数学研究性学习 柯西不等式 排序不等式(共5则)

时间:2019-05-13 21:42:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学研究性学习 柯西不等式 排序不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学研究性学习 柯西不等式 排序不等式》。

第一篇:数学研究性学习 柯西不等式 排序不等式

2010年南师附中数学研究性学习撰稿人 高一九班 陈点

柯西不等式和排序不等式的多种证明方法(课本延伸课题18)——2010.4 数学研究性学习撰写人 陈点

柯西不等式的一般式:

适用范围:证明不等式、解三角形、求函数最值、解方程等问题。接下来我将以几种较为主流的证明方法来证明: 求证:(∑ai^2)(∑bi^2)≥(∑ai〃bi)^2证法一(代数证明,运用二次函数,最主流证法):

当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立 令A=∑ai^2 B=∑ai〃bi C=∑bi^2

当a1,a2,…,an中至少有一个不是零时,可知A>0 构造二次函数f(x)=Ax^2+2Bx+C,f(x)=∑(ai^2〃x^2+2ai〃bi〃x+bi^2)=∑(ai〃x+bi)^2≥0f(x)的判别式△=4B^2-4AC≤0,移项得AC≥B^2,证毕。

证法二(其中几个特殊情况,为2与3时即向量公式)

n=1时,a1^2〃b1^2≥(a1b1)^2(这个…不解释)a1=a2=a3=…=an,b1=b2=b3=…=bn时同此证

n=2时,即为(a1^2+a2^2)(b1^2+b2^2)≥(a1b1+a2b2)^2

即(a1b1)^2+(a1b2)^2+(a2b1)^2+(a2b2)^2≥(a1b1)^2+(a2b2)^2+2a1b1a2b2 即(a1b2)^2+(a2b1)^2≥2a1b1a2b2

因为a2≥a1,b2≥b1,乱序和≥倒序和

故一定成立(呵呵,还一不小心把排序不等式引出来了)

证法三(这个是网上找的很权威的数学归纳法,因为我想出来的证法二是其铺垫,故引用说明。数学归纳法也是一种非常常见且正规的证明方法。)(1)当n1时左式=a1b1右式=a1b1 显然左式=右式

2当 n2时,右式 a12a2b12b22a1b1a2b2a22b12a12b22

a1b1a2b22a1a2b1b2a1b2a2b2右式

222

仅当即 a2b1a1b2 即

a1a2

时等号成立 b1b2

故n1,2时 不等式成立

(2)假设nkk,k2时,不等式成立

2kak即 a1b1a2b2akbka12a2b12b22bkk

当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立

222

bk2 ak设a12a2b12b2

Ca1b1a2b2akbk

则ak21bk21bk21ak1bk1 22C22Cak1bk1ak1bk1Cak1bk1 2222222

akaka12a21b1b2bkbk1

a1b1a2b2akbkak1bk1

当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立

即nk1时不等式成立

综合(1)(2)可知不等式成立

其实还有很多证明的方法,证明柯西不等式还可以利用比值法,归纳法,归纳法与综合法,归纳法与平均值不等式,排序不等式,参数平均值不等式,行列式,内积(向量)法,构造单调数列,凹凸函数法(来自奥数老师)……再者,拉格朗日恒等式也相当简单,在此不一一说明,可见证明此式方法之多。

柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题: 1)证明相关命题 2)证明不等式 3)解三角形的相关问题 4)求最值

5)利用柯西不等式解方程

6)用柯西不等式解释样本线性相关系数(这个完全不理解,不过有这么一说)

排序不等式(又称)

简单来说,就是:反序和≤乱序和≤同序和

即a1b1a2b2anbna1c1a2c2ancna1bna2bn1anb1

其中,Cn为乱序数列。

证明:1.证乱序和小于正序和,以下证明中原式为乱序和

从第一个起,将a1b?与a?b1转变为a1b1与a?b?,设其为x,y,则有

a1b1+axby-a1bx+ayb1≧0(因为x,y≧1,根据等式的性质可得),然后

再往下,第二个a2bw与azb2…… 以此类推,到最后得出的式子为正序和,因为每步的过程均使原式减小或不变,故终式不小于原式2.证乱序和大于倒序和

从第一个起,将a1b?与a?bn转变为a1bn与a?b?, 设其为x,y,则有a1b1+axby-a1bx+ayb1≦0(因为x≧1,y≦n)故成立,基本上同理

排序不等式证明的关键在于有顺序的变化,每次变化使式子朝一个方向发展,这样就可轻易推出最终的结论。

应用:

1.排序不等式的基本应用。排序不等式在解决一些常见不等式时,具有简单直观的特点

2.证明不等式时两次或多次运用排序不等式,将结果相加,也是常见方法。3.经过适当变形后再运用排序不等式的问题,常见于一些比较难的习题或竞赛题

拓展:

排序不等式的另一种表述形式 设

a1a2an,b1b2bn

c,c,,cnb1,b2bn

为两组实数,12是的任一排

列,则三个矩阵

a1a2ana1a2ana1a2anbbbbbbccc

12n12nnn11A:B:C:

我们称A为顺序矩阵,B为乱序矩阵,C为反序矩阵 它们的列积和(同列相乘再相加):

a1b1a2b2anbna1c1a2c2ancna1bna2bn1anb1

即:顺序和乱序和反序和

在此,我们没必要知道矩阵的更多知识,而只是利用它这种形式。因为它更直观,便于在解题中寻找数列

b1,b2,bn的一个我们需要的乱序,更易掌握和应用。

⑴柯西不等式的向量说法:|α||β|≥|α〃β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)

等号成立条件:β为零向量,或α=λβ(λ∈R)。⑵数学归纳法(这里说的是第一数学归纳法):

即一般地,证明一个与正整数n有关的命题,有如下步骤:1)证明当n取第一个值时命题成立;

2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

⑶拉格朗日恒等式:

第二篇:柯西不等式与排序不等式练习题

2013年高中数学IB模块选修4-5专题测试

(一)试题内容:柯西不等式与排序不等式 试卷总分:120分考试时间:60分钟

一、选择题(共8小题,每题5分,共40分)

1、a,b,c,dR,不等式ab

2

c2d2acbd取等号的条件是()

2A.abdc0B.adbc0C.adbc0D.acbd0

2、设a1a2a3,b1b2b3,下列最小的是()

A.a1b3a2b2a3b1B.a1b1a2b2a3b3C.a1b2a2b1a3b3D.a1b1a2b3a3b23、若四个实数a1,a2,a3,a4满足a2a1a3a2a4a31,则a3a4a1a2的最大值为()

A.1B

C.2D4、a,b是非零实数,ab1,x1,x2R,Max1bx2bx1ax2,Nx1x2,则M与N的大小关

222

系为()

A.MNB.MNC.MND.MN5、若实数x,y满足(x5)(y12)14,则xy的最小值是()

A.2B.1C

D6、x,y,zR,且x2y2z5,(x5)(y1)(z3)的最小值是()

A.20B.25C.36D.477、已知a,b,c,dR,且满足abcd

625()

A.25B.50C.

22222

2222

5D.625

28、已知0a,b,c1,且abc2,则abc的取值范围是()

A.,B.,2C.,2D.,2

333

3二、填空题(共5小题,每题4分,共20分)

9、x,y

0,1

4444的最大值是

10、设x,y,R,那么xy

11、设

14

的最小值是xy

2,那么x1,x2,x3,xn0,a1,a2,a3,an0,x1x2x3x1taxaxn1122

a3x32anxn2的最小值是

12、设2x3y4z22,(x,y,z0),则

三、解答题(共5小题,每题60分)

239

的最小值是,此时xyz.xyz

b4c4c4a4a4b413、(本小题10分)设a,b,cR,利用排序不等式证明:abc 

2a2b2c

33314、(本小题10分)设x1,x2,x3是不同的自然数,求s

15、(本小题10分)设nN,n

2,利用柯西不等式证明:

16、(本小题10分)求函数y

x1x2x

3的最小值。149

41111。

7n1n22n12nsinx3cosx的值域

sinx2cosx

117、(本小题20分)(2012浙江考试院样卷)题号:03“数学史与不等式选讲”模块

(1)设a,b,c为实数,求证:a+b+c≥ab+bc+ca;(2)若正实数a,b,c满足abc=1,求

a4b(ac)

b4c(ab)

c4a(bc)的最小值.

2013年高中数学IB模块选修4-5专题测试

(一)┄┄┄⊙

中学班级姓名 学号考号答 题 卷

一、选择题(每小题4分,共40分)

16.(本小题共12分)

17.(本小题20分)

2013年高中数学IB模块选修4-5专题测试

(一)参 考 答 案

1.C2.A3.B4.A5.D6.C7.B8.C9.110.911.11

112.,2,2,3.11112a1a2a3an

13证明:不妨设0abc,则abc,111

,cba

a4b4c4a4b4c

4abc(逆序和)

abccaba4b4c4a4b4c4

abc(逆序和)

abcbca

b4c4c4a4a4b4

abc

2a2b2c

14解:不妨设1x12x23,由排序不等式,s15.证明:由柯西不等式得

x1x2x312311

。1491496

1111

2n1n2nnnn1n22n12n

11112n4n1n22n12n3n17

1111

n1n22n12n111

又:

1111

2222

2n1

2nn1n2

111

nn1n1n22n12n

16、原式可化为

ysinx2cosx1sinx3cosx 即y(y1)sinx(2x3)cosx

利用柯西不等式及sin2xcos21可得

y2(y1)sinx(2x3)cosxsin2xcos2xy12y3

2

即y2y12y3 化简得

2y27y50

5

所以函数值域为(-,1),

2

2217、“数学史与不等式选讲”模块

(1)证明1:因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,三式相加并除以2得a2+b2+c2≥ab+bc+ca.

(1)证明2:因为a2+b2+c2-ab-bc-ca=[(a-b)2+(b-c)2+(c-a)2]≥0,222

所以 a+b+c≥ab+bc+ca.…………5分

(2)解:由(1)及柯西不等式,均值不等式知

a4b(ac)

b4c(a

b)

a(b)c2(abbcca)

c4(a2b2c2)2

(a2+b2+c2)

a4b(ac)

32,当且仅当a=b=c=1时等号成立,所以

b4c(ab)

c4a(bc)的最小值为

…………10分

第三篇:关于柯西不等式的证明

关于柯西不等式的证明

王念

数学与信息学院 数学与应用数学专业 07 级 指导老师:吴明忠

摘要:研究柯西不等式的多种证明方法,得到一些有用的结论,并简单介绍一些它的应用。

关键词:柯西不等式、数学归纳法、二次型正定、欧式空间向量内积、詹森不等式,二维随机变量的数学期望。

Cauchy inequality is an important inequality.It has aroused people’s interest and its widespread application.In this paper、quadratic form、European space inner product、and the relation between Cauchy inequality.Wang Ni an

Xxxxxxxxxxx Grade 07 Instructor: Wu Ming Zhong

Abstract: The paper discusses the certifying ways of Cauchy inequality then gets some useful conduction and introduces some appliances.Key words: Cauchy inequality;quadratic form;inner product;Jensen inequality;mathematic Expectation.柯西不等式是大家熟知的一个重要不等式,它的结构和谐对称、以及广泛的运用引起了人们的兴趣和讨论。本文运用高等代数、微积分的基本内容来证明柯西不等式。柯西不等式的内容 1.1

(a1b1a2b2....anbn)2(a12a22....an2)2(b12b22....bn2)2(aibiR,i1,2......n)

等号当且仅当a1a2.....an0或bikai时成立(k为常数,i=1,2…..n).1.2 设a1,a2,.....an及b1,b2,.....bn为任意实数则不等式(aibi)(a)(bi2)成2

i1

i1

i1

n

n

n

立,当且仅当bikai(i=1,2…..n)取等号。1,2这两种形式就是著名的柯西不

等式。柯西不等式的证明 2.1构造二次函数,证明柯西不等式。(其关键在于利用二次函数0时函数f(x)0

f(x)(a1xb1)2(a2xb2)2....(anxbn)2

(a12a22....an2)x22(a1b1a2b2....anbn)x (b12b22....bn2)显然f(x)0

又a12a22....ann0则利用0可得

4(a1b1a2b2.....anbn)24(a12a22....ann)(bb2.....bn)0即

n

(a1b1a2b2....anbn)2(a12a22....an2)(bb2....bn)

当且仅当aixbi0(i1,2....n)即

aa1a2

.......n是等号成立。b1b2bn

2.2 利用数学归纳法进行证明。(关键把握由特殊到一般情况的严密性)

(1)当n1时左式=a1b1右式=a1b1

显然左式=右式 当

n2

时,右式

a12a2b12b22a1b1a2b2a22b12a12b22

a1b1a2b22a1a2b1b2a1b2a2b2左式

仅当即 a2b1a1b2 即

a1a2

时等号成立 b1b2

故n1,2时 不等式成立

(2)假设nkk,k2时,不等式成立

2kak即 a1b1a2b2akbka12a2b12b22bk2

当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立

a12a2....ak

设Bb12b22....bk2

Ca1b1a2b2....akbk

222222则ak1bk1bk1ak1bk1Bak1 22C22Cak1bk1ak1bk1Cak1bk1 2222a1a2akak1



b12

b2

k

b2

k

b

a1b1a2b2akbkak1bk1

当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立

即nk1时不等式成立 综上所述原柯西不等式得证。

2.3 利用基本不等式(均值不等式)进行证明(关键在于利用它 “形式”)由于xy2xy(x,y

R),令x

y

ai22ak2

k1

n

n

bi22bk2

k1n

(i1,2.......n)

将N

不等式相加得:

ab

ii

aibi

i1n

a

i1

nk1

n

i

b

i1nk1

n

i

1

2ak22bk2

n

n

n

i1

k1

即(aibi)(ai)(bk2)

i1

原柯西不等式得证。

2.4 利用二次正定型理论进行证明(关键在于理解二次型正定的定义)正定二次型定义:R上一个n元二次型q(x1,x2,....xn)可以看成定义在实数域上n个变量的实函数。如果对于变量x1,x2,....xn的每一组不全为零的值,函数值

q(x1,x2,....xn)都是正数,那么就称q(x1,x2,....xn)是一个正定二次型。

(aix1bix2)ai2x12bi2x222aibix1x20(i1,2,.....n)

n

n

n

有(ai)x(bi)x2(2aibi)x1x20

i1

i1

i1

设二次型 f(x1,x2)(ai)x(bi)x2(2aibi)x1x20

i1

i1

i1

nnn

故f为正定必有二次型矩阵

n2aii1

An

aibii1

n

abiii1

正定 n

2bii1

n

n

n

(ai)(bi)(aibi)20

则A0,即

i1

i1

i1

(aibi)2(ai2)(bi2)

i1

i1

i1

nnn

aa1a2

.......n时等号成立。b1b2bn

故原不等式成立,及柯西不等式得证。2.5 利用欧式空间中内积的性质进行证明。

定理:在一个欧式空间里,对于任意向量,,有不等式:

,2,,;当且仅当与线性相关时,才取等号。

证 如果与线性相关,那么或者0,或者a,不论哪一种情况都有

,2,,.现在设与线性无关。那么对于任意实数t来说,t0,于是

t,t0,即 t2,2t,,,0.最后不等式左端是t的一个二次三项式。由于它对于t的任意是数值来说都是正数,所以它的判别式一定小于零,即

,2,,0或,2,,.又在Rn里,对于任意两个向量

(x1,x2,....xn),(y1,y2,....yn),规定(必须规定),x1y1x2y2.....xnyn.容易验证,关于内积的公理被满足,因而R对于这样定义的内积来说作成一个欧式空

n

间.再由不等式,2,,;推出对于任意实数a1,a2,....an,b1,b2,....bn,有不等式

(a1b1....anbn)2(a12....an2)(b12....bn2).即柯西不等式得证。2.6 利用行列式进行证明

n

n

n

证 (ai)(b)(aibi)

i1

i1

i1

a

i1ni1

n

i

ab

i1n

2ii1

n

ii

abb

iin

n



i1j1

ai2aibi

ajbjbj2

1ijn

(aibjajbi)20

若令a(a1,a2,an),b(b1,b2bn)则可以得到:

(aibi)(a)(b)1i 即柯西不等式得证。

i1

i1

i1

n

n

n

2.7 利用詹森不等式进行证明

考察函数(x)x2,(x0),(x)2x,(x)20,故(x)x2是(0,)上的凸函数,詹森(Jensen)不等式

n

PkXkk1n

Pkk1

n

n

2PkXkk1n(其中,P,2,n),得 k0,k1Pk

k1

n

n

(PkXk)(Pk)(PKxk2)

k1

k1

k1

nnn

ak22

上式中令Pkbk,Xk即(PkXk)(bk)(ak2)

bkk1k1k1

从而不等式成立。

2.8 利用二维随机变量的数学期望证明

表格 2

1n1n21n222

E()aibi,Eai,Ebi

ni1ni1ni1

由E()E2E2

1n1n21n22

所以有(aibi)(ai)(bi)

ni1ni1ni1

即(aibi)(ai)(bi2)

i1

i1

i1

nnn

则柯西不等式得证。

第四篇:柯西不等式的证明

柯西不等式的证明

二维形式的证明

(a^2+b^2)(c^2+d^2)(a,b,c,d∈R)

=a^2·c^2 +b^2·d^2+a^2·d^2+b^2·c^

2=a^2·c^2 +2abcd+b^2·d^2+a^2·d^2-2abcd+b^2·c^2

=(ac+bd)^2+(ad-bc)^2

≥(ac+bd)^2,等号在且仅在ad-bc=0即ad=bc时成立。

三角形式的证明

√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]

证明: [√(a^2+b^2)+√(c^2+d^2)]^2=a^2+b^2+c^2+d^2+2*√(a^2+b^2)*√(c^2+d^2)≥a^2+b^2+c^2+d^2+2*|a*c+b*d| 注: | |表示绝对值。*表示乘

≥a^2+b^2+c^2+d^2-2(a*c+b*d)

=a^2-2*a*c+c^2+b^2-2bd+d^2

=(a-c)^2+(b-d)^2

两边开根号即得 √(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]

一般形式的证明

求证:(∑ai^2)(∑bi^2)≥(∑ai·bi)^2

证明:

当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立

令A=∑ai^2 B=∑ai·bi C=∑bi^2

当a1,a2,…,an中至少有一个不为零时,可知A>0

构造二次函数f(x)=Ax^2+2Bx+C,(请注意,一次项系数是2B,不是B)展开得:f(x)=∑(ai^2·x^2+2ai·bi·x+bi^2)=∑(ai·x+bi)^2≥0

故f(x)的判别式△=4B^2-4AC≤0,(请大家注意:一元二次方程ax^2+bx+c=0的判别式确实是△=b^2-4ac,但是这里的方程Ax^2+2Bx+C = 0已经发生如下替换a = A,b = 2B,c = C,这里面b已经换成了2B,因而导致很多网友的误解。此步若错,柯西不等式就无法证明了!)移项得AC≥B^2,欲证不等式已得证。

向量形式的证明

令m=(a1, a2, …, an),n=(b1, b2, …, bn)

m·n=a1b1+a2b2+…+anbn=|m||n|cos=√(a1^2+a2^2+…+an^2)×√(b1^2+b2^2+…+bn^2)×cos

∵cos

1∴a1b1+a2b2+…+anbn≤√(a1^2+a2^2+…+an^2)×√(b1^2+b2^2+…+bn^2)注:“√”表示平方根。

注:以上仅是柯西不等式部分形式的证明。

【柯西不等式的应用】 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。

巧拆常数证不等式

例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)∵a、b、c 均为正数

∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9

而2(a+b+c)=(a+b)+(a+c)+(c+b)

又9=(1+1+1)^2 ∴只需证:

2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9

又a、b、c互不相等,故等号成立条件无法满足

∴原不等式成立

求某些函数最值

例:求函数y=3√(x-5)+4√(9-x)的最大值。(注:“√”表示平方根)

函数的定义域为[5, 9],y>0

y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{ [√(x-5)] ^2 + [√(9-x)] ^2 }=5×2=10函数仅在4√(x-5)=3√(9-x),即x=6.44时取到。

以上只是柯西不等式的部分示例。

更多示例请参考有关文献。三角形式证明 :两边同时平方,展开,消去同样的项,剩余部分再平方,消去同样的项,得一完全平方式,大于或等于0,得证

代数形式

设a1,a2,...an及b1,b2,...bn为任意实数,则(a1b1+a2b2+...+anbn)①,当且仅当a1/b1=a2/b2=...=an/bn(规定ai=0时,bi=0)时等号成立.推广形式的证明

推广形式为

(x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n(*)

证明如下

记A1=x1+y1+…,A2=x2+y2+…,….由平均值不等式得(1/n)(x1/A1+x2/A2+…+xn/An)≥[x1*x2*…*xn/(A1*A2*…*An)]^(1/n)

=[(Πx)/(A1*A2*…*An)]^(1/n)

(1/n)(y1/A1+y2/A2+…+yn/An)≥[y1*y2*…*yn/(A1*A2*…*An)]^(1/n)

=[(Πy)/(A1*A2*…*An)]^(1/n), …… 上述m个不等式叠加得

即即 即1≥[(Πx)/(A1*A2*…*An)]^(1/n)+[(Πy)/(A1*A2*…*An)]^(1/n)+…(A1*A2*…*An)^(1/n)≥(Πx)^(1/n)+(Πy)^(1/n)+…A1*A2*…*An≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n

成立.(注:推广形式即为卡尔松不等式)

(x1+y1+…)(x2+y2+…)…(xn+yn+…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n,因此,不等式(*)

第五篇:柯西不等式及应用含答案

一、柯西不等式:

(a)(b)(akbk)2等号成立的条件是akbk(k1,2,3n)

2k

2k

k

1k1

k1

nnn

二维柯西不等式:(x1x2y1y2)2(x12y12)(x22y22)

证明:(用作差法)

(x1y1)(x2y2)(x1x2y1y2)2x1y2x2y12x1x2y1y2(x1y2x2y1)20

2222222

2三维柯西不等式:(x1x2y1y2z1z2)2(x12y12z12)(x22y22z22)

证明:(构造空间向量法)设m

(x1,y1,z1),n(x2,y2,z2)

,所以:x1x2y1y2z1z2

x1y1z1x2y2z2,两边平方即可!

222222

n维柯西不等式:(a)(b)(akbk)2

2k

2k

k1

k1

k1

n

n

n

等号成立的条件是

akbk(k1,2,3n)

证明:(用构造函数法)(1).当b1b2bn0时,不等式显然成立;(2)当b1,b2,bn不全为0时,构造f(x)(n

n

n

n

b

k1

n

k

2)x2(akbk)x(ak),所以有2

k1

k1

nn

f(x)(b)x2(akbk)x(a)(bkxak)20对任意xR恒成立,因此

k

2k

k1

k1

k1

k1

4(akbk)4(a)(bk2)0

2k

k1

k1

k1

nnn

故:(a

k1

n

2k)(b)(akbk)2

2kk1

k1

nn

柯西不等式的变式:(ak)(bk)(akbk)2

k1k1k1nnn

(a)(b)akbk 2

k2k

k1k1k1nnn

nak(akbk)()(ak)2等号成立的条件是当且仅当b1b2bn

k1k1bkk1

2naka()(k)2(在柯西不等式中令bk=1,两边同时除以n2即得)

k1nk1nnnn

2ak()

k1bkn(ak)2k1nnb

k1(等号成立的条件是akbk(k1,2,3n)k

二、练习:

x2y2z

21.已知x,y,z>0,且xyz1,求的最小值; y(1y)z(1z)x(1x)

2.已知a,b>0,求证:3111< a2ba4ba6b(ab)(a7b)

3.已知xyz2且x,y,z>0,求证:1119≥ xyyzzx

44.设a,b,c为正数且互不相等.求证:2229> abbccaabc

3111≥ a3(bc)b3(ac)c3(ab)25.设正实数a,b,c 满足abc1, 求证:

12100 3c

222abc17.设实数a,b,c 满足a2b3c6,求证:3927≥; 36.设a,b,c为正数, 且abc1,求证:(a)(b)(c)≥221a1b

8.已知x2y3z12, 求证:x2y3z≥24;

9.已知abc1, 求证:a1b23c333;

10.若a>b>c,求证:222114 abbcac

答案:

y(1y)y(xz)xyxz

1.证明:由xyz1得:z(1z)z(xy)zxyz

x(1x)x(yz)xyzx,所以有

x2y2z2x2y2z2

=,由柯西不等式得:y(1y)z(1z)x(1x)xyyzzxyzxyzx

x2y2z2

[(xyyz)(zxyz)(xyzx)]()(xyz)2 xyyzzxyzxyzx

x2y2z2

所以有:[(xyyz)(zxyz)(xyzx)] xyyzzxyzxyzx

x2y2z2

即:2(xyyzzx),xyyzzxyzxyzx

又2(xyyzzx)(xyz)2(x2y2z2)

xyzxyyzzx222xyz1 31x2y2z2

所有:,当且仅当xyz时取等号 xyyzzxyzxyzx2

32.证明:由柯西不等式可得:

(11121112)(111)a2ba4ba6ba2ba4ba6b

111]< 222(a2b)(a4b)(a6b)

(放缩)(121212)[3[111](ab)(a3b)(a3b)(a5b)(a5b)(a7b)

3111111()2baba3ba3ba5ba5ba7b(裂项相消)36b9311()2b(ab)(a7b)(ab)(a7b)2baba7b

3111< a2ba4ba6b(ab)(a7b)所以有:

3.证明:由柯西不等式得:

[(xy)(yz)(zx)](111)(111)29,又xyz2xyyzzx3

所以有:11199≥.xyyzzx2(xyz)4

4.证明:与第3题的证法相同,最后说明a,b,c为正数且互不相等,所以不取等号;

5.证明:由abc1得:abc1,所以:2221122221bc,ac,2a2b2 22abc

111a3(bc)b3(ac)c3(ab)

b2c2a2c2a2b2b2c2a2c2a2b2

a(bc)b(ac)c(ab)abacabbcacbc

b2c2a2c2a2b2

[(abac)(abbc)(acbc)]()(bcacab)2 abacabbcacbc

b2c2a2c2a2b2(bcacab)2bcacab3a2b2c2

即: abacabbcacbc2(abbcac)22

又abc1,所以:3111≥ 333a(bc)b(ac)c(ab)2

6.证明:由柯西不等式

111111[1(a)1(b)1(c)]2(121212)[(a)2(b)2(c)2] abcabc

结合abc1 ***2所以:(a)(b)(c)[(abc)()][1()]abc3abc3abc

1111112又(abc)()(111)9 abcabc

1111211002所以:[1()](19) 3abc33

121212100故:(a)(b)(c)≥ 3abc

7.证明:

3a9b27c=3a32b33c33a32b33c33(a2b3c)

又由柯西不等式:

(1a22b3c)2[12(2)2(3)2][a2(2b)2(3c)2]

即:(a2b3c)6(a2bc),结合a2b3c6

所以有:a2b3c6 2222222

即:33

所以:3(a2b3c)3361 3a19b27c≥ 3

8.证明:由

(1x22yz)2[12(2)2()2][x2(2y)2(z)2]

结合题目条件即可证出,与第7题一样;

9.证明:

(1a11b21c3)2(121212)[(a1)2(b2)2(c3)2]3[3(abc)6]

结合题目条件就可以证出了!

10.证明:由条件a>b>c得:ab>0,bc>0,所以

11)(11)2=4 abbc

114所以: abbcac[(ab)(bc)](点评: 1.(22ak1n2k)(b)(akbk)2中的求和展开式为: 2kk12nnk1(a1a2an)(b1b2bn)(a1b1a2b2anbn)2;

2.二维、三维、n维柯西不等式的证明分别用了作差法、向量法、构造函数法证明,其实这三种方法也可以相互迁移,尤其是向量法简洁明了,值得借鉴;

3.带条件的三元不等式很常见, 用柯西不等式来证的较多, 要适当选择ak 和bk, 便于运用柯西不等式(222a

k1n2k)(b)(akbk)2; 2kk1k1nn

4.结合柯西不等式及变式中的等号成立的条件,请读者自行研究以上不等式的取等号条件。

以上如有错误之处敬请原谅并给予批评指正

邮箱zgh9723008@sina.com或qq联系:934355819(验证信息填:柯西不等式)

谢谢!

下载数学研究性学习 柯西不等式 排序不等式(共5则)word格式文档
下载数学研究性学习 柯西不等式 排序不等式(共5则).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    柯西不等式的小结

    柯西不等式的小结 浙江省余姚中学 徐鹏科 315400 柯西不等式是数学分析和数学物理方程研究中一个非常重要的不等式,普通高中数学新课程把它列入选修内容,然而对于浙江等省份而......

    利用柯西不等式证明不等式[范文模版]

    最值 1.求函数yx24 x ,(xR)的最小值。2.求函数yx4x 2,(xR )的最小值。 xR且x2y3.设2 1,求xy2的最大值 4.设x,y,z为正实数,且x+y+z=10,求4x19 yz 的最小值。 已知:x2 5.4 y21......

    柯西不等式的证明及应用

    柯西不等式的证明及应用(河西学院数学系01(2)班甘肃张掖734000)摘要:柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。本文在证明不等式,解......

    经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

    Mathwang几个经典不等式的关系一 几个经典不等式(1)均值不等式设a1,a2,an0是实数aaa12n 111n+a1a2an其中ai0,i1,2,n.当且仅当a1a2an时,等号成立.n(2)柯西不等式设a1,a2,an,b1,b2,......

    排序不等式2

    东安一中奥赛培训专题 《不等式的证明》陈雄武《排序不等式,琴生不等式》及应用1、(排序不等式):设有两组数a1,a 2,满,足,an,bb;,bn,12a1 a2an,b1b2bn,则有a1b1a2b2anbn (顺序和)a1b......

    排序不等式及证明

    四、排序不等式【】(一)概念9: 设有两组实数a1,a2,,an(1)b1,b2,,bn(2) 满足a1a2an(3)b1b2bn(4) 另设,cn(5)c1,c2,是实数组(2)的一个排列,记逆序积和Sa1bna2bn1anb1 乱序积和S'a1c1a2c2ancn 似序积和S......

    关于两个不等式证明的研究性学习

    龙源期刊网 http://.cn 关于两个不等式证明的研究性学习 作者:王红权 来源:《教学月刊·中学版(教学参考)》2014年第03期 高中数学选修课程是为希望提高数学素养的学生而设置的,......

    数学常用不等式5篇

    一:一些重要恒等式 1: 2: 3: 4: 5:三角中的等式(在大学中很有用) 6:欧拉等式二重要不等式 1:绝对值不等式 (e是自然对数的底,i是虚根单位) (别看简单,常用) 2:伯努利不等式 (xi符号相......