举行新闻发布会,国家发展和改革委员会主任张平介绍进一步扩大内需有关问题的情况时表示,中央4万亿元投资构成大体是这样的。在第四季度1000亿元的投资中,重点是解决民生的问题、基础设施的问题、生态环保的问题,也包括提前下拨救灾的资金,加强灾后恢复重建的问题。这1000亿元涉及到的建设工程,在今后两年中大体需要4万亿元投资。
为应对国际金融危机,中国把加强生态环境建设作为扩大内需、促进经济增长的重要措施。在中央安排的4万亿元投资中,3500亿元用于生态环境建设。其中,今年新增1000亿元中央投资,共安排25亿元用于十大重点节能工程、循环经济和重点流域工业污染治理工程建设,涉及项目468个。主要包括3个方面:一是支持十大重点节能工程;二是支持资源节约循环利用重点项目;三是支持重点流域工业污染治理项目。(转自中国企业报)
第四篇:造纸工业废水的处理
造纸工业废水的深度处理
【摘要】造纸工业废水的排放标准日益严格,使得造纸废水的深度处理变得越来越必要。但是深度处理必然需要更高的处理成本,真正实际应用时是有一定难度的。目前国内外关于造纸工业废水深度处理的方法工艺相当多,本文就物理化学法,生物化学法,物理化学-生物化学联合法三大类进行了简单的综述。
【关键词】造纸废水;深度处理前言
造纸工业不仅是用水大户,还是产生工业水污染物的主要产业之一。造纸废水排放量大、组分复杂、污染物浓度高,特别是含有木质素、纤维素、半纤维素、单糖等难降解有机物,易造成严重污染,是难处理的高浓度有机废水之一。我国目前人均纸产品占有率只有世界平均水平的四分之一。近年来,造纸工业虽有一定的发展,但由于污染问题的严重制约,防治技术滞后,制约造纸工业大幅度飞跃,有些造纸厂由于废水污染严重,不得不关闭停产。尽管如此,造纸工业对环境的污染日益严重,废水量约占全国工业总废水量的10%左右,我国造纸工业的平均单位产品耗水量要比发达国家高出1倍以上。随着水资源日益紧缺、水污染物排放总量控制加严以及《制浆造纸工业水污染物排放标准》(GB3544--2008)的发布、实施,相对于原有标准,新标准CODcr,BOD,SS的排放指标降低了约50%~70%。对于许多造纸企业而言,造纸废水经过传统的二级生化处理后,废水COD、色度仍然很高[1],出水很难满足新标准。为了满足新排放标准,必须对生化出水进行深度处理。这对减少废水的排放、消减企业的排污费、减少水资源的消耗方面具有十分重要的意义。深度处理方法研究
废水深度处理[2]是指经一级、二级处理后,为了达到一定的标准甚至达到废水回用目标,使废水进行进一步水处理的过程。针对废水的原水水质和处理后的水质要求可进一步采用三级处理或多级处理工艺。常用于去除水中的微量COD和BOD有机污染物质,SS及氮、磷高浓度营养物质及盐类。
造纸废水深度处理的方法大体上可以分为三种,分别为物理化学方法,生物化学方法,以及物理化学-生物化学联合的方法。深度处理方法费用昂贵,管理
较复杂,除了每吨水的费用约为一级处理费用的4-5倍以上。
2.1 物理化学方法
在造纸废水的深度处理中,物理化学法具有治理快、处理效果好等优点,一般采用的方法包括:高级氧化法、絮凝沉淀法、膜分离法吸附法等。
2.1.1 高级氧化法
高级氧化法(Advanced Oxidation Processes,简称AOPs)又称深度氧化技术,是20世纪80年代发展起来的一种用于处理难降解有机污染物的新技术。在氧化剂、电、声、光辐照、催化剂等作用下产生氧化能力极强(其电位2.80 V,仅次于氟的2.87V)的·OH,再通过·OH与有机化合物间的加成、取代、电子转移、断键、开环等作用,使废水中难降解的大分子有机物氧化降解成低毒或无毒的小分子物质,甚至直接分解成为CO:和H:O,达到无害化的目的[3]。该技术具有反应速度快、处理效率高、对有毒污染物破坏彻底、无二次污染、适用范围广、易操作等优点,并被广泛应用于有毒难降解工业废水如制药、精细化工、印染等有机废水的处理中,已经逐渐成为难降解废水处理研究的热点[4]。根据产生自由基的方式和反应条件的不同,可将其分为Fenton类氧化法、超临界水氧化法、光催化氧化法、超声氧化法、电催化氧化法、臭氧氧化法和湿式氧化法等。
对于废纸造纸废水中有机碳的去除,光Fenton法有良好的处理效果[5]。将Fenton和光Fenton结合处理造纸漂白废水是非常有效的,处理过程中采用太阳光作为光源,对TOC有更好的去除效果。虽然Fenton法的处理效果较好,但是H2O2价格较高。在确保效果的前提下若与其他处理工艺联用,可以适当降低成本。
超临界水氧化法(SCWO)处理有机废物和废水是一种很具有优势的技术。水在超临界状态下(T>374℃,P>22.1MPa)具有常态时水所没有的一些性质,如对有机物的高溶解性和对无机盐类的低溶解性;氧气、氮气、二氧化碳等气体可完全与水混溶等[6]。有机物在超临界水中,可以很容易被普通氧化剂氧化。超临界水氧化法处理有机废水具有反应速度快、反应完全和无二次污染等特点。戴航[7]等利用超临界水反应系统处理造纸废水,经处理过的造纸废水的TOC去除率可达99%。
光催化法可以大大降低纸板生产废水的有机污染物负荷,具有较好的处理效
果。光催化法的重点在于对催化剂的选择。朱亦仁等[8]在对纳米Fe2O3/Fe3O4光催化法处理造纸废水的研究中得出,该催化剂能有效、快速的降低废水中的CODcr,该催化剂用量、H2O2用量、pH值、反应时间等因素对处理效果的影响大小依次为、光照时间> H2O2用量>催化剂用量>溶液pH值。研究进一步考察了太阳光照射下催化剂对废水的降解效果,表明太阳光光照下催化剂对废水也有较好的处理效果。Fe3O4的存在使催化剂具有一定磁性,可利用磁分离法将催化剂从体系中分离。
臭氧氧化技术[9]是利用臭氧在不同的催化剂条件下产生HO·的一种高级氧化工艺,氧化能力强,对除臭、脱色、杀菌、去除有机物效果明显,处理后废水中的臭氧易分解,不产生二次污染。马黎明等[10]对臭氧氧化法深度处理造纸废水进行了实验研究,结果表明臭氧氧化过程中COD和色度的去除随着初始pH值、臭氧通入量和反应时间的增加而增强;随着温度的升高,COD和色度的去除率先增大后减小,25℃时去除效果最佳。当初始pH值为8.12,臭氧通入量514mg(400mL废水),在25℃时臭氧化反应l0min,色度和COD平均去除率分别达到86.3%和38.9%,处理效果较好。陈力行等[11]以臭氧-曝气生物滤池联合工艺处理造纸废水,结果表明对各种污染物都有很好的去除效果,出水可达到新标准。
2.1.2 絮凝沉淀法
絮凝沉淀法是由絮凝剂形成的聚合产物,通过一系列作用,对水中悬浮、胶状的大分子质量污染物去除的方法。对于制浆造纸废水的三级处理,此法已有广泛应用。在最佳运行条件下,用絮凝-电浮选连续处理造纸废水,废水的COD cr可从1416mg/L降至48.9 mg/L[12]。
2.1.3 膜分离法
膜分离法是用一种特殊的半透膜将溶质和溶剂分隔开,使一侧溶液中的某种溶质透过膜或者溶剂渗透出来,从而达到分离溶剂的目的。管运涛等[13]采用传统的两相厌氧工艺(BS)与膜分离技术相结合的系统(MBS)处理造纸黑液配置废水,结果表明,系统COD去除率可以达到73.1%,高于BS系统(48.6%),且在厌氧污泥活性及运行稳定性方面优于BS系统;在COD负荷为6kg·(m3·d)-1时MBS酸化率为20.1%,酸化水平为7.5%,略优于BS系统(分别为7.0%和5.0%)。
2.2 生物化学法
生物化学法是指利用微生物的氧化还原作用、脱羧作用、脱氨作用、水解作用等生物化学过程把有机物逐步转化为无机物,从而使废水得到净化。由于其具有费用低、不产生二次污染等优点,在制浆造纸工业及其废液处理中的应用已引起水处理工作者的关注。
在造纸废水的净化中,好氧处理主要有活性污泥法和生物膜法两种。活性污泥法因能高度去除有机污染物而得到广泛应用。然而,活性污泥法对外部条件的波动很敏感,常会发生污泥膨胀、布满泡沫等,这些结果通常会影响出水的水质。生物膜法是靠在填料表面附着的生物黏膜降解废水中的污染物,从而达到净化的效果。该方法有硝化效果好、无污泥膨胀、管理简单、耐冲击负荷强等优点。在废纸造纸废水的深度处理中,采用絮凝-气浮串联生物膜法,中段废水的回用率达到85%以上,出水水质也稳定达标,不过仍存在一些问题,如浮渣量较大、进入接触氧化池的水可生化性差等[14]。
单一方法处理造纸废水往往得不到较好的效果,且处理的成本也很高。现实应用中往往是采用多种方法的组合工艺进行处理的。肖继波等[15]采用生物飘带接触氧化工艺处理废纸造纸废水,效果良好。
2.3 物理化学-生物化学联合法
在废水的处理方法中,生物化学法的处理成本低,但处理效果不如物理化学法,因此若将两者联合则不但可以保证废水能达标排放,而且也可以适当地降低治理成本。朱殿林等[16]利用电解/膜生物反应器(MBR)组合工艺处理造纸废水,并与MBR工艺的单独处理效果进行对比。结果表明,电解/MBR组合工艺对造纸废水具有良好的处理效果,在原水的COD为l100-2000 mg/L、色度为160-220倍的条件下,组合工艺的出水COD可降至80 mg/L左右、色度在40倍左右。而采用MBR单独处理时,其出水COD在200 mg/L左右、色度为140倍左右,不能满足要求。存在问题与发展前景
在造纸废水的深度处理中,各种处理方法都存在着不足。物理化学法中的絮凝法需要投加大量的试剂;膜分离技术容易出现膜污染和浓差极化问题;吸附剂的应用需要考虑它的吸附容量和再生;电化学法消耗的电能较大。生化法应用时
需要考虑的主要问题有:生物填料法中菌种的筛选、培养和环境适应性;活性污泥法的污泥膨胀、生物活性和污泥量等。
目前,单一地使用一类技术彻底去除造纸废水中的污染物成本还比较高,与产业化应用还有一定距离。因此在选择处理工艺时,应充分考虑各种方法的优缺点,采用各种工艺联合处理,这样既能有效地提高处理效率,又能降低处理成本,因此几种处理工艺联合应用将有非常广阔的发展前景。
参考文献:
[1] 章非娟.工业废水污染防治[M].上海:同济大学出版社,2001:87-98.[2] 万金泉,马邕文.造纸工业废水处理技术及工程实例[D].北京:化学工业出版社,2008.[3] 黄永兰.高级氧化技术深度处理焦化废水的研究[D].南京:南京理工大学,2006.[4] 杨德敏,王兵.高级氧化技术处理造纸废水的应用研究[J].中国造纸,2010,29(7).[5] 陶长元,丁小红,刘作华,等.Fenton类氧化技术处理有机废水的研究进展[J].化学研究与应用,2007,19(11):1177.[6] 褚华宁,张仁志,韩恩山.造纸废水的处理技术及研究进展[J].环境监测管理与技术,2006,18(1).[7] 戴航,黄卫红,钱晓良,等.超临界水氧化法处理造纸废水的初步研究[J].工业水处理,2000,20(8).[8] 朱亦仁,李爱梅,鲁玲,等.纳米Fe203/Fe304光催化法处理造纸废水的研究[J].太阳能学报,2007,28(10).[9] 姚来银.气浮-生物接触氧化法深度处理再生纸生产废水[J].环境工程,2003,21(3).[10] 马黎明,李友明,雷利荣.臭氧氧化法深度处理造纸废水的实验研究[J].造纸科学与技术,2010,29(4).[11] 陈力行,史惠翔,沈涤清,等.造纸废水臭氧-曝气生物滤池深度处理技术研究[J].水处理技术,2010,36(8).[12] 韩勤有,徐雅娟,高升平,等.生物塘-人工湿地处理制浆造纸废水工程实践[J].陕西环境,2003,10(3).[13] 管运涛,蒋展鹏,祝万鹏,等.两相厌氧膜-生物系统处理造纸废水[J].环境科学,2000,21(4).[14] 李志萍,刘千钧,林亲铁,等.造纸废水深度处理技术的应用研究进展[J].中国造纸学报,2010,25(1).[15] 肖继波,蒋凯峰,吴家伟,等.生物漂带接触氧化法处理废纸造纸废水[J].中国造纸,2009,28(9).[16] 朱殿林,管锡琚,殷其中,等.电解/膜生物反应器组合工艺处理造纸废水[J].中国给水排水,2010,26(1).
第五篇:企事业单位工业废水治理工程新增COD削减量档案内容
企事业单位工业废水治理工程新增COD削减量档案内容
(一)档案材料目录
(二)项目简介
(三)削减量计算书(计算公式、数据来源说明)。
(四)减排工程设计报告、可行性研究报告、环评报告等。
(五)减排工程试运行申请、竣工验收申请、验收监测报告及验收报告(表)。
(六)在线监测数据(提供减排当年和上年同期自动在线监测数据,包含日进出口水量、进出口COD浓度,异常数据说明)。
(七)日常监督性监测数据(提供减排当年和上年同期的监测报告,含进出口水量、进出口COD浓度)。
(八)内部日常测定的进出口水量和进出口COD浓度月报表,生产用电记录、污泥处置记录、回用水量记录、加药记录等。
(九)2005年以来的环统基表。
(十)异常情况说明。
(十一)环境监察记录(至少每月一份)。
(十二)主要设施照片。
(十三)对于实施工艺改进企事业单位的,在(五)中需提供相关资料和监测数据等文件资料。
(十四)实施清洁生产削减COD企事业单位的,在(五)中需提供清洁生产审核报告、方案实施情况说明、达标排放前后情况、削减污染物排放量协议及完成情况,省级环保行政主管部门或清洁生产相关行政主管部门的评审、验收报告。