第一篇:柯西不等式的小结
柯西不等式的小结
浙江省余姚中学
徐鹏科
315400 柯西不等式是数学分析和数学物理方程研究中一个非常重要的不等式,普通高中数学新课程把它列入选修内容,然而对于浙江等省份而言,又是高考报考第一类大学的加试内容。因此对其作一小结很有必要,通过几年的教学与实践,应该说把握这块知识已不是困难的事。
新课程选修4-5中,施行类比的数学思想方法得到的柯西不等式一般形式为:
设a1,a2,a3,,an;b1,b2,b3,,bn是实数,则
222222(a12a2a3an)(b12b2b3bn)(a1b1a2b2a3b3anbn)2
当且仅当bi0(i1,2,3,,n)或存在一个实数k使aikbi(i1,2,3,,n)时等号成立。课本提供的证时方法是构造函数f(x)(a1xb1)2(a2xb2)2(anxbn)2,利用f(x)非负性来完成不等式的证明。笔者认为,课本从二维向量类比到三维向量后得到了三维形式的柯西不等式,如果再增加从三维向量到n维向量的类比,那么柯西不等式的一般形式也就此可得,这是我们作为教师应该想到的地方。在这里必须指出,大多学生在学习柯西不等式时会遇到的困难不少,不等式形式的记忆,不等式应用的灵活性,会使学家生置身于云里雾里。笔者在教学中为学生记忆方便,编了如下的顺口溜:“大端括号乘括号,小端括号添平方,末平方的平方和,已平方的和串积,莫忘何时能相等。”实践证明,效果是明显的。
柯西不等式是一个公式,公式总涉及到应用的问题,公式的应用不外乎“顺用”、“逆用”、“变用”这三种用法,下面来举例说明,由于篇幅有限每道例题只作分析,读者阅后自证较易。
首先要掌握“顺用”,这里指的是从大到小的应用 例
1、设x1,x2,,xnR,且x1x2xn1。
22xnx12x21求证:.1x11x21xnn1分析:根据柯西不等式的特征和x1x2xn1,要证的不等式可变形为
22xnx12x2(n1)(左边第一括号中的n可看成n个)(x1x2xn)2,1x11x21xn1的和,再把余下的1代掉即可得需证不等式,即证:
22xnx12x2[(1x1)(1x2)(1xn)]()(x1x2xn)2,此即
1x11x21xn柯西不等式,显然成立。
其次要掌握“逆用”,这里指的是从小到大的应用。例2 已知 2x3y4z10求xyz的最小值.222分析: 102x3y4z23422222xyz22x2y2z2
100203040,y,z 当且仅当x时等号成立
29292929100222
xyz
min29本题的解题过程告诉我们,柯西不等式中的三个括号,如果其中两个是定值,则必可求出余下一个括号的最值。
最后,要把握”变用”,这里指的是对整个公式作灵活应用,是公式应用中的最高层次。例 3 设实数 x,y满足2x23y25,求Ax2y的最大值.分析: 显然,本题解决方向应是从小端向大端行进,然而,恰当配凑常数是关键。
Ax2y222x22211113y5 6232
Ax2yx2y330 6例4 已知x,y,zR且xyz1
(1)若2x23y26z21求x,y,z的值.(2)若2x23y2tz21恒成立,求正数t的取值范围.分析: 对于(1),求x,y,z的值只有两个方程,这是一个三元不定方程,一般不能求出确 定的x,y,z的解,现题目要求这样做,因此个中必有特殊情况,特殊情况就在柯西不等式中,21112x23y26z22x23y26z2xyz1
236
等号当且仅当x111,y,z时取到。23622可见题设的特殊性。确定了未知数能取的特殊性。
对于(2),既然2x3ytz1恒成立,除参数t必然的一个取值范围的要求外还 须2x3ytz的最小值也应该是大于等于1.为此只需柯西不等式从大端到小端的进行,又2x23y2tz2于是2x23y2tz222222111xyz1,2362min1516t1成立,解得t6
例 5 已知 wxyzF16,求F8wxyz的最大值.2222分析: 要求出F的最大值,需要建立关于F的不等式,借助柯西不等式就可以达到目的.8Fwxyz11112222
于是有 5F16F0,222w2x2y2z2416F2
0F165Fmax当且仅当xyzw6时取到。5165
例 6 如图 已知在锐角ABC中,BCa,ACb,ABc,其内一点P向三边作垂线,垂足为N,M,L,试求BCCM22AN的最小值,zND2A并指出此时P点的位置。
分析: 为了求出题中变量的最小值,首先想到的是把这 个量用数学式子表达出来。于是可设
MyBLx,CMy,ANz
PB2x2PC2(ax)22222由勾股定理PCyPA(by)PA2z2PB2(cz)2三式相加即得
BxLC
(ax)2(by)2(cz)2x2y2z2
化简整理得axbycz12(ab2c2)2(1)
(2)由柯西不等式axbycz222a2b2c2x2y2z2a2b2c2有(1)、(2)得到xyz4当且仅当x2(3)
abc,y,z时取到。22222a2b2c2BCCMAN的最小值为
4此时P点是锐角三角形ABC的外心。
综上所述,柯西不等式的教学既要抓紧基础知识的落实,又要灵活掌握应用。在柯西不等式的应用中充满着智慧,对运算能力特别是代数式的变形技巧和数字的配凑技巧提出较高的要求,是培养学生能力的好场所。
第二篇:关于柯西不等式的证明
关于柯西不等式的证明
王念
数学与信息学院 数学与应用数学专业 07 级 指导老师:吴明忠
摘要:研究柯西不等式的多种证明方法,得到一些有用的结论,并简单介绍一些它的应用。
关键词:柯西不等式、数学归纳法、二次型正定、欧式空间向量内积、詹森不等式,二维随机变量的数学期望。
Cauchy inequality is an important inequality.It has aroused people’s interest and its widespread application.In this paper、quadratic form、European space inner product、and the relation between Cauchy inequality.Wang Ni an
Xxxxxxxxxxx Grade 07 Instructor: Wu Ming Zhong
Abstract: The paper discusses the certifying ways of Cauchy inequality then gets some useful conduction and introduces some appliances.Key words: Cauchy inequality;quadratic form;inner product;Jensen inequality;mathematic Expectation.柯西不等式是大家熟知的一个重要不等式,它的结构和谐对称、以及广泛的运用引起了人们的兴趣和讨论。本文运用高等代数、微积分的基本内容来证明柯西不等式。柯西不等式的内容 1.1
(a1b1a2b2....anbn)2(a12a22....an2)2(b12b22....bn2)2(aibiR,i1,2......n)
等号当且仅当a1a2.....an0或bikai时成立(k为常数,i=1,2…..n).1.2 设a1,a2,.....an及b1,b2,.....bn为任意实数则不等式(aibi)(a)(bi2)成2
i1
i1
i1
n
n
n
立,当且仅当bikai(i=1,2…..n)取等号。1,2这两种形式就是著名的柯西不
等式。柯西不等式的证明 2.1构造二次函数,证明柯西不等式。(其关键在于利用二次函数0时函数f(x)0
f(x)(a1xb1)2(a2xb2)2....(anxbn)2
(a12a22....an2)x22(a1b1a2b2....anbn)x (b12b22....bn2)显然f(x)0
又a12a22....ann0则利用0可得
4(a1b1a2b2.....anbn)24(a12a22....ann)(bb2.....bn)0即
n
(a1b1a2b2....anbn)2(a12a22....an2)(bb2....bn)
当且仅当aixbi0(i1,2....n)即
aa1a2
.......n是等号成立。b1b2bn
2.2 利用数学归纳法进行证明。(关键把握由特殊到一般情况的严密性)
(1)当n1时左式=a1b1右式=a1b1
显然左式=右式 当
n2
时,右式
a12a2b12b22a1b1a2b2a22b12a12b22
a1b1a2b22a1a2b1b2a1b2a2b2左式
仅当即 a2b1a1b2 即
a1a2
时等号成立 b1b2
故n1,2时 不等式成立
(2)假设nkk,k2时,不等式成立
2kak即 a1b1a2b2akbka12a2b12b22bk2
当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立
a12a2....ak
设Bb12b22....bk2
Ca1b1a2b2....akbk
222222则ak1bk1bk1ak1bk1Bak1 22C22Cak1bk1ak1bk1Cak1bk1 2222a1a2akak1
b12
b2
k
b2
k
b
a1b1a2b2akbkak1bk1
当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立
即nk1时不等式成立 综上所述原柯西不等式得证。
2.3 利用基本不等式(均值不等式)进行证明(关键在于利用它 “形式”)由于xy2xy(x,y
R),令x
y
ai22ak2
k1
n
n
bi22bk2
k1n
(i1,2.......n)
将N
不等式相加得:
ab
ii
aibi
i1n
a
i1
nk1
n
i
b
i1nk1
n
i
1
2ak22bk2
n
n
n
i1
k1
即(aibi)(ai)(bk2)
i1
原柯西不等式得证。
2.4 利用二次正定型理论进行证明(关键在于理解二次型正定的定义)正定二次型定义:R上一个n元二次型q(x1,x2,....xn)可以看成定义在实数域上n个变量的实函数。如果对于变量x1,x2,....xn的每一组不全为零的值,函数值
q(x1,x2,....xn)都是正数,那么就称q(x1,x2,....xn)是一个正定二次型。
(aix1bix2)ai2x12bi2x222aibix1x20(i1,2,.....n)
n
n
n
有(ai)x(bi)x2(2aibi)x1x20
i1
i1
i1
设二次型 f(x1,x2)(ai)x(bi)x2(2aibi)x1x20
i1
i1
i1
nnn
故f为正定必有二次型矩阵
n2aii1
An
aibii1
n
abiii1
正定 n
2bii1
n
n
n
(ai)(bi)(aibi)20
则A0,即
i1
i1
i1
(aibi)2(ai2)(bi2)
i1
i1
i1
nnn
当
aa1a2
.......n时等号成立。b1b2bn
故原不等式成立,及柯西不等式得证。2.5 利用欧式空间中内积的性质进行证明。
定理:在一个欧式空间里,对于任意向量,,有不等式:
,2,,;当且仅当与线性相关时,才取等号。
证 如果与线性相关,那么或者0,或者a,不论哪一种情况都有
,2,,.现在设与线性无关。那么对于任意实数t来说,t0,于是
t,t0,即 t2,2t,,,0.最后不等式左端是t的一个二次三项式。由于它对于t的任意是数值来说都是正数,所以它的判别式一定小于零,即
,2,,0或,2,,.又在Rn里,对于任意两个向量
(x1,x2,....xn),(y1,y2,....yn),规定(必须规定),x1y1x2y2.....xnyn.容易验证,关于内积的公理被满足,因而R对于这样定义的内积来说作成一个欧式空
n
间.再由不等式,2,,;推出对于任意实数a1,a2,....an,b1,b2,....bn,有不等式
(a1b1....anbn)2(a12....an2)(b12....bn2).即柯西不等式得证。2.6 利用行列式进行证明
n
n
n
证 (ai)(b)(aibi)
i1
i1
i1
a
i1ni1
n
i
ab
i1n
2ii1
n
ii
abb
iin
n
i1j1
ai2aibi
ajbjbj2
1ijn
(aibjajbi)20
若令a(a1,a2,an),b(b1,b2bn)则可以得到:
(aibi)(a)(b)1i 即柯西不等式得证。
i1
i1
i1
n
n
n
2.7 利用詹森不等式进行证明
考察函数(x)x2,(x0),(x)2x,(x)20,故(x)x2是(0,)上的凸函数,詹森(Jensen)不等式
n
PkXkk1n
Pkk1
n
n
2PkXkk1n(其中,P,2,n),得 k0,k1Pk
k1
n
n
(PkXk)(Pk)(PKxk2)
k1
k1
k1
nnn
ak22
上式中令Pkbk,Xk即(PkXk)(bk)(ak2)
bkk1k1k1
从而不等式成立。
2.8 利用二维随机变量的数学期望证明
表格 2
1n1n21n222
E()aibi,Eai,Ebi
ni1ni1ni1
由E()E2E2
1n1n21n22
所以有(aibi)(ai)(bi)
ni1ni1ni1
即(aibi)(ai)(bi2)
i1
i1
i1
nnn
则柯西不等式得证。
第三篇:柯西不等式的证明
柯西不等式的证明
二维形式的证明
(a^2+b^2)(c^2+d^2)(a,b,c,d∈R)
=a^2·c^2 +b^2·d^2+a^2·d^2+b^2·c^
2=a^2·c^2 +2abcd+b^2·d^2+a^2·d^2-2abcd+b^2·c^2
=(ac+bd)^2+(ad-bc)^2
≥(ac+bd)^2,等号在且仅在ad-bc=0即ad=bc时成立。
三角形式的证明
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
证明: [√(a^2+b^2)+√(c^2+d^2)]^2=a^2+b^2+c^2+d^2+2*√(a^2+b^2)*√(c^2+d^2)≥a^2+b^2+c^2+d^2+2*|a*c+b*d| 注: | |表示绝对值。*表示乘
≥a^2+b^2+c^2+d^2-2(a*c+b*d)
=a^2-2*a*c+c^2+b^2-2bd+d^2
=(a-c)^2+(b-d)^2
两边开根号即得 √(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
一般形式的证明
求证:(∑ai^2)(∑bi^2)≥(∑ai·bi)^2
证明:
当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立
令A=∑ai^2 B=∑ai·bi C=∑bi^2
当a1,a2,…,an中至少有一个不为零时,可知A>0
构造二次函数f(x)=Ax^2+2Bx+C,(请注意,一次项系数是2B,不是B)展开得:f(x)=∑(ai^2·x^2+2ai·bi·x+bi^2)=∑(ai·x+bi)^2≥0
故f(x)的判别式△=4B^2-4AC≤0,(请大家注意:一元二次方程ax^2+bx+c=0的判别式确实是△=b^2-4ac,但是这里的方程Ax^2+2Bx+C = 0已经发生如下替换a = A,b = 2B,c = C,这里面b已经换成了2B,因而导致很多网友的误解。此步若错,柯西不等式就无法证明了!)移项得AC≥B^2,欲证不等式已得证。
向量形式的证明
令m=(a1, a2, …, an),n=(b1, b2, …, bn)
m·n=a1b1+a2b2+…+anbn=|m||n|cos
∵cos
1∴a1b1+a2b2+…+anbn≤√(a1^2+a2^2+…+an^2)×√(b1^2+b2^2+…+bn^2)注:“√”表示平方根。
注:以上仅是柯西不等式部分形式的证明。
【柯西不等式的应用】 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。
巧拆常数证不等式
例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)∵a、b、c 均为正数
∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9
而2(a+b+c)=(a+b)+(a+c)+(c+b)
又9=(1+1+1)^2 ∴只需证:
2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9
又a、b、c互不相等,故等号成立条件无法满足
∴原不等式成立
求某些函数最值
例:求函数y=3√(x-5)+4√(9-x)的最大值。(注:“√”表示平方根)
函数的定义域为[5, 9],y>0
y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{ [√(x-5)] ^2 + [√(9-x)] ^2 }=5×2=10函数仅在4√(x-5)=3√(9-x),即x=6.44时取到。
以上只是柯西不等式的部分示例。
更多示例请参考有关文献。三角形式证明 :两边同时平方,展开,消去同样的项,剩余部分再平方,消去同样的项,得一完全平方式,大于或等于0,得证
代数形式
设a1,a2,...an及b1,b2,...bn为任意实数,则(a1b1+a2b2+...+anbn)①,当且仅当a1/b1=a2/b2=...=an/bn(规定ai=0时,bi=0)时等号成立.推广形式的证明
推广形式为
(x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n(*)
证明如下
记A1=x1+y1+…,A2=x2+y2+…,….由平均值不等式得(1/n)(x1/A1+x2/A2+…+xn/An)≥[x1*x2*…*xn/(A1*A2*…*An)]^(1/n)
=[(Πx)/(A1*A2*…*An)]^(1/n)
(1/n)(y1/A1+y2/A2+…+yn/An)≥[y1*y2*…*yn/(A1*A2*…*An)]^(1/n)
=[(Πy)/(A1*A2*…*An)]^(1/n), …… 上述m个不等式叠加得
即即 即1≥[(Πx)/(A1*A2*…*An)]^(1/n)+[(Πy)/(A1*A2*…*An)]^(1/n)+…(A1*A2*…*An)^(1/n)≥(Πx)^(1/n)+(Πy)^(1/n)+…A1*A2*…*An≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n
成立.(注:推广形式即为卡尔松不等式)
(x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n,因此,不等式(*)
第四篇:柯西不等式及应用含答案
一、柯西不等式:
(a)(b)(akbk)2等号成立的条件是akbk(k1,2,3n)
2k
2k
k
1k1
k1
nnn
二维柯西不等式:(x1x2y1y2)2(x12y12)(x22y22)
证明:(用作差法)
(x1y1)(x2y2)(x1x2y1y2)2x1y2x2y12x1x2y1y2(x1y2x2y1)20
2222222
2三维柯西不等式:(x1x2y1y2z1z2)2(x12y12z12)(x22y22z22)
证明:(构造空间向量法)设m
(x1,y1,z1),n(x2,y2,z2)
,所以:x1x2y1y2z1z2
x1y1z1x2y2z2,两边平方即可!
222222
n维柯西不等式:(a)(b)(akbk)2
2k
2k
k1
k1
k1
n
n
n
等号成立的条件是
akbk(k1,2,3n)
证明:(用构造函数法)(1).当b1b2bn0时,不等式显然成立;(2)当b1,b2,bn不全为0时,构造f(x)(n
n
n
n
b
k1
n
k
2)x2(akbk)x(ak),所以有2
k1
k1
nn
f(x)(b)x2(akbk)x(a)(bkxak)20对任意xR恒成立,因此
k
2k
k1
k1
k1
k1
4(akbk)4(a)(bk2)0
2k
k1
k1
k1
nnn
故:(a
k1
n
2k)(b)(akbk)2
2kk1
k1
nn
柯西不等式的变式:(ak)(bk)(akbk)2
k1k1k1nnn
(a)(b)akbk 2
k2k
k1k1k1nnn
nak(akbk)()(ak)2等号成立的条件是当且仅当b1b2bn
k1k1bkk1
2naka()(k)2(在柯西不等式中令bk=1,两边同时除以n2即得)
k1nk1nnnn
2ak()
k1bkn(ak)2k1nnb
k1(等号成立的条件是akbk(k1,2,3n)k
二、练习:
x2y2z
21.已知x,y,z>0,且xyz1,求的最小值; y(1y)z(1z)x(1x)
2.已知a,b>0,求证:3111< a2ba4ba6b(ab)(a7b)
3.已知xyz2且x,y,z>0,求证:1119≥ xyyzzx
44.设a,b,c为正数且互不相等.求证:2229> abbccaabc
3111≥ a3(bc)b3(ac)c3(ab)25.设正实数a,b,c 满足abc1, 求证:
12100 3c
222abc17.设实数a,b,c 满足a2b3c6,求证:3927≥; 36.设a,b,c为正数, 且abc1,求证:(a)(b)(c)≥221a1b
8.已知x2y3z12, 求证:x2y3z≥24;
9.已知abc1, 求证:a1b23c333;
10.若a>b>c,求证:222114 abbcac
答案:
y(1y)y(xz)xyxz
1.证明:由xyz1得:z(1z)z(xy)zxyz
x(1x)x(yz)xyzx,所以有
x2y2z2x2y2z2
=,由柯西不等式得:y(1y)z(1z)x(1x)xyyzzxyzxyzx
x2y2z2
[(xyyz)(zxyz)(xyzx)]()(xyz)2 xyyzzxyzxyzx
x2y2z2
所以有:[(xyyz)(zxyz)(xyzx)] xyyzzxyzxyzx
x2y2z2
即:2(xyyzzx),xyyzzxyzxyzx
又2(xyyzzx)(xyz)2(x2y2z2)
xyzxyyzzx222xyz1 31x2y2z2
所有:,当且仅当xyz时取等号 xyyzzxyzxyzx2
32.证明:由柯西不等式可得:
(11121112)(111)a2ba4ba6ba2ba4ba6b
111]< 222(a2b)(a4b)(a6b)
(放缩)(121212)[3[111](ab)(a3b)(a3b)(a5b)(a5b)(a7b)
3111111()2baba3ba3ba5ba5ba7b(裂项相消)36b9311()2b(ab)(a7b)(ab)(a7b)2baba7b
3111< a2ba4ba6b(ab)(a7b)所以有:
3.证明:由柯西不等式得:
[(xy)(yz)(zx)](111)(111)29,又xyz2xyyzzx3
所以有:11199≥.xyyzzx2(xyz)4
4.证明:与第3题的证法相同,最后说明a,b,c为正数且互不相等,所以不取等号;
5.证明:由abc1得:abc1,所以:2221122221bc,ac,2a2b2 22abc
111a3(bc)b3(ac)c3(ab)
b2c2a2c2a2b2b2c2a2c2a2b2
a(bc)b(ac)c(ab)abacabbcacbc
b2c2a2c2a2b2
[(abac)(abbc)(acbc)]()(bcacab)2 abacabbcacbc
b2c2a2c2a2b2(bcacab)2bcacab3a2b2c2
即: abacabbcacbc2(abbcac)22
又abc1,所以:3111≥ 333a(bc)b(ac)c(ab)2
6.证明:由柯西不等式
111111[1(a)1(b)1(c)]2(121212)[(a)2(b)2(c)2] abcabc
结合abc1 ***2所以:(a)(b)(c)[(abc)()][1()]abc3abc3abc
1111112又(abc)()(111)9 abcabc
1111211002所以:[1()](19) 3abc33
121212100故:(a)(b)(c)≥ 3abc
7.证明:
3a9b27c=3a32b33c33a32b33c33(a2b3c)
又由柯西不等式:
(1a22b3c)2[12(2)2(3)2][a2(2b)2(3c)2]
即:(a2b3c)6(a2bc),结合a2b3c6
所以有:a2b3c6 2222222
即:33
所以:3(a2b3c)3361 3a19b27c≥ 3
8.证明:由
(1x22yz)2[12(2)2()2][x2(2y)2(z)2]
结合题目条件即可证出,与第7题一样;
9.证明:
(1a11b21c3)2(121212)[(a1)2(b2)2(c3)2]3[3(abc)6]
结合题目条件就可以证出了!
10.证明:由条件a>b>c得:ab>0,bc>0,所以
11)(11)2=4 abbc
114所以: abbcac[(ab)(bc)](点评: 1.(22ak1n2k)(b)(akbk)2中的求和展开式为: 2kk12nnk1(a1a2an)(b1b2bn)(a1b1a2b2anbn)2;
2.二维、三维、n维柯西不等式的证明分别用了作差法、向量法、构造函数法证明,其实这三种方法也可以相互迁移,尤其是向量法简洁明了,值得借鉴;
3.带条件的三元不等式很常见, 用柯西不等式来证的较多, 要适当选择ak 和bk, 便于运用柯西不等式(222a
k1n2k)(b)(akbk)2; 2kk1k1nn
4.结合柯西不等式及变式中的等号成立的条件,请读者自行研究以上不等式的取等号条件。
以上如有错误之处敬请原谅并给予批评指正
邮箱zgh9723008@sina.com或qq联系:934355819(验证信息填:柯西不等式)
谢谢!
第五篇:利用柯西不等式证明不等式[范文模版]
最值
1.求函数yx24
x,(xR)的最小值。
2.求函数yx4x
2,(xR)的最小值。
xR且x2y
3.设2
1,求xy2的最大值
4.设x,y,z为正实数,且x+y+z=10,求4x19
yz的最小值。
已知:x2
5.4
y21 求:xy;2xy的取值范围。
6.已知:a2
b2
1,m2
n2
2,求ambn的取值范围
7.已知:2x3y1 求:x2
2y2的最小值.8.求函数yx12x的取值范围。
9.求函数yx12x的最大值。
证明不等式
1.求证:a2b2c2abbcac
2.已知a,b都是正数,求证:
(1)(1ab)(1a2b2)9ab;(2)(a2bab2)(ab2a2b)9a2b2.3.设a,b,c,dR,求证:a2b2c2d2(ac)2(bd)2。
4.已知a2b2c21,x2y2z21,求证:axbycz1.5.已知a,b,c均为正数,且abc1,求证:111abc
9
6.若0,则1sincos2.