加强数学建模综合能力培养――数学中国2008年美赛工作总结 重点(五篇材料)

时间:2019-05-12 14:01:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《加强数学建模综合能力培养――数学中国2008年美赛工作总结 重点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《加强数学建模综合能力培养――数学中国2008年美赛工作总结 重点》。

第一篇:加强数学建模综合能力培养――数学中国2008年美赛工作总结 重点

加强数学建模综合能力培养——数学中国2008年美赛工作总结数学中国社区 ——最专业的数学理论研究、应用实践平台|数学建模|数学中国|矩阵工作室|数学百科全书|MCM|ICM|CUMCM|全国大学生数学建模竞赛|中学生数学竞赛网站首页建模家园Madio社区数学建模数学精英科学软件高级搜索注册 养 加强数学建模综合能力培养 ——数学中国2008年美赛工作总结 华晓帅(数学中国网站CEO)马壮(数学中国网站站长)2008年2月15日——2月19日,美国大学生数学建模竞赛与美国大学生交叉学科数学建模竞赛如期举行,作为中国最大的数学建模交流基地“数学中国”来讲,与参加美赛的中国内地同学共同度过了四天四夜。对于本次竞赛,数学中国网站作了以下的总结。希望能同大家交流一下比赛经验。

一、保持新闻的敏感度: 在每次举办国内外数学建模竞赛之前,我们数学中国都事先做好心理准备,压一下比赛题目。在春节前,数学中国论坛发表了《2008年数学建模十大热门研究课题》,第一个研究课题便压中了美赛的A题。当然这里不是教大家如何猜题目。我们想告诉大家要多关心国内外的时事、政治、经济。为什么这样讲呢?道理很简单,学习数学建模,参加竞赛的最终目的不是拿奖,而是为了掌握一门社会科学技能。大家学习数学建模后,可以用数学的眼光看问题。比如说这次的A题,2007年2月联合国政府间气候变化专门委员会(IPCC)发表了第四次评估报告,在国际上引起了轩然大波。报告预测指出,从人类工业时代开始到2100年,全球平均气温的“最可能升高幅度”是1.8至4℃,海平面升高幅度是19至58厘米,北冰洋的海冰将在本世纪后半段融化消失。这个报告引出的问题很多,事实也得到了验证。比如2007年至2008年的冬天,我们国家遭受了50年不遇的特大雪灾,美国南部又一次遭遇了飓风。有证据显示这些都可能是由全球气候变暖引发的极端恶劣天气。全球气候变暖考察的问题很多,A题选取了一个佛州的例子,意在让全球气候变暖得到大家足够的重视。当然所有的时事不可能在一次竞赛里全部体现出来。但是当大家看新闻的时候,应该多思考一下如何使用数学模型来处理新闻热点中提到的问题,经常和队员交流一下思路,增强对新闻的敏感度,提高对数学建模的应用能力。我们数学中国论坛将在近期成立“数学建模研究组”(暂定名称)。主题是用“数学的眼光”看时事。届时有兴趣培养“敏感度”的同学,不妨同我们共同

探讨一下。

二、资料、数据收集能力的培养: 在本次竞赛中,国内参赛学生在资料收集上吃了很大的亏,因为2008年MCM-A题和ICM都是需要同学自己收集整理资料及数据。然而根据我们网站上的同学反馈统计,大家对A、C两题数据、资料的收集占去了1/3时间。更有甚者,最后一天还在论坛及QQ群上求助数据共享。在数据收集上,我们数学中国为同学做了大量的工作,并及时通过本站的专用即时通讯工具MCQ和QQ通知了参赛会员,但是能力有限,仍不能满足大家的需求。今后我们将着重在这方面制作一些专题视屏培训教程,希望对以后参加竞赛的同学有所帮助。“工欲善其事,必先利其器”。国内的同学有必要在互联网知识及硬件基础上下一番功夫。ICM题目刚出来的时候,就有同学反应竞赛题目提供的第二个网址上不去。由于国内互联网屏蔽了“wiki”网站,需要通过代理才能够访问,大家对代理的知识很模糊,所以作ICM题的时候,大家都缺少了一个重要信息来源。同时我们网站又是电信服务器,而大多数北方高校都是用的网通的宽带,这也造成我们提供的重要信息无法获得。另外,在这里指出保持数据、资料真实的重要性。由于去年竞赛发生了国内特等奖被取消事件,今年竞赛官方在规则及题目中也多次强调这个问题。但是我们发现还是有不少同学,在无法找到数据的情况下,编造了A题的多项数据,这种做法等于学术作假,这样的论文也不会被评审委员会采纳。所以在今后的竞赛中,大家要避免发生类似的事情,这样不仅欺骗了论文的评审,也欺骗了自己。

三、竞赛准备工作须做好: 我们数学中国虽然在赛前,准备了大量的美赛辅导材料,及时地帮助大家积极备战,但是却忽视了同学的竞赛准备工作。据我们网站了解,今年竞赛大约有60%的学生为第一次参加,对美赛一无所知。这样就造成比赛期间闹了不少笑话,这是我们工作上的失误。在这里我们总结了以下几点,希望对以后参加美赛的同学有所帮助。这也算是亡羊补牢吧。1)竞赛时间确定:由于大多学生第一次参赛,对竞赛时间不了解。有些学生在2月14日晚上就在等赛题,在竞赛快结束的几个小时内还在问是不是明天才交卷。由于中国与美国地理位置属于东西两个半球,北京时间比美国东部时间快13个小时,所以美国比赛时间为2月14日晚上8点整,北京时间则为2月15日早晨9点整。比赛结束时间为北京时间2月19日早晨9点整。以后比赛只要在美赛时间上加13个小时即可。2)仔细阅读竞赛规则:我们数

学中国网站每年在竞赛报名开始时,都会将竞赛规则翻译出来,供大家参考。特别是今年由于07年竞赛发生了特等奖取消事件,规则有了新的变化。我们也将变化内容及时发布到了数学中国论坛的美赛板块。在竞赛报名期间要仔细阅读相关内容。美赛的参赛帮助对于所有的比赛流程问题都有说明,特别是最后关于如何准备邮包的问题说得十分详细。3)论文格式及排版:我们每年都会在竞赛的时候发布论文LATEX排版格式。对于习惯用WORD编辑的同学可以在竞赛前访问我们提供的国外大学数学建模网站提供的优秀论文原版,对照编辑。这里建议大家学习使用LATEX软件,因为该软件对于数学公式的输入非常方便,而且格式非常标准,避免了在论文排版上花费大量时间的问题 4)常备一些文献数据资料网址:这个是在竞赛期间有效的节省时间,快速的搜索相关的资料。我们在论坛里开设了学术期刊账号版块(其内容都是网上搜集),大家在竞赛前多找一些国外大学图书馆的网站,里面有大量的科技文献电子资源库,以备竞赛期间使用。特别是今年的B题,我们可以从国外的文献数据库中找到很多相关的论文,特别是针对该问题的一些方面已有论文进行过研究,还有针对该问题的专门英文论坛,如果大家能够及时发现会节省很多解题的时间。5)制定竞赛时间表:在竞赛准备期间,准备二到三次模拟,总结一下自己小组在竞赛各个阶段所需要的时间,制定一套科学的作息时间表,按照时间表,严格执行,切忌在第一天熬夜作战。每人每天至少保证7个小时的睡眠时间。美国的朋友在头天晚上基本上是大家讨论做题的思路,制定一个总体的规划(他们是晚上开始竞赛的),然后就集体睡觉。第二天才正式开始解题。6)常备一些文件格式读取软件:今年我们收集的数据资料,它们的文件格式各有不同,如“.NC”、“.LST”、“.ISO”等等,这些都需要特定软件读取,在模拟竞赛期间,大家在找资料的同时,多了解一些相关格式文件的读取软件,以备竞赛期间使用。7)擅用百度、GOOGLE等搜索网站:百度、GOOGLE都有高级搜索模式,里面含有文件搜索、地区搜索等内容。百度有“知道”、“百科”功能,一些问题可以在百度“知道”、“百科”里面查找答案;GOOGLE有专门的在线翻译网页以及地图网页,这两个网站是竞赛查找资料的必备工具。8)重新认识数学中国:我们数学中国包括有矩阵学院(数学类相关书籍)、网络教学(数学建模辅导视频)、矩阵论坛(丰富的资源及重要信息),这些对于

参加美赛的同学来说有很大帮助。在竞赛准备期间,多上网站看看浏览些自己感兴趣的内容,有助于对数学建模的掌握。(由于我们网站是电信服务器,所以有条件的同学接入电信宽带或使用本站推荐的凤凰网关访问)9)多看些英文学术论文,多用英文练笔:我们论坛提供了许多国外大学的电子图书馆账号,里面含有大量的科技文献,多读一些有关的论文,提高自己的阅读能力。今年美赛的三个题目都可以在网上找到大量的英文文献,快速从这些文献中找到自己想要的东西是能否取得好成绩的关键。同时养成论文尽量用英文来写作的习惯,不要用中文写完再翻译,写完之后请英语老师查看语病并及时更正。

四、阅读能力有待提高: 本次竞赛,我们数学中国站长马壮老师,在开始两个小时内将三道题目进行了翻译。但是由于时间匆忙,在B题的翻译上一词“metrics”产生了两种异议,一为矩阵、二为标准。后来经我们网站管理人员的重新校对并讨论,确定为标准更为贴切,而后我们及时更正了译文。产生译文错误的主要原因是对于题目的理解不恰当,这一点也提示我们在以后的美赛中要更加小心。不少作A题的同学迫不及待地查找佛州海平面历年的变化高度,想通过海平面的变化来预测未来50年的变化趋势。如果不看题目,这个思路是正确的。但是只要认真的阅读题目,大家就会知道这个问题必须先研究“因”,再研究“果”。题目的第一句说的很清楚:研究一下由于全球气温升高造成的北极冰帽融化对大陆的影响。“因”是全球气候变暖,北冰洋冰帽融化,“果”是海平面上升,对大陆影响。当然“果”还有很多,洋流变冷,气候异常,极端天气出现等等。所以我们在得知大家理解题目错误的情况下,及时发表了数学中国对A题目的观点:(以下是我站观点,仅供参考,与官方观点无关)A题主要解决气候变暖与冰洋融化之间(温室气体排放量与融化速度之间的关系)、北冰洋融化与大陆影响(以目前的融化趋势,预测佛州几个大城市将在什么时候毁灭,或者50年内佛州的受灾程度)之间关系模型:大陆影响主要有:海平面上升、恶劣气候(飓风)、大西洋暖流变冷等情况。以佛洲为例,考虑佛州几个重要城市的地理位置,指出减缓温室气体排放及减缓北冰洋融化速度对海平面上升、恶劣气候等的作用。其实我们不想将我们的思路告诉大家,原因是我们只是提供一种解题思路,不想扼杀大家的创造性,同时有可能误导大家解题。但是在这里希望大家在竞赛的时候多读几遍题目,分析题目的每个词,指出他们的引申含义。只有全面的理解题目,才能确定思路,不要一开始盲目确定。

五、编程能力及阅读源代码能力: 根据美赛这些年的发展趋势来看,对于编程能力的要求也在逐渐提高。特别是今年的B题,很多参赛的同学感觉它比较像一道ACM的比赛题目,确实是这样。这道题目对于编程能力要求很高,虽然我们在论坛里面发布了一些求解和“生成数独问题”的源代码,但是仍有很多网友不能直接使用,原因就是很多网友的编程能力还停留在只能使用已学过的一、两种编程语言,还不具备将编程融会贯通,快速学习一种新语言的能力。希望以后大家在备战阶段多进行一些这方面的训练,虽然不必要太强的写程序的能力,但也要在读程序和分析程序上下足功夫。

六、善于总结经验: 成功的参加一次竞赛不是以获奖等级来判定,而是以你是否认真总结这次竞赛的经验和教训。本次竞赛我们总结了网站的一些不足之处,这样为下次竞赛做好准备,避免在同一地方犯错。同样作为参加美赛的同学来讲,在竞赛后我们希望大家能够认真地总结自己得到了什么、在哪些方面还有不足之处。将这些经验和教训作为下次参赛或者是遇到问题时的解题良方,这样我们认为你已经在下次竞赛中成功了一半。另外我们网站从即日起开始征集大家的参赛论文,并在适当时候公布这些论文,大家也许对自己的参赛有些不满意,在赛后不妨看看其他参赛者的论文,深入讨论一下,相互学习。对以后的学习会有一定的帮助!数学中国社区-帖子版权

1、本主题所有言论和图片纯属会员个人意见,与本论坛立场无关

2、本站所有主题由该帖子作者发表,该帖子作者与数学中国社区享有帖子相关版权

3、其他单位或个人使用、转载或引用本文时必须同时征得该帖子作者和数学中国社区的同意

4、帖子作者须承担一切因本文发表而直接或间接导致的民事或刑事法律责任

5、本帖部分内容转载自其它媒体,但并不代表本站赞同其观点和对其真实性负责

6、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意 7数学中国社区管理员和版主有权不事先通知发贴者而删除本文 收藏 分享 00 0 支持 反对 楼主热贴 数学中国论坛新手手册 2008CUMCM一等奖论文共享(2009.01.22更新 数学中国六周年全新改版!【抢楼活动已经结束】 论坛全地图——各大版块(发帖者注意 【数学中国推荐】1992-2008年CU MCM优秀论文全收入

第二篇:浅谈数学建模在能力培养中的作用

浅谈数学建模在能力培养中的作用

09物本 奚修阳

[摘要]本文主要针对什么是数学建模、数学教学中开展数学建模教学的意义以及培养学生数学建模能力的方法这三个问题进行了探讨。详尽阐述了数学建模教学对于学生创新能力、发现问题能力、综合应用知识能力等多种能力培养方面的巨大作用,同时对数学教学中建模能力的培养方法提出了自己的见解。[关键词]数学建模 数学教学 培养能力 培养方法

二十一世纪的竞争是人才的竞争,人才的竞争归根到底是教育的竞争。因此教育面临着巨大的机遇和挑战。我国传统的数学教育强调传授给学生系统的理论知识而缺乏培养学生动手解决实际问题的能力。而数学是在一定社会条件下通过人类的社会实践和生产活动发展的一种智力积累,数学教学的最终目的是为了运用已有的(甚至是未有的)数学知识解决生活中的问题。

新课程改革提出培养学生的全面能力,数学建模是培养适应社会需求人才的需要。本文将就数学建模与人才能力培养之间的关系作一些探讨。

一、什么叫数学建模

数学建模就是用数学语言、数学符号描述实际现象,用数学知识解决实际问题的过程。它是将纷繁复杂的实际事物进行一种数学简化,抽象为合理的数学结构用它来解释特定现象之间的数学联系。数学本身就是实际应用中产身发展的,要解决实际问题就需要建立数学模型。在此意义上说数学建模是同数学本身同时产身发展的。

数学建模的过程包括这样几个环节:从分析实际问题出发,到建立数学模型,得出数学结果,再把结果带入实际问题检验,用实际数据检验模型的合理性。若符合实际情况则可作为结论使用,若不符合实际情况则对模型进行修改和完善或干脆建立新的模型,直到最后将模型用于解决实际问题。例如:生活中我们使用手机要考虑费用问题,某电信公司推出甲、乙两种收费方式供我们选择:甲种方式每月收月租20元,每分钟通话费0.2元;乙种方式不收月租,每分钟通话费0.4元。根据通话时间的多少选择那种合适的方式呢?我们经过分析可以建立数学模型:设通话时间为x分钟,收费为y元,则甲种方式收费函数为y甲=20+0.2 x,乙种方式收费函数为y乙=0.4x。现在比较y甲与y乙的大小。通过作函数图象或求解可知当x大于100时y甲<y乙;当x小于100时y甲>y乙。现在我们可以选择当每月通话时间多于100分钟时选择甲种方式,少于100分钟时选择乙种方式。当然我们也可以通过建立其它数学模型来解决这个问题。这样我们就把一个实际生活中的问题通过建立数学模型加以解决。

二、数学建模课程的开展可以培养学生的哪些能力

全日制义务教育数学课程标准指出 “数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值”。①很显然,数学建模教育可以培养学生解决实际问题的能力。

数学建模是学习数学知识和提高能力的最佳结合点。在用数学知识解决问题的过程中可使学生的积极性、主动性和创造性得到充分的发挥,可以在以下几方面使学生综合素质得到培养和提高。

1、创新能力

知识是有限的,而创新是无限的。创新是民族发展的动力,新课程改革的一个特点就是创新意识的培养。数学建模教学是培养创新能力的一个极好载体。同一个实际问题从不同的侧面、角度去思考或用不同的数学知识去解决就会得到不尽相同的数学模型,这就是数学建模具有创新性的一面。

数学建模是对现实问题进行科学处理的过程。由于数学建模所解决的问题都来源于生活,有明确的背景与要求,既没有唯一的答案,也没有唯一的方法,只看做出的结果是否经受得住实际的检验。解题完全要根据自己的的熟悉程度和知识功底去选择合理的思路与方法。这就要求学生具有独立的思考能力,充分发挥自己的创新能力。

培养学生的创新能力,首先应该让学生主动参与,积极思考,提高学生学习建模兴趣。数学建模能把课堂上的数学知识延伸到实际生活,通过建立模型让学生体会到数学的广泛运用,从而培养学生的创新意识。

在数学建模活动中,教师要为学生创设一个鼓励创新的环境,根据建模内容创设问题情境,适当安排一些辩论和探讨交流,为学生创新性思维创造有利条件。要引导学生敢于质疑,鼓励学生的求异思维,给学生提供探索创新的机会,积极引导学生创新思维。

2、发现问题能力

数学建模是一种主动的活动,要在现实中提取数学模型,在建模过程中学生面临的主要问题是如何从杂乱无章的现象中抽取出数学问题,并确定问题的答案。这就要求学生有一眼抓住要点的洞察能力,有善于从实际问题的原型中发现其数学本质的能力,有通过现象除去非本质的因素,发现本质因素的能力。也要求我们平时积极引导学生带着一双数学的眼光去观察周围的世界,发现日常生活中的数学问题。例如:我在教学反比例函数后,让学生思考日常生活中哪些具有反比例关系的量;教学一元一次不等式后,让学生观察生活中哪些问题可用一元一次不等式关系加以解决……经过经常训练,学生提高了从生活中发现问题的能力,也提高了学习数学的兴趣。

3、综合应用知识的能力

数学在它的产生和发展中一直是和各种各样的应用问题紧密相关的。数学学习不仅要在数学基础知识、基本技能和思维能力、运算能力、空间想象能力等方面得到训练和提高,而且在应用数学知识解决实际问题的能力方面同样得到训练和提高。培养学生应用数学意识和能力已经成为数学教学的一个重要方面。

数学建模是数学知识与数学应用的桥梁。研究和学习数学建模能帮助学生探索数学的应用,产生对数学的兴趣和应用数学的意识和能力,在以后工作中能经常性地想到用数学去解决问题。学生要解决数学建模问题必须要深刻地了解问题背景,查阅大量的资料,甚至要做实际调查,这在潜移默化中培养了学生综合应用知识的能力。

4、使用当代最新科技成果的能力

运用数学模型来解决问题依赖多种因素,不仅要对实际问题有深刻的理解,能建立适当的数学模型,还依赖于对模型求解的计算技术。不同数学模型的求解涉及不同的数学分支的专门知识,而且许多模型的求解需要借助计算机及教学软件,这样可使学生数据处理能力、数值计算能力得到提高。与此同时,学生也看到了计算机是数学建模的有力工具,特别是作图象、动态显示的优势,进一步提高了学习计算机的兴趣,培养了使用当代最新科技成果的能力。

5、培养学生自主合作探究能力

数学建模教学由于要由学生自己动手,熟悉问题,构造模型,推理结果,所以单靠一个人是很难完成的,这就必须要由多人共同协作。这样学生之间就要相互尊重、相互信任、相互合作,取长补短,学会倾听别人意见,善于从不同意见的争论中综合出最好方案来。

6、发展学生实践能力

培养实践能力是数学教学的一个重要目的和一条基本原则,也是新数学课程标准的一个突出特点。实践活动就是真刀真枪地从事数学建模的各项活动,如参加数学建模活动小组,有针对性地找一些实践问题加以数学建模,也可以参加建模竞赛等。数学建模的教学与实践活动之间是相互促进、相互补充的。

三、学生数学建模能力培养的方法

那么怎样在数学教学中培养学生建模能力呢?

1、依靠“纲”“本”,打好基础

学生建模能力的培养不是一天两天就能完成的,为了构建数学模型,要求学生对有关数学知识充分理解。这就要求教者必须依靠教学大纲,抓住课本,注重基础知识的教学,培养基本技能,灌输基本思想方法。运用数学知识解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。要通过调查、收集数据资料,观察研究实际对象的固有特征和内在规律,建立起反映实际问题的数量关系,然后用数学的方法去解决问题。这些都需要扎实的数学基础,否则是无法完成这个过程的。如让学生估测建造房屋所需砖块数量,没有掌握体积计算知识肯定是不行的。

2、在教学中渗透思想

数学建模能力的培养是个长期的过程,因此我们应很早就有意识地在课堂教学中渗透数学建模思想。在课堂教学中渗透数学建模思想应根据教学内容与实际问题之间的联系,采用适当的方式进行渗透。如现行苏科版数学教材每一个新的内容的引入都从实际生活中具体例子加以引入,这样可使学生具体感受到数学知识与生活实际的联系,知道学习这些知识可以解决实际生活中哪些问题,还知道了实际生活中哪些问题可以用哪些数学知识加以解决,从而建立建模思想。

3、充分利用课外实践活动培养学生的数学建模能力

培养学生数学建模能力仅仅依靠课堂教学是不够的,必须要有实践。数学建模内容要进入数学课堂,这可以先从课外实践活动这种形式开始,从中吸取经验,积累素材,进而再将数学建模问题的整个解决过程加以分解,放到正常教学过程的局部环境上去进行。这是进行数学建模教学行之有效的方法之一。生活中包括环保、奥运、星球生活、微观世界等各方面问题都可作为数学建模的例题。

进行数学建模教学的目的在于培养学生解决实际问题的能力,是学以致用的一个良好典范。我们相信在各位教育工作者的辛勤努力下,大力渗透建模教学必将为课堂改革提供一条新路,也必将为社会培养更多高素质复合型人才提供一个舞台。

参考文献

1、http://《数学探究和数学建模的意义和作用》王尚志

4、http://dhfx.yyoa.com/uploadfiles/2006-11/20061***.doc《数学建模在人才培养中的作用和地位》

5、《全日制义务教育数学课程标准(实验稿)》,北京师范大学出版社,2001年7月,第一版

第三篇:浅谈初中生数学建模能力的培养

浅谈初中生数学建模能力的培养

摘 要:数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

关键词:数学建模 培养提高

一、初中数学建模教学的理念

1.各行各业的各种问题都可能数学建模,归结为数学问题的求解,因此进行数学建模和应用性问题的教学意义十分重大:(1)因为是从实际提炼出来,而后又用之解决问题,故可激发学生极大的兴趣;(2)学会了主动学习,学会了读书、学会了去索取自己所要学的知识,对数学有了新的认识,学习数学的兴趣更高了,更自觉了;(3)运用的意识和应用的能力得到锻炼,激发了他们的创新意识和创新能力;(4)促进数学教学改革,有利于更新观念,更新知识。

2.数学的发展很大程度上是由数学的应用所推动的,实际生产与生活中所涌现的各种数学问题,要求从数学理论上寻找合理的解决方法,如果旧有的理论已经无法解决,预示着一个新的研究领域的产生,必须预示着一种新的数学理论的诞生。

3.学以致用本来就是教育的最重要原则之一,不管是?橐院笥杏没蛴幸徊糠衷谘У氖焙蚵砩暇湍苡蒙隙际茄?习的目的。一个具有强烈应用意识的学生,他(她)无论走到哪里无论碰到什么问题,他(她)都会看一看、问一问、想一想,这里有没有与数学有关的问题,如果有,这是一个什么样的数学问题,能否用已学过的数学知识、方法来解决它,若不能用已有的知识和方法去解决它,能否自己去找参考书寻求恰当的解决方法,或者向老师与专家请教,不断总结。经过总结的优秀品质不断得到培养,强烈的求知欲油然而生,而且由于是实际问题的驱动,必须有一种实事求是的学风,夸夸其谈是不行的,这样的学生具有强烈的应变能力,从而也一定具有很强的应试能力。

二、从几何图形中培养建模能力

例1,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处。(1)请你画出蚂蚁能够最快到达目的地的可能路径。(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长。(3)求点B1到最短路径的距离。

本题为中考原型问题,其将“教材最基本的对称模型思想”放到一个具体的几何图形模型中,解决此问题的关键是指导学生将实际问题(空间几何)转化为平面问题,利用对称最短路径思想基本原型求解。在这里,我们将实际问题蚂蚁爬行的最短路径转化为数学模型:两定点之间的最短距离问题。

解析:木柜的可见表面展开图是两个矩形,即ABC1′D1和ACC1A1。蚂蚁能够最快到达目的地的可能路径所示的AC1′和AC1。

本题以实际应用型问题为背景,将距离和最值隐藏于问题的情境之中,其建模的角度在于,要求学生以教材中最基本的模型知识为保障,在分析最值可能产生的前提下,将蚂蚁爬行的几何图形问题转化为数学建模之后的距离最小问题,即两边之和的最小值问题。

下面来看看教材中本实际问题的数学原型:(1)点M,N在直线AB的异侧,在AB上找一点P,使点P到点M,N的距离和最小。

解决方法:利用三角形两边之和大于第三边可知,三点共线时距离和最小。

(2)已知点M,N在直线AB的同侧,在AB上找一点P,使点P到点M,N的距离和最小。

解决方法:将同侧点问题转化为异侧点问题,作点M关于直线AB的对称点,问题转化为教材基本模型。

因此,培养学生将实际问题转化为抽象数学问题是值得教师不断研究的。

三、如何在初中数学教学中培养学生的建模能力

首先,从现实生活或具体情境中抽象出数学问题是数学建模的起点。教师要引导学生从实际问题中筛选出有用的信息,从而发现数学问题。

其次,“用数学符号建立方程、不等式、函数等表示问题中的数量关系和变化规律”。在这一步中,学生通过已提出的问题全面分析其中的数量关系,探索出解决问题的方法。分析问题,建立模型是建立模型思想的核心。

例如:苏教版八年级(下)数学课本中有这样一道题:A、B两家旅行社推出家庭旅游优惠活动,两家旅行社的票价均为每人90元,但优惠办法不同。A旅行社的优惠办法是:全家有一人购全票,其余的半价优惠;B旅行社的优惠办法是:每人均按三分之二票价优惠,你将选择哪家旅行社?

分析:此问题既符合真实生活情境,又在学生的接受能力范围内,具备一定的难度,学生能通过小组协作得到问题的解决方法。本题可以作为数学建模情况的选题,符合建构主义学习的“情境性”和“最近发展区”理论。即建构主义认为的教学活动应当在一定的问题情况中进行,同时也要建立在学生已有的认知经验和基础上。

在这一问题中,已知票价为每人90元。优惠方案:A.全家一人购全票,其余半票;B.每人按三分之二票价。旅游人数未知。

总之,新课程下的初中数学不再像传统教学一样只注重纯粹理论性的数学解题,更注重生活中数学的应用和培养学生解决实际问题的能力。通过上述小结的三类问题,引发笔者产生了一些思考:

(1)数学建模在初中数学中的应用大都还是限于一些函数应用型问题的具体体现,在教学中教师要以这些应用型问题为背景,以学过的数学理论知识来解决实际问题,这对学生在脑海中产生数学建模的概念大有帮助.(2)现今的数学教育不仅仅要注重分数,更要为学生的可持续发展奠定基调。随着各大学自主招生的进一步展开,对学生能力的要求也随之增高。建模能力的培养应从初中数学应用型问题起步,训练学生的转化、化归、抽象概括能力,这些能力将伴随学生进一步的学习、生活,这正是素质教育需要体现的.

第四篇:数学能力培养

数学能力的培养与网络条件的结合三河市第三中学 丁国生

一.培养学生的数学应用能力的必要性和重要性

1.高中数学的学习目的之一,就是培养学生解决实际问题的能力。

2.重视数学应用时数学教学改革的需要。

3.数学应用意识和能力的培养也是高考的需要。

4.数学应用意识和能力的培养也是时代的需要,也是我们数学教育工作者义不容辞的责任。因此,数学教学必须加强应用意识,才能显露数学、数学教育的本色。

二.培养能力的方式

1.拓展对数学的认识,让学生懂得数学的价值,提高学生学习的兴趣。

2.通过“数学建模”的活动和教学,把培养学生用数学的能力落实到实处。

用数学的能力是一种综合能力,它离不开数学运算、数学推理、空间想象等基本的数学能力,注重双基和四大能力的培养是解决学生应用意识不可缺少的武器。

数学应用分为两个阶段:首先,由实际问题建立数学模型,形成数学问题(即实际问题数学化);其次,应用数学知识、方法和思想解决数学问题(即解数学应用题).三.如何利用网络条件

数学课中要培养学生数学应用意识和能力,数学的建模是关键,我们面对的是学生,首先应从学生的实际问题情况分析,学生的阅历有限,对应用问题的背景不熟,难以从中构建出数学模型,阻碍了对实际问题的解决。而互联网的最大特点是其资源极其丰富,在互联网上可以使学生接触到各种各样、方方面面的信息,从而使学生的视野不再局限于书本内容,这样可以培养学生在掌握了充分地知识之后,敢于大胆提出自己的观点的创新精神。利用多媒体网络资源,创设一些有利于学生自主、合作、探究学习的情境。

网络环境打破了传统教学的时空限制,显示了更大程度的自主性和开放性,将学生带入了一个无比辽阔、无比丰富的学习世界。多媒体教学综合处理各种符号、语言、文字、声乐、图像、动画等等,给学生多方位的感官刺激,同时高中数学教学又可以充分运用数学历史资料、数学成就、数学发展前景等等各种资源,使学生产生如见其人、如临其境的感觉,极大地调动了学生学习的主动性和思维的积极性。

网络资源极其丰富、容量巨大,在其中可以登录电子网站,查阅数学资料,既方便快捷,而且资源内容时时处在更新和不断增加中,学生可以使用“网易”、“雅虎”、“搜狐”等常用搜索引擎,快速定位,准确获取信息,减少不必要的时间和精力消耗,同时还可以直接点击“K12教育资源网”、“中国教育网”等。

网络环境下,多媒体计算机的交互性、提供外部刺激多样性,超文本性、网络资源丰富性,能创设一种理想学习环境和全新的能充分体现学生主体作用的学习方式,达到培养学生创新思维和创新能力目的。

总之,高中阶段在网络环境下开展数学能力的学习,既可以激发学生的兴趣,培养学生的团结协作精神,还可以提高学生创新思维和实践能力。它是素质教育不可缺少的手段之一,是数学教学改革的必然趋势,也是现代信息时代发展的必然要求。

第五篇:数学课堂教学中数学建模思想的培养

数学课堂教学中数学建模思想的培养

数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。下面,我就结合课堂教学实际谈谈怎样培养学生的数学建模思想。

一、数学建模思想培养的意义:

1、能培养学生的创新意识和创造能力

2、训练学生快速获取信息和资料的能力

3、锻炼快速了解和掌握新知识的技能

4、培养团队合作意识和团队合作精神

5、增强口头表达能力和写作技能

现代的课堂学习活动是教师与学生、学生与学生在民主平等的氛围中团结合作、共同探究、努力创新。这就需要教师具备先进的教育教学理念和扎实全面的知识技能。

以前我很少会在课堂教学中培养学生的数学建模思想,在这次培训后,我才认识到培养学生的数学建模思想是学生学好数学,真正体现“数学来源于生活、数学应用于实际生活”的基本原理。我认为培养学生的数学建模思想,最好的方法就是让学生去进行针对性地数学实践探究活动如在学习一次函数时,让学生考察家里电费的交纳、水费的交纳、电话费的交纳等。学生在实际的生活中既能掌握所学数学知识,更能培养学生数学建模思想,为今后解决更多的相关问题或进行创新打下扎实基础。

二、培养学生数学建模思想的过程分析

1、模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。

2、模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

3、模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)

4、模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。

5、模型分析:对所得的结果进行数学上的分析。

6、模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

7、模型应用:应用方式因问题的性质和建模的目的而异。

三、数学建模思想培养的基本原则

在课堂设计方面,数学建模教学要遵循下列教学设计原则:(1)所有的学习活动都应该与教学的任务或目标挂钩。也就是说,学习活动应带有明确的目的性,学以致用。(2)把支持学习者发掘问题作为学习活动的刺激物,使学习成为自愿的事,而不是强加给他们学习目标和以通过测试为目的。(3)设计真实的学习环境,让学生带着真实任务进行学习。所谓真实的环境并非一定要真正的生活环境,但必须使学生能够经历与实际世界中相类似的认知挑战。(4)设计的学习情境应具有与实际情境相近的复杂程度,避免降低学习者的认知要求。(5)让学习者拥有学习过程的主动权。教师的作用不是主观武断地控制学习过程,约束学习者的思维,而应该为他们提供思维上的挑战。(6)为学习者提供有援学习环境,当他们遇到问题或偏离方向时应给予有效的援助和支持。教师的作用不是提供答案,而是提供示范、辅导和咨询。(7)鼓励学习者体验多种情境和验证不同的观点。不仅可以培养学习者知识迁移的能力,而且有利于形成学习者之间共享知识的风气。通过创设情境进行教学,不仅帮助学生在真实或接近真实的情境中通过问题解决学习数学知识,同时使数学知识与其他学科知识产生互动,培养学生的文字理解能力、观察、分析、综合、比较、概括、创新等能力,以及良好的心理素质。但值得强调的是,数学知识的学习并不一定都要在具体情境中发生,可以按知识的种类而定,不同的知识类型,其掌握、保持、迁移的规律不同,教学的方式也不同。此外,数学学习仍然离不开抽象训练。

四、培养学生数学建模思想应注意的几个问题

1.选择的实际问题要有代表性

现实社会中的问题多种多样,教师在选取问题时要注意代表性,能反映一般情况,这样构建的建模才具有普遍性、广泛性。2.注重对学生实践活动的方法指导

数学活动是培养数学建模思想的重要途径,教师要加强对学生活动方案、研究方式方法的指导。教师始终是活动的组织者、引导者和合作者;学生通过交流合作,主动探究出解决实际问题方式方法。有效地改变教师的教学方法和学生的学习方式,培养学生的动手能力和合作精神,创新意识和实践能力,全面提高学生素质。

五、培养学生数学建模思想的教学难点及破解对策

(一)初中学生用数学建模解决实际应用问题的难点

1、缺乏解决实际问题的信心

数学建模问是用数学知识和数学方法解决实际生活中各种各样的问题,是一种创造性的劳动,涉及到各种心理活动,心理学研究表明,良好的心理品质是创造性劳动的动力因素和基本条件,它主要包括以下要素:自觉的创新意识;强烈的好奇心和求知欲;积极稳定的情感;顽强的毅力和独立的个性;强烈而明确的价值观;有效的组织知识。许多学生由于不具备以上良好的心理品质因而对解决实际问题缺乏应有的信心。

2、对实际问题中一些名词术语感到生疏

由于数学应用题中往往有许多其他知识领域的名词术语,而学生从小到大一直生长在学校,与外界接触较少,对这些名词术语感到很陌生,不知其意,从而就无法读懂题,更无法正确理解题意,比如实际生活中的利率、利润、打折、保险金、保险费、纳税率、折旧率、移动电话的收费标准等概念,这些概念的基本意思都没搞懂。如果涉及到这些概念的实际问题就谈不上如何去理解了,更谈不上解决问题。

3、对数据处理缺乏适当的方法

许多实际问题中涉及到的数据多且杂乱,学生面对如此多而杂乱的数据感到无从下手,不知应把哪个数据作为思维起点,从而找不到解决问题的突破口。

4、缺乏将实际问题数学转化的经验

数学模式的呈现形式是多种多样的,有的以函数显示,有的以方程显示有的以图形显示,有的以不等式显示,有的以概率显示,当然,还有其他各种形式的模型,具体到一个实际问题来讲,判断这个实际问题与哪类数学知识相关,用什么样的数学方法解决问题,是学生深感困难的一个环节。

(二)、破解数学建模难点的对策

针对学生解决实际应用问题的困难以及解实际应用问题的思路和方法,我认为在平时的应用题教学中应重视对学生进行数学应用意识的培养。如数学语言,数学阅读理解等要有计划,有针对性地训练和培养,具体地讲,应抓好以下几个方面的教学。

1、着力培养学生的自信心

一个人的自信心是他能有效地进行学习的基础,更是他将来能适应经济时代必备的心理素质。基于这样一个事实,许多国家都把对学生自信心的培养作为数学教育的一个基本目标。因此,在平时教学中,应加强实际问题的教学,使学生从自身的生活背景中发现数学,创造数学,运用数学,并在此过程中获得足够的自信。

2、培养学生阅读理解能力,使学生逐步学会数学地阅读材料了解材料 通过数学阅读,能促进学生语言水平的发展以及认知水平的发展,有助于学生探究能力和自学能力的培养;通过数学阅读,有助于学生更好地掌握数学。前苏联著名数学教育家斯托利亚尔指出“数学教学也就是数学语言的教学”,因此,从语言学习的角度讲,数学教学也必须重视数学阅读,作为数学教师,不仅要重视培养学生的阅读能力,还要注重教给学生科学有效的阅读方法,让学生认识到数学阅读的重要性使学生体验到数学阅读的乐趣及对学习的益处。从而在兴趣和利益的驱动下自觉主动地进行数学阅读。

3、构建知识网络,强化从整体的角度选择思维起点的能力,数学实际问题最突出的特点就是数据多,变量符号(字母)多,数量关系隐蔽而且数据具有“生活实际”的本来面目,并非“纯数学化”的数据。学生对数据的感悟能力较差,对已知所求之间的数量关系比较模糊,如果从局部入手,则头绪纷繁,不易突破,但若能从客观上进行整体分析,抓住问题的框架结构与本质关系,常能出奇制胜,找到解决问题的方法。具体的讲可以运用结构数据表格的整合信息,理顺数量间的关系,从而建立相应的数学结构,凸显数学“建模”。

4、加强数学语言能力的培养对学生数学语言能力的培养包括两个方面的内容:一是掌握数学语言,包括:①接受——看(听)得懂,能识别、理解解释弄清数学问题的语言表达,并能转化为具体的数学思想,能用自己的语言复述、表达;②表达——写(讲)得出,能将自己解决数学问题的观点、思想、方法、过程用恰当的语言标准流畅地表达出来,并且在表达中名词述语规范、准确、合乎逻辑。二是帮助学生掌握好非数学语言与数学语言之间,各种数字语言的互译、转化工作。加强对学生数学语言能力的培养。

5、优化教学设计,教学策略。传统教学中,教学过程基本上由教师控制,教学设计只关注对传授——接受过程的优化,而很少关注改变学生学习方式,学生接受的只是一些数学结论,对数学问题是怎样提出的,概念是如何在具体情景中形成的,结论怎样探索和猜测到的,证明的思路和计算的想法是怎样得到的,结论的作用和意义是什么?很少关注。因而无法实现学生的数学学习由被动接受“结果”向主动积极构建“过程”的转化。一碰上实际问题,就茫然不知所措。为改变这一高耗低效的课堂,教学设计应注重创造问题情景,开发教学媒体,提供学习资源,优化学习环境。在指导学生学习策略上:一是变学生“仓库式”学习为“蜂蜜式”学习,二是变学生由知识学习为体验学习、发现学习。因此教学设计不仅要关注“基础知识”传授,更要关注如何向学生提供真实情境,模拟情境向学生展现“春天的原野”,让学生体验尝试,发现探究。让学生博采广撷,自我“酿蜜”;优化教学设计离不开研究学生的数学学习心理,摸清学生的学情,否则,教师无法有针对性地提供给学生解决数学实际问题的思想和方法。

6、开发教材潜能,创造性地用好教材

教材是教与学的依据,也是教学问题的题源。教材中的例题、习题是经过反复筛选精编而成,看似寻常,实则内涵丰富。有不寻常的价值和应用功能,教师要充分发挥、挖掘教材中例、习题的作用,在教与学中创造性地设置教学情景,并适时地“深挖洞”或“广积粮”形成以问题为中心展开教学,使学生真正理解掌握知识的产生、形成和发展过程。对例题,习题的教学中采取一题多解(多角度、多方位、多层次)的形式,容易的题精讲,旧题新讲,小题大讲(深入挖掘、一题多变、一题多解、一题多用)如果老师教学时在处理上述问题原形时,不引导学生进行横向扩展纵向延伸,学生在面对实际问题时是很难解决的。因此,教师要创造性地使用好教材中的例题、习题,在布置练习时要减少一些“死”的书面作业,增加一些“活”的实践性、开放性、探究性作业。对教材中的概念、公式、法则、定理不仅要求熟记,而且要弄清背景和来源,以及与其他知识的联系,注重教材中概念、公式、法则、定理的提出、知识的形成。发展过程、解题思路的探索过程,解题规律和方法的概括过程,为学生创建了解决实际问题的基石和搭建了登高望远的平台。

综上所述,培养学生解决实际问题的能力,关键是要培养学生建模能力,即把实际问题转化为纯数学问题的能力,而提高这一能力,需要教师平时对学生进行长时间的启发、引导、点拨;和不断地探究、反思、经过思维碰撞、纠错磨练。

下载加强数学建模综合能力培养――数学中国2008年美赛工作总结 重点(五篇材料)word格式文档
下载加强数学建模综合能力培养――数学中国2008年美赛工作总结 重点(五篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学建模年度工作总结

    数学建模年度工作总结从创办至今,数学建模协会走过了风风雨雨的一年,在这短短的一年中,协会的成长可谓步履蹒跚。但协会的各项工作仍安排到位,落实到点,并取得了优异的成绩和师生......

    数学建模工作总结(合集)

    工作总结 一、 数学建模协会发展的规划 为更好地活跃我校学术氛围,增强同学们的创新能力,本着一切服务竞赛,服务会员的宗旨,本协会特做如下规划: 1、完善全体会员的权利、义务制......

    数学建模工作总结参考

    工作总结 摘要 缺点: 1.没有说明模型的特色,包括模型优点、算法特点、创新点等,即没有体现工作的亮点 2.没有说明模型检验的方法,如灵敏度分析等 3.没有完全回答问题重述中的全......

    2012-2015数学建模国赛题目

    2012高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) A题 葡萄酒的评价 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评......

    数学建模国赛历年赛题(2000~2014)

    2014 A题嫦娥三号软着陆轨道设计与控制策略 B题创意平板折叠桌 2013 A题车道被占用对城市道路通行能力的影响 B题碎纸片的拼接复原 2012 A题葡萄酒的评价 B题太阳能小屋的设......

    数学建模国赛论文规范

    本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左 侧装订。 论文第一页为承诺书,具体内容和......

    数学建模美赛2014网上翻译

    问题-答:在保持-右键除对通规则在一些国家,汽车行驶在正确的规则(即美国,中国和其他大多数国家,除了英国,澳大利亚和一些前英国殖民地),多车道的高速公路经常使用,要求司机开车在规则......

    2009~2014美赛数学建模MCM翻译

    最近5年数学建模MCM中文翻译 2014 MCM问题 A 除非超车否则靠右行驶的交通规则 在一些汽车靠右行驶的国家(比如美国,中国等等),多车道的高速公路常常遵循以下原则:司机必须在最......