高速铁路博格式轨道板的精调测量

时间:2019-05-12 19:00:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高速铁路博格式轨道板的精调测量》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高速铁路博格式轨道板的精调测量》。

第一篇:高速铁路博格式轨道板的精调测量

博格式轨道板的精调测量

秦晓东

(中铁十七局集团第二工程有限公司)

摘要 目前我国以开始大规模修建高速客运专线,现以开工的几条客运专线都采用了板式无碴轨道,轨道板高精度的安装定位是当前铁路施工测量的新课题,本文详细介绍了博格式轨道板的精调测量。

关键词 精调测量系统 Bogl式轨道板

1、工程概述

京津城际客运专线是我国首次修建时速超过300km、采用无碴轨道的高速铁路。由于传统的有碴轨道的承载能力和平顺度无法满足时速高达300 km左右列车的安全行驶,于是我国在京津城际客运专线引进了德国Bogl板式无碴轨道技术。用作为板式无碴轨道重要组成部份的Bogl式轨道板,来替代普通铁路的道碴和轨枕,通过扣件系统直接安放钢轨,轨道板铺设的精度将直接影响轨道最终的平顺性,为满足高速列车运行时对轨道几何尺寸的特殊要求,在安装轨道板时必须进行精确测量定位,安装定位的最终精度与所设计的理论值偏差要求在亚毫米级的精度范围内,这么高的精度,普通的工程测量方法显然是不行的,这就需要一套高精度的测量系统来完成。

2、轨道板精调测量系统的简介

为了达到高速铁路CRTSⅡ型板式无碴轨道安装定位的高精度要求,由中铁十七局集团公司和成都普罗米新科技有限责任公司在借鉴德国Bogl精调测量系统的基础上联合开发了国产化的轨道板精调测量系统-SPPS。2.1、SPPS精调测量系统的组成

该系统由控制计算中心、SPPS软件、TCA1800型全站仪、通讯系统、调整量显示器、精密微型棱镜、测量标架、对中三脚架、微型棱镜三脚座、配套的测钉等以及安放控制计算中心和调整量显示系统的运输车架共同组成。2.2、SPPS精调测量系统功能介绍

控制计算中心由工控机、和安装在工控机内的SPPS系统软件组成、它是精调测量系统的核心。它的基本功能是发送命令、交换数据、处理计算、输出结果。

图1 控制计算中心

与工控机COM口相连的数传电台

1、与全站仪COM口相连的数传电台2,组成了无线数据半双工通讯系统,有效无线通讯距离约40米。

全站仪是在遥控模式下接收由控制计算中心通过数传电台传来的指令、执行相应的测量,并将测量结果通过数传电台返回到控制计算中心。

调整量显示器总有六个,通过485总线与工控机相连,每个显示器对应一个轨道板调位千斤顶,在测量后显示该千斤顶调整量。

图2 调整量显示器

测量标架由横梁、门字框、支座(轴承)、触及端等组成,利用测量标架的触及端与轨道板的承轨台打磨斜面的准确触及,构成了测量标架与轨道板固定的几何关系,通过测量标架上的微型棱镜来准确的反映轨道板的空间位置,每套轨道板精密调系统内共有五个测量标架,四套测量标架用于精调日常作业,一套测量标架用于检核校正。安装在触及端上方的接触指示器是检验测量标架触及端与承轨台打磨斜面是否良好触及的检验装置,由高灵敏度的行程开关和显示控制电路组成。

图3 测量标架

精密微型棱镜是一种经过精加工的、并由检测部门检测和认证棱镜常数且与对应的棱镜基座配套使用,这种棱镜可绕水平轴俯仰转动,也可在测量时绕垂直轴水平转动,但测量点始终居中,即空间位置始终保持固定。

对中三角架是用来架设全站仪及后视棱镜的,它的加工精度能保证将地面已知点坐标准确地沿铅锤线传递到固定的高度,并能在任何方向上做到重复、精准对中定位。

3、SPPS精调测量系统的工作原理及操作方法 3.1精调测量系统的工作原理

每块加工好的CRTSⅡ型轨道板有两排共20个承轨台,在计算时每对承轨台的中心处也算一个坐标,这样在编号时就有30个承轨台,从板头方向数1~30号。

图4 测量标架在Bogl式轨道板上的位置

在轨道板运到现场,通过专用的龙门吊粗放到位后,在轨道板的1和3号承轨台、13和15号承轨台、28和30号承轨台之间分别安放测量标架,装在每根测量标架上的接触指示灯可以提示操作工人标架的触及端是否与承轨台的打磨斜面之间紧密接触,每根测量标架的横梁两端上装有两个距离等于定值的微型棱镜,在上一块已经调整到位的轨道板的1和3号(或28和30)承轨台之间安放测量标架Ⅳ;控制计算中心通过与工控机COM口相连的数传电台1和与全站仪COM口相连的数传电台2建立通讯,指挥安装在对中三脚架上的TCA1800型全站仪对上述四套测量标架上的各个微型棱镜的实际坐标进行测量,并将测量的数据通过数传电台返回到轨道板精密调整系统软件内,处理计算后获得轨道板当前的实际坐标位置;然后与事先输入的轨道板的理论设计坐标值进行比对,将计算后得到的调整值通过485总线发送到与轨道板上前、中、后三对共计六个调整点相对应的6个调整量显示器上。操作工人根据显示器上显示的调整量对轨道板上的前、中、后六个调整点的横向和高低进行调节,调节完毕后再次对测量标架上的棱镜进行测量,比对实测值与理论值之差是否在限差范围之内,若小于限差,则本块轨道板调整完毕。

3.2精调测量系统的操作方法 3.2.1 架设全站仪

将专用对中三脚架的对中杆的尖端,放入每块板缝处的GRP点上的测钉锥窝内,将两整平调节螺杆的尖端放置在轨道板上,注意要将测钉锥窝内的杂物清理干净.取下全站仪下的基座,将全站仪放入对中三脚架的基座上,并旋紧基座的锁紧钮, 把给全站仪供电的电瓶压在两整平螺杆之间的横臂上,以保持对中三脚架的稳定和平衡。用电源线连接电瓶、全站仪、无线电台。开启全站仪,旋转两整平螺杆的螺旋整平全站仪。

图5 全站仪的架设

3.2.2架设后视小棱镜

将后视小棱镜插入基座内,放置在另一付对中三脚架上,并锁紧。然后架设在待测板与上一块已经精调好的轨道板之间的GRP点上,用与架设全站仪时一样的方法整平后视小棱镜。3.2.3 安置测量标架 测量标架I放到第1、3承轨台上(顺里程增大方向铺设时);或是第28、30承轨台上(顺里程减小方向铺设时)。

测量标架II安置在第13、15承轨台上。

测量标架III安置在待精调轨道板的第28、30承轨台上,(顺里程增大方向铺设时)或是安置在第1、3承轨台上。(顺里程减小方向铺设时)

测量标架IV安置在已经精调完毕的与待精调的轨道板相邻的轨道板的最后一对承轨台上。该标架是用来为待调板定向和控制这两块轨道板位置平顺过渡而设置的。

检查每付测量标架的两个触及端是否与承轨台的打磨斜面准确触及,确认触及指示灯点亮。

每根测量标架上的两端都分别安装有一个微型棱镜。它的位置相对与标架上的基座是固定的,安装时注意棱镜与基座上的对

应编号。图6 微型棱镜与对应基座

3.2.4 调整量显示器的连接

从工控机485接口出来的电缆依次串行连接到显示器1、6、5、4、3、2。显示器安装的安置方式为:从标架I的触及端对应在测量车架上的位置开始为显示器1的安装位置,逆时针在测量车架安装显示器2(对应位置标架II触及端),显示器3(对应位置标架III触及端),显示器4(对应位置标架III非触及端),显示器5(对应位置标架II非触及端),显示器6(对应位置标架I非触及端)。3.2.5 调整量显示器的设置

显示器正面靠右位置有一个按钮,用于设置地址和开/关背景光的。持续按下显示器上的按钮8秒,将出现地址设置模式,这时,显示器左下角地址编号会反色显示,单击按钮,地址将从1到6依次循环,待出现需要设置的地址时,2秒无动作,显示器自动保存该地址信息并退出至正常接受状态。

显示器背景光亮度可调,单击按钮,背光由关、弱、中、强依次循环。

显示器显示为4行,第1行:标题,第2、3行:水平、垂直显示的调节量,显示单位为毫米。第4行显示本显示器地址、软件版本号等信息。当显示器初始化或者没有数据的时候,显示的显示值为“*”,超过规定的数据,显示为“99.9”。

每个显示器都均内置有温度传感器,用来读取外界的环境温度并在工控机里显示并保存。但只有设为6号的显示器均内置的温度传感器才能被激活。3.2.6 工控机与测量车架的安放

测量车架停放在待调的轨道板上,调好一块板后推到下一块待调的轨道板上。工控机安放在测量车架的操作台上

图7 测量车架在待调的轨道板上

4、精调测量系统的软件使用及操作步骤 4.1 轨道板精调测量系统软件的系统参数配置

主要是配置通信协议、各接口参数、棱镜常数,对各设备进行初始化,输入原始数据等工作。

4.1.1 通讯参数的设置

软件默认全站仪的通讯端口为“COM1”,温度、显示器等仪器的通讯端口为“COM2”。此设置一般无须更改。通信协议:全站仪和工控机的波特率都设为9600、数据为

8、结束位

1、奇偶性设为无。4.1.2 棱镜常数的设置

在棱镜常数配置菜单中根据棱镜的出厂参数输入对应数据,棱镜高输入的是轨顶到棱镜中心的距离。4.1.3 作业参数的设置

主要是进行加权,选择参考点,确定板号的增加量,里程方向等设置。在选择顺大里程方向铺设是选“+”,反之选“-”。这里还需要输入所调板的板号、测量操作人员的姓名、日期、时间以及当时的天气.4.1.4 坐标数据的输入

坐标数据有两方面,一是“板文件”既每块轨道板的设计坐标,要放到指定的文件夹中,文件名“SLABS”,二是控制点坐标既架设全站仪和后视棱镜的GRP点的三维坐标,它要放到文件名为dpu的文件夹里。4.2 全站仪定向

在精调开始前要定向,首先需要人工手动瞄准后视点棱镜,然后输入测站点的棱镜常数、仪高(TCA1800+标准对中三角架的仪高为0.565m,这里须注意:对中三脚架的竖轴尖容易磨损,要每周检查一次)、测站点号、然后选择是否参照上块板定向,这里要注意:除了新开的工作面外,也就是说除非上块板是未调好的板,参照上块板是必须的。4.3 检校测量标架 4.3.1 检校测量标架的目的

由于温度、长途运输等因素对金属结构的测量标架的几何尺寸会产生一定的影响,故在工作前需要对测量标架进行检校。先把已经与板几何位置经过校准的标准标架Ⅴ放在轨道板的一对承轨台上,利用全站仪对安装在上面的两组棱镜进行坐标值测量,然后取走标架Ⅴ,将其它四根标架分别放上去进行棱镜的坐标值测量,测出的其它四根标架上安装的棱镜的坐标值与标架5的棱镜坐标值之间产生差值,在以后的精调作业中软件会对测量数据自动改正。4.3.2 检校测量标架的方法

首先要把标准标架放到轨道板上,人工瞄准左棱镜测量,然后再瞄准右棱镜测量,软件自动保存两个坐标数据,再分别放上其它四根标架测量,仪器会自动搜索与测量,并计算检校值。选择保存, 则检校测量标架完成。4.4 Bogl板精调测量的操作要领及注意事项

4.4.1 精调测量的操作步骤及要领

通过多次的实验以及在实际操作过程中的摸索总结,得出的经验是: 精调好一块轨道板需要15分钟左右的时间。当然这需要一组熟练的调板工人配合。

第一步:开机进入DOS操作系统,打开参数配置菜单第6项检测标架。完毕后按ESC退回软件主菜单。

第二步:进入菜单选项2,进行精调基本作业参数设置:(1)选择左右轨道,L或R,用回车键确认。

(2)输入待调板号(3)输入操作人员姓名

(4)日期、时间、温度、天气如无特殊,一般采纳仪器自动生成值。无需输入,直接按回车键确认即可。

第三部:进入精调作业选项界面:

(1)定向:输入仪高、设站点号,选择是否参照上块板、输入其他参考点(后视)。(2)四角测,全站仪会自动依次对棱镜1、3、6、8四个轨道板的端角点进行测量,并同时在工控机与调整量显示器上,显示该处的调整量,此时精调测量员就可以指挥调板工人,开始调整相应位置处的调位千斤顶。完毕后,1为保存,0为继续测量,ESC启动子菜单: <1>单棱镜测量 <2>重复四点测量 <3>取消测点

(3)单测棱镜2、7,这主要是为了消除轨道板中间的挠度。同样调整量会在对应的显示器上显示, 指挥调板工人调整该处的调位千斤顶。

(4)

2、7调到位后就可以完整测量了,在“完整测量”模式下,全站仪会对所有的棱镜测量一遍,包括参照上块板定向的Ⅳ号标架上的4、5号棱镜。由于在调板中部的2、7时,已调好的四角可能会有一点微动,再者两次测量之间可能会有点系统误差,所以在完测后可能个别点会仍有超限值出现。这种情况下,就不需要重复完测了,只需对个别超限点单测就可以了,完成后选择保存。就可以搬站,测下一块板了。注意完测数据要不大于0.3mm的限差 4.4.2精调作业中的注意事项

每次测量前要检查标架的触及端是否与承轨台的打磨面接触良好。

无论在任何情况下坚决禁止踩踏,在调的和架设全站仪及后视棱镜的轨道板,精调好未灌浆的板也禁止踩踏。架设全站仪和后视棱镜前要检查测钉(GRP点)内有无沙子等杂物, 在全站仪和棱镜支架整平之前,轻转三脚架,检查支脚是否在测点标志钉内。

每个工作日要检校一次全站仪和测量标架,在定向误差大时也要检校标架。雨天与大雾天最好不要作业,因为在这种环境下系统的电路部分极易损坏。外接电源分清正负极,避免短路现象出现。电瓶不允许倒置。

每个工作日对全站仪的电子气泡进行一次调整。以确保架设精密小棱镜的垂直性。

4.5 调板后的数据处理

在“完整测量”并保存后,在工控机的 “Log”文件夹中会生成四种记录文件既:txt、ffe、ffd、ffc。

Txt是文本文挡格式,它详细记录了调板的时间、天气、日期、气温以及观测者姓名等信息,还有定向误差及各测点与设计值的差值等数据。

Ffe 记录的是各测点的实测坐标以及观测者姓名、时间、日期和天气。Ffd 是配位文件,它规定了标架及棱镜对应的承轨台编号。Ffc 记录的是调板所用的设计坐标值。

每个小组下班后要把“Log”文件夹中的四种记录文件拷贝出来,并把“Log”文件夹清空,防止数据覆盖。

5、人力资源配置

每个测量小组配两名测量员,组长负责工控机的操作及数据的输入及拷出。组员负责全站仪和后视棱镜的对中、整平等辅助工作。此外还要配六名熟练的调板工人,负责千斤顶的安放和轨道板的调节。

6、结束语

从2006年起我国将大力投资修建铁路新线。其中多为客运专线,这些列车时速将达到200至300千米以上的客运专线。尽管没有使用高速铁路这个概念,但是,按照国际上通用的高速铁路以时速270千米为起点的标准,时速在300千米以上的客运专线,毫无疑问就是标准的高速铁路。如此庞大的高速铁路修建规模,为世上罕见,它标志着中国的高速铁路时代到来了。我国在客运专线建设中大量引进了国外的无碴轨道技术,其中多为板式轨道,全长110多公里的京津城际客运专线是我国第一条开工建设的客运专线,引进的是德国Bogl板式无碴轨道,现以进入铺轨阶段,实践证明京津线的轨道板精调定位测量是成功的,随我国高速铁路时代到来,这种精调定位测量技术一定会得到广泛的应用。

第二篇:CRTSⅡ型无砟轨道板精调总结

中国水利水电第十三工程局 CRTSⅡ型板式无砟轨道施

CRTSⅡ型轨道板精调

前言

轨道板铺设的精度将直接影响轨道最终的平顺性,为满足高速列车运行时对轨道几何尺寸的特殊要求,在安装轨道板时必须进行精确定位,安装定位的最终精度与所设计的理论值偏差要求在亚毫米级的精度范围内。

整个精调系统由三大部分组成。

全站仪部分:全站仪是数据测量的主要实施者,为了确保CRTSⅡ型板的安装精度,要求全站仪达到一下精度。

测角精度:0.3mgon(1”);

测距精度:0.3-1 mm ;带有ATR自动目标跟踪功能。

因此,推荐选择的全站仪包括以下型号:徕卡TCA2003、TCA1800、TCA1201、Trimble S8。

图1 莱卡2003 图2松下CF-19便携电脑

工控机部分:采用工业用级别的电脑来运行轨道板精确测量定位软件,具备可靠的野外作业能力和数据处理速度。松下CF-19便携电脑:10.4英寸的XGA触摸屏幕;抗震、加固、防水,屏幕可翻转,适合于野外探测和勘探。工作时间: 4.6-8 小时,电源 100~240V 自适应。工作温度(℃)0-40℃,工作湿度 5%-95%,存储温度-20-60℃,存储湿度 5%-95%。

显示器:显示器共有6个,通过显示分屏器和主机连接,显示器被放置在测量标架对应

棱镜处,提供实时的偏差数据,方便调节CRTSII型轨道板。

倾斜传感器用于快速的获得同一标架上,全站仪测量的棱镜的另一端棱镜的偏差数据。一共有3个,分别安装在标架1号标架2标架和3号标架底部,通过超级蓝牙和主机连接。

标架部分:精密加工的检测标架,保证测量的精度和高速铁路全线测量的一致性。测量标架是本系统重要的组成部分。分为测量标架和标准标架2类,共5副。如下表:

序号 内容 1 测量标架1 2 测量标架2 3 测量标架3 4 测量标架4 5 测量标架5 数量 说明 安装有倾斜传感器,配置2个棱镜 1 安装有倾斜传感器,配置2个棱镜 1 安装有倾斜传感器,配置2个棱镜 1 配置2个棱镜,棱镜内偏10cm 1 作为标准标架,配置1个棱镜

轨道板精调测量定位软件的主要优点有:软件界面及设计流程实用简洁、更加贴近现场的实际情况,方便操作人员的操作。

1.全站仪的架设: 经过现场实测,全站仪的最佳测量距离在5~30之间,也就是说一次设站可精调2~3块轨道板(轨道板长6.45m、宽2.55m)。但考虑到测量标架上的棱镜密集,容易出现测量目标出错等问题,一般建议一次架站只精调2块轨道板。再加上全站仪的最短测距5m,因此全站仪应建设在中间隔开一块轨道板的GRP(轨道基准点)点上,如图1--5。先将GRP测丁凹槽清洁干净,再将测量三角架的强制对中杆杆尖放入测丁凹槽,调平测量三角架,再架上去掉底座的全站仪扣紧在三角架上,打开仪器电子气泡进行精平。也可先扣上仪器,直接调整气泡进行精平。原则是先要保证精准,再提高速度。

2.测量标架的摆放位置和作用:

一块轨道板一共有10对承轨台。1号和3号测量标架分别放在第1对和第10对轨枕上,2号测量标架放在从小里程方向数起的第5个轨枕上。1至3号测量标架用来时实监控轨道板的空间位置。4号测量标架用于定向和轨道板与轨道板的搭接,放置在紧挨着3号测量标架的上一块轨道板第1 个轨枕上。1至4号标架的触头统一贴紧左侧的轨枕边,所以轨道板和标架触头清洁要保持。因为仪器是顺时针转动,标架几何位置是以触头为基准点的。检查触头是否贴紧并用皮筋扣紧在扣件上,防止在调动轨道板是,测量标架晃动或滑动,导致测得非真实值,精调错误。

若是反方向精调,1号和3号标架调换位置,同时1至4号标架调转180°,依然按照1至4号的顺序摆放,标架的触点一定要贴紧轨枕边,检测并将皮筋扣紧在扣件上。3号和4号测量标架上分别是3#、6#与4#5#棱镜。定向后4号标架是绝对不能动的。

精调时,对1号标架的1#、8#棱镜、2号标架的2#、7#棱镜、3号标架的3#、6#棱镜对应轨枕下6处的精调爪进行平面和高程的反复精调,来控制这6个棱镜的三维坐标。实现与设计理论值的趋近,最终实现该轨道板的空间位置。对3号标架上的3#、6#棱镜的平面和高程三维坐标的控制,来实现该板的板头与与上块板板头的高精度搭接。

依次连贯下去,实现为京沪高铁线路的高平顺性、高稳定性、高安全性、高舒适性打下重要的基础

3.后视三角架的架设:

后视可架设在相隔仪器的第3或第4个GRP点上,同样GRP测丁页要事先清洁。建议后视架设在第4个GRP点,在能保证定向精度的前提下,能避免和4号测量标架的位置不发生冲突。如果是精调当前线路的第1块轨道板时,就不存在搭接问题,4号测量标架也就用不到了,所以这时后视可放置在第3个GRP点上。

若在精调时后视定向不过时,检查仪器和后视气泡是否居中;三角架的对中杆是否拧紧;后视棱镜杆是否对接严实;GRP点是否清洁干净或是否破坏及仪器内设置的棱镜常数和天气、其他参数改正值等。也可以将仪器或棱镜前后换一个GRP架设定向。一般在超高段GRP测丁不宜埋设规范;测量时会有一定误差(例如CPIII轨道控制网布平顺性;GRP测设时搭接的不平顺性)或后期测丁的破坏,这些都会导致定向出现问题。

待仪器设备架设好时,旁边不宜有震源,禁止人员在该板上走动,以免对仪器设备造成负面影响。

例图1-5 5.轨道板的精调:

一般配备6名人员,1人架设全站仪;1人架设后视和搬迁4个测量标架。迁站时,两人协作迁移全站仪。一人迁移4个标架是因为要尽量减少对已经调好的轨道板的扰动,所以在板上行走时动作一定要慢要轻。其余4人备好4个双向精调爪和2个单向的精调爪放好位置,准备顶起轨道板抽出粗铺时放置的6根木条,再进行精调轨道板。

要仔细检查精调爪是否完好,精调爪的底座摩擦齿内的干净,保持摩擦力合后坐力;爪勾内是否有杂质填满,确保能紧钩住轨道板预埋的钢板勾,这项工作非常重要,要是没放进去钩住、放偏或是用错精调爪,会导致精调爪脱钩,精调爪会从轨道板板底滑出。在轨道板的四个板角(1#、3#、6#、8#棱镜下方)各放置一个双向的经调爪,双向精调爪的平面位置螺栓是否归零。在板的两长边中间处放置各放置一个单向精调爪。轨道板的四个板角预埋有钢板,中间没有。检查板底预埋钢板的完好性,钢板底面和沟槽内有无多余水泥,水泥过多的话,精调爪没法钩住。如果有要用一字型钢凿子或相关工具将其去掉。

要检查钢板勾外侧的水泥不能过厚,一般不宜大于0.5cm。水泥过厚也会导致精调爪脱勾被挤出。若是过厚要用专业的工具例如打磨机进行打磨。检查预埋钢板可以安排在粗铺之前,板相对集中便于检查和处理,如果放在后期,不经费人、工和时间,而且存在潜在的危险。检查轨道板下面有无杂物,以免造成轨道板无法下降、平面的移动,不能实现精调的目的,同时也保证不了灌浆质量。

还要检查6处放精调爪的精调爪保护套是否粘贴到位,是否贴紧板底够厚,待精调完后压实不会存在缝隙,灌浆时不会发生漏浆,同时建议这项工 起到保护精调爪的作用。作在粗铺时严格把关,因为杂质过大需要重新吊起轨道板,会耽误大量的人、工、时。

精调爪脱钩被挤出,很大可能会对板造成破损,因为精调爪的受力面积小,一个精调爪的承重面积不足5平方厘米(一个精调爪两个爪勾面积之和)。一般破坏的位置是在爪勾上方,靠板边缘的混泥土。严重时双向精调爪会将钢板勾拉直或拉断,甚至板角破裂,需要进行一定处理。单向精调爪脱出时,若是也造成一定量的破坏,需要将爪和精调爪保护套往旁边挪动一点,以免影响受力或无法受力。同时爪的脱出会导致板角或板中间(单向精调爪的位置)落在支撑层或底座板上,这是需要从旁边板缝隙够大的地方用单向爪将板顶起,若距离远需要多用几个单向爪替换往前顶,直到落地的板角(板中间)能将双向爪(单向爪)放入,这是一个非常费时的过程,而且存在一定得危险。这个时候一定不要将手伸进板底。所以要尽量避免脱钩。

检查工作是减少或避免相关事故的发生,从而节省时间和不必要的损失。4人使用24号六棱快速扳手在板的四个板角处,调高精调爪将轨道板顶起,抽出旁边的粗铺木条。再调高中间2个单向精调爪,抽出2根木条。精调爪受力时,要注意观察精调爪的受力情况,是否歪斜,有无滑退的迹象,有没贴紧轨道板边缘。要是做出调整时,木条不要抽出,手不能伸入板底。如果前面有精调过的轨道板,可以目测将该板与上块板高出活平面多出的一部分大致的缩小。如此同时,架设仪器、后视和测量标架以及定向。这几项工作同时进行,充分的利用时间,弥补不必要的等待,单块板的精调速度直接影响单日精调量。

测量时,一般先进行四点测量(1#、3#、6#、8#棱镜)。测得的平面和高程一般选择较大值先进行粗调,再粗调后者。直线段一般先降高程至1至2 mm内,四角尽量同时下降、上升或挪动平面,这样板受力均匀不宜侧压力过大,板也不容易滑动,特别是到最后板的微调时,动作要慢,尽量减少对板的不利影响。熟练后,可高程和平面一起报出,精调人员依次一次调完,这样能减少测量的次数和等待时间。

扳手拧动90度,一般移动0.7mm,180度在1至1.4mm之间。一般定义转动90度为半圈,180度为一圈,精调爪的做工和转动定义会出在一定差异。

粗调量的大小直接是和粗铺挂钩的,粗铺的好坏直接影响后期精调量及精调速度的重要原因之一。一般1次到2次的粗调能将轨道板移动至1到2mm一下的范围内,再进行下一步的精调,将轨道板移至1mm的范围内,这是反复过成,熟练时不超过2次就能做到。

这时可以进行板中间(2#、7#棱镜)的精调了,这是两个单向的精调爪,只需抬高或降低轨道板,调整其高程到设计位置。两个精调爪的调整要同时进行,以免板向一边侧滑,影响板平面位置。侧压力大时,还会将爪挤出。所以求稳步不重求快。当一个或两个爪(2#、7#棱镜)高程还差1 mm时,可以单一进行慢慢精调至0.3mm。这也是个反复的过程,熟练时可1到2次完成。

这些操作可根据实际进行,会有所差异。

此时,轨道板6个点位置都到了1到2mm相对精确的三维空间,而且再次精调比较敏感、困难。因为整个板被腾空架起,动任何一个精调爪都有可能影响板的位置,所以进一步精调时动作要轻要稳,要做到心中有数。这是可进行2次四点测量和2#、7#棱镜测量,也能进行完整测量。有搭接时,4号标架的4#、5#棱镜会参入测量。根据测得的数据进一步的单个点进行精调,该板6个点(1至3号测量标架1#、2#、3#、6#、7#、8#棱镜)的平面和高程精调至0.3mm;板与板3和4号标架的3#与4#棱镜、5#与6#棱镜的平面和高程搭接应在0.2mm。这些需一般要反复精调才能满足精调标准,需要熟练和耐心。

一般精调完2#、7#棱镜下的精调爪时,会发现四个板角多少会有一定量的挪动,这也是正常的,再次精调即可。而板中间位置平面的精调,需要对板头的挪动来实现。将板精调至合格标准时,通常会发现极个别点(棱镜)或个别位置(1、2、3号标架)的平面位置或高程无法挪动、不受力或调补到设计位置,这是要考虑是否有棱镜测得的数据错误、标架没放好,要重新放好测量。或者是有个别爪受力过大将板架起,要考虑是否是测量错误或是底座板(支撑层)过高或过低造成的,这个比个复杂,需要对其做相关处理,比如打磨或填补。或者有些爪将板顶的太紧板挪动不了,一般是中间的精调爪,需轻轻松下待平面调好后,再轻轻顶到精调位置。或是检查板底有无东西,用工具掏出,勿用手直接伸入板底。若是之类等情况都不能解决问题的话,就得考虑是否轨道板变形了,这样的话,需要将板做一定处理,搁置一段时间或附加外力使其还原形状。

有时还会出现调一边板头平面,另一边会向反方向移动,这说明是中间精调爪将板架起,需先将其降下,待平面调好后在调至精调位置。双向精调爪平面螺栓注意归零,以免后期精调板的平面的、空间不够,如果这样的话,需要拿一单向精调爪将板再次顶起,将双向爪归零再放下入,这种比较浪费时间降低精调速度。

单块板的精度会影响到下一块板的搭接,若是搭接不过且后视检查无误的话,需对上块板进行校核。而轨道板的搭接也很重要,直接影响到后期线路线形的好坏和调整钢轨平顺性工作量的大小。所以当一块板精调完了以后要立即上好压紧装置并且再次完整测量进行核查。

精调完毕,确定无误后,可搬迁测量标架进行下一块板的测量精调,此时上轨道板迁仪器、后视和标架的人不宜过多,一般各安排1人即可。

对仪器的熟练操作和调板人员的熟练能有效的减少工作的重复,节约时间。碰的仪器设备故障要细心检查,擅于总结。仪器迁移要稳要准要快,精调人员反映要迅速且高质量,通常问题能独立解决,这样也能极大的提高速度。所以要求人员能相对固定。

在超高段,精调方法要适当变动下,于直线上有所不同。超高段:先调整高程,调至在1`~2mm左右就可以调板的平面了。因为轨道板超高导致中心偏移,一边重,板的平面容易滑动,若是先调好平面,再调整高程的话,板的平面位置会改变。一般在平面是,会有意的向超高边多调过0.3mm左右,在微调高程时,板会自然下滑。在超高段,低侧的精调爪一定要贴紧板边缘,放置板的侧滑或精调爪脱出。

作者:汪兵

庄国政

第三篇:轨道平顺性论文:高速铁路轨道平顺性测量相关技术问题的研究

轨道平顺性论文:高速铁路轨道平顺性测量相关技术问题的研究

【中文摘要】目前,中国已投入运营的高速铁路里程已达到7000多公里,同时还有1万余公里高速铁路(时速250公里以上)在建。高速铁路行车速度快,要求轨道的平顺性好。为了确保轨道的平顺性满足高速行车的要求,目前的通用方法是在精测网的控制下,通过轨检小车实测轨道平顺性的各项参数,并与设计参数进行比较,再通过轨道精调使轨道的平顺性各项参数满足设计要求。衡量轨道平顺性的参数有哪些,以及如何测量与计算,是轨检小车设计与制造的关键技术。因此,本文针对轨道平顺性测量的相关技术进行研究,具有现实的意义。本文首先研究传统轨道平顺性各项参数的测量原理与计算方法,接着详细研讨现代轨道平顺性各项参数的测量方法和计算模型,主要包括德国和中国对轨向及高低这两个重要参数的评价标准和计算方法。最后根据所推导的数学模型和计算方法计算了一段轨道实测数据,并与某轨检小车的计算结果进行比对,以验证所推导数学模型和计算方法的正确性和可行性。本文的主要学术贡献在于以下两点:1)介绍了如何通过CPⅢ控制网下的实测坐标关联轨道的设计里程及其设计参数,以及如何根据轨道的实测坐标计算轨道中心线的坐标;2)通过比较德国和中国轨向和高低的计算方法与结果,认为两种方法具有各自的优势,可以互补,为了充分真实地反映轨道的轨向和高低,轨检时应该使用两种方法进行评价与分析。

【英文摘要】At present, China having been put into operation high-speed railway mileage has reached more than 7000km, as well as ten thousand kilometers of high-speed railway(250km per hour or more)under construction.High-speed railway traffic speed, requiring Track Regularity better.In order to ensure that the ride track meet the demands of high speed traffic, currently is the general way in precision measuring network control, by track inspection car track ride the parameters measured, and compare to design parameters and fine tuning makes the track by track by ride the parameters meet the design requirements.Measuring rail ride what are parameters? How these parameters and the definition of measurement and calculation? Is key to design and manufacture of rail detecting car technology, therefore this article related to rail ride comfort measurement technique to study with real-world significance.This first study on the traditional track measuring principle and calculation method of ride comfort parameters, Went on to discuss in detail modern rail ride comfort measurement method of ride comfort and track various parameters of the calculation model, Rail that is involved in important parameters both high and low orbit and to ride Germany’s standard and calculation methods and

standards in China and its calculation method, The last calculated based on the mathematical model and calculation method for the derivation of the parameters of the section of track test track ride, And than on the results of a calculation of track inspection car, to verify the correctness and the feasibility of the mathematical model and calculation method of derivation.Main scholarly contribution is this article the following two points:1)Describes how to CPIII measured under control network coordinates associated with mileage of track design and its design parameters, and how the track measured coordinates calculation of coordinates of the track centre line;2)By comparing Germany and alignment and high and low calculation method and results in China, the two methods have their own advantages, can complement one another, in order to fully truly reflect the track alignment and high and low, track inspection should be used for evaluation and analysis of two methods.【关键词】轨道平顺性 轨检小车 高速铁路 精度

【英文关键词】Track Regularity Railway Inspection Instruments High-speed railway Accuracy 【目录】高速铁路轨道平顺性测量相关技术问题的研究6-7Abstract7

第1章 绪论10-16

摘要

1.1 引言

101.2 轨道平顺性测量发展概况10-111.3 无砟轨道平顺性测量现状11-1313-14

1.4 轨道控制网(CPⅢ网)简介

第2章 2.1 1.5 本文的主要研究内容及意义14-16

16-26轨道平顺性各项参数的定义及其传统的测量方法轨距16-1718-20程22

2.2 水平/超高17-182.4 高低20-21

2.3 正矢/轨向

2.6 里

2.5 扭曲21-22

222.7 线路中线的三维坐标

22-26

2.8 轨检车测量轨道的各项平顺性参数第3章 轨检小车测量轨道平顺性3.1 轨检小车的工作流程参数的原理研究26-432626-433.2 轨检小车检测轨道平顺性各项参数的原理3.2.1 轨距的检测原理26-27

3.2.2 水平/超高的检测原理27-2929-32

3.2.3 轨向的中波和长波不平顺检测原理

3.2.5 扭曲的检

3.2.7 线3.2.4 高低的检测原理32-33测原理33-363.2.6 线路里程的测量原理36路中线点三维坐标测量原理36-43平顺性各项参数的相关数据计算及分析点坐标计算与分析44-46

43-44

第4章 轨检小车测量轨道43-54

4.1 线路中线

4.2 轨距和轨距变化率计算与分析

46-47

4.4 轨向德国4.5 高低

4.6 4.3 水平/超高计算与分析检测方法的计算及其与中国检测方法的比较47-50德国检测方法的计算及其与中国检测方法的比较扭曲计算与分析52-5455-56

结论与展望

54-55

50-52

致谢参考文献56-60攻读硕士学位期间发表的论文

60-61附表一 线路中线坐标对比情况表61-64附表二

水平/超高比较表64-67附表三 本文计算模型计算的轨向和

附表四 轨附表五 本SGJ-T-CEC-I型轨检小车计算的轨向结果表67-71向德国检测方法和中国检测方法计算结果表71-84文计算模型计算的高低和SGJ-T-CEC-I型轨检小车计算的高低结果表84-88表88-96附表六 高低德国检测方法和中国检测方法计算结果附表七 扭曲比较表96-98

第四篇:高速铁路精测控制网的布设和测量

高速铁路精测控制网的布设和测量

1、高速铁路控制网精度控制标准

为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。

线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。

1.1短波平顺度对线路位置的影响

现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为(82.5〃),直线B移至B′点。

每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB为150米,则 =127㎜。

短波不平顺累计误差示意图

1.2、长波平顺度对线路位置的影响

长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5〃)。设AB为900米,则 Mβ=147㎜。

虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。

由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。

1.3 CPⅠ和CPⅡ误差计算

通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。

CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为:

《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所示:

控制网级别 测量方法 测量等级 点间距 备注 CPⅠ GPS B级 ≥1000m ≤4㎞一对点 CPⅡ GPS C级 800~1000m 导线 四等

CPⅢ 导线 五等 150~200m 后方交会 50~60m 10~20m一对点

对于CPⅡ,取S=800m,则可计算得 MK=3.7㎜; 对于CPⅠ,取S=4000m,则可计算得 MK=11.6㎜。

假定导线纵向误差等于横向误差,则可计算最弱点点位中误差分别约为5㎜和15㎜。相邻两点的相对中误差计算:

《客运专线无砟轨道铁路工程测量暂行规定》中GPS测量的精度要求规定如下表所示: 控制网级别 基线边方向中误差 最弱边相对中误差 CPⅠ ≤1.3〃 1/170 000 CPⅡ ≤1.7〃 1/100 000 CPI 相邻两点的相对中误差 边长:4000000×1/170000=23.5㎜ 方向:4000000×1.3〃/206265=25㎜ 相邻两点的相对点位中误差为34.3㎜ CPⅡ 相邻两点的相对中误差 边长:800000×1/100000=8㎜ 方向:800000×1.7〃/206265=6.6㎜ 相邻两点的相对点位中误差为10.4㎜

2、平面控制网

《客运专线无砟轨道铁路工程测量暂行规定》中规定:平面控制分三级布设:

第一级为基础平面控制网(CPI),为勘测、施工、运营维护提供坐标基准。第二级为线路控制网(CPⅡ),为勘测和施工提供控制基准。

第三级为基桩控制网(CPⅢ),为铺设无渣轨道和运营维护提供控制基准。

2.1、CPI、CPⅡ布测方法

CPI沿线路走向,每4千米一个或一对点,按铁路B级GPS测量要求施测。基线边方向中误差不大于1.3〃,最弱边相对中误差1/170000。

CPⅡ在CPI的基础上采用GPS测量或导线测量方法施测。点间距离800~1000米。GPS测量按铁路C级要求施测。基线边方向中误差不大于1.7〃,最弱边相对中误差1/100000;导线测量等级为四等,测角中误差 2.5〃,相对闭合差1/40000。

2.2、CPⅢ控制点的布测方法 2.2.1、CPⅢ控制点的元器件:

采用工厂精加工元器件(要求采用数控机床),用不易生锈及腐蚀的金属材料制作,CPⅢ控制点标志重复安置精度应达0.3㎜。

PⅢ器件完整示意图

2.2.2、CPⅢ控制点的布设

(1)CPⅢ控制点距离布置一般为60 m左右,且不应大于80 m,CPⅢ控制点布设高度应与轨道面高度保持一致的高度间距。

隧道内CPⅢ控制点位置示意图

注:标记点设置在内衬上,位距电缆槽边墙表面约100cm左右。

路基地段CPIII控制点位置示意图

桥梁上CPIII控制点位置示意图

2.2.3、CPⅢ控制点的定位精度要求

CPⅢ控制点的定位精度要求表(㎜)控制点 可重复性测量精度 相对点位精度 CPⅢ 后方交会测量 5 1

2.2.4、CPⅢ控制点的测量

(1)仪器要求

全站仪必须满足如下精确度要求: 角度测量精确度:≤1〃 距离测量精确度:1㎜+2ppm 使用带目标自动搜索及测量的自动化全站仪。

每台仪器应至少配13套棱镜,使用前应对棱镜进行检测。(2)测量方法

CPⅢ控制网采用自由设站交会网(《客运专线无碴轨道铁路工程测量暂行规定》称为“后方交会网”)的方法测量,自由测站的测量,从每个自由测站,将以2 x 3个 CP Ⅲ-点为测量目标,每次测量应保证每个点测量3次,测量方法见下图。

● 测站(自由站点)○ CPⅢ控制点

→ 向CPⅢ点进行的测量(方向、角度和距离)

←→ CPⅢ控制点距离为60m左右,且不应大于80m,观测CP Ⅲ点允许的最远的目标距离为120m左右,最大不超过180m。

每次测量开始前在全站仪初始行中输入起始点信息并填写自由测站记录表,每一站测量3组完整的测回。

应记录于每个测站的:T温度、气压以及CPI、CPⅡ-点上的目标点的棱镜高测量,并将温度、气压改正输入每个测站上。

对于线路有长短链时,应注意区分重复里程及标记的编号。(3)水平角测量的精度应按如下要求进行: ①测量水平方向:3测回;

②测量测站至CPⅢ标记点间的距离:3测回。

③方向观测各项限差根据《精密工程测量规范》(GB/T 15314-1994)的要求不应超过下表的规定,观测最后结果按等权进行测站平差。

经纬仪类型 电子经纬仪两次读数差 半测回归零差 一测回内2C互差 同一方向值各测回互差

DJ05 0.5 4 12 4 DJ07 1 5 12 5 DJ1 1 6 12 6 注:DJ05为一测回水平方向中误差不超过±0.5〃的经纬仪。④每个点应观测3个全测回。

⑤距离的观测应与水平角观测同步进行,并由全站仪自动进行。

(4)平面测量可以根据测量需要分段测量,其测量范围内的CPⅡ点应联测。2.2.5、与上一级CPⅡ控制点联测

与上一级CPⅡ控制点联测时应保证800—1000米的间隔联测一个。

(1)与上一级CPⅡ控制点联测,一般情况下应通过2个或以上线路上的自由测站,见下图。

联测高等级控制点时,应最少观测3个完整测回数据(其精确度应在5毫米误差以下)。

与CPⅡ控制点联测示意图 ● 测站(自由站点)○ CPⅢ控制点

→ 向CPⅢ点进行的测量(方向、角度和距离)

(2)为了使相邻重合区域能够满足CPⅢ网络的测量高均匀性和高精确度,每个重合区域至少要有3到4对CPⅢ点(约为180米的重合)一起测量,并且考虑平差,每个区域不小于4公里为宜。

桥梁、隧道段须与已有的独立的隧道施工控制网相连接。通过选取适当的CPⅡ点和CPⅢ 特殊网点,来保证形成均匀的过渡段。

(3)CPⅢ控制网应与线下工程竣工中线进行联测。

2.2.6、内业数据处理

在自由设站CPⅢ测量中,测量时必须使用与全站仪能自动记录及计算的专用数据处理软件,采用软件必须通过铁道部相关部门正式鉴定。

观测数据存储之前,必须对观测数据的质量进行检核。包括如下内容: 观测者、记录者、复核者签名; 观测日期、天气等气象要素记录。

检核方法可以采用手工或程序检核。观测数据经检核不满足要求时,及时提出重测,经检核无误并满足要求时,进行数据存储,提交给数据计算、平差处理。数据计算、平差处理必须是经采用通过铁道部相关部门正式鉴定软件,在计算报告中要说明软件名称。自由设站点、CPⅢ点进行整体平差。平差计算时,要对各项精度作出评定。、高程控制网的建立

《客运专线无砟轨道铁路工程测量暂行规定》中规定: 高程控制测量分为勘测高程控制测量、水准基点高程控制测量和CPⅢ控制点高程控制测量。

控 制 网 级 别 测 量 等 级 点间距 勘测高程控制测量 二等水准测量 ≤2000m 四等水准测量

水准基点高程控制测量 二等水准测量 ≤2000m CPⅢ控制点高程控制测量 精密水准测量 ≤800m 各等级水准测量精度

水准测量等级 每千米水准测量偶然中误差M△ 每千米水准测量全中误差MW 限 差 监测以测段高差之差 往返测不符值 附和路线或环线闭合差 左右线路高差不符值 二等水准 ≤ 1.0 ≤ 2.0 6 4 4-精密水准 ≤ 2.0 ≤ 4.0 12 8 8 4 三等水准 ≤ 3.0 ≤ 6.0 20 12 12 8

注:表中L为往返测段、附和或环线的水准路线长度,单位为㎞。

3.1、高程控制测量

勘测高程控制测量、水准基点高程控制测量依照国家相关技术规范进行。

CPⅢ控制点高程控制测量又分为两种:导线网CPⅢ控制点、后方交会网CPⅢ控制点高程控制测量。

CPⅢ控制点高程控制测量采用的水准等级为精密水准。现对后方交会网CPⅢ控制点高程控制测量作详细说明。

3.1.1、测量方法

每一测段应至少与3个二等水准点进行联测,形成检核。联测时,往测时以轨道一侧的CPⅢ水准点为主线贯通水准测量,另一侧的CPⅢ水准点在进行贯通水准测量摆站时就近观测。返测时以另一侧的CPⅢ水准点为主线贯通水准测量,对侧的水准点在摆站时就近联测。

往测水准路线示意图

水准返测示意图

3.1.2、CPⅢ高程控制点精度要求

CPⅢ控制点水准测量应按《客运专线无碴轨道铁路工程测量技术暂行规定》中的“精密水准”测量的要求施测。CPⅢ控制点高程测量工作应在CPⅢ平面测量完成后进行,并起闭于二等水准基点,且一个测段联测不应少于三个水准点。

精密水准测量采用满足精度要求的水准仪,配套因瓦尺。使用仪器设备应在鉴定期内,有效期最多为一年,每年必须对测量仪器精确度进行一次校准,每天使用该仪器之前,对仪器进行检验和校准。

精密水准测量的主要技术标准要求

等级 每千米高差全中误差(㎜)路线长度(km)水准仪等级 水准尺 观 测 次 数 往返较差或闭合差(㎜)与已知点联测 附合或环线

精密水准 4 2 DS1 因瓦 往返 往返 8 注:①结点之间或结点与高级点之间,其路线的长度,不应大于表中规定的0.7倍。②L为往返测段、附合或环线的水准路线长度,单位km。(2)精密水准观测应符合以下要求

等级 水准尺类型 水准仪等级 视距(m)前后视距差(m)测段的前后视距累积差(m)视线高度(m)

精密水准 因瓦 DS1 ≤60 ≤2.0 ≤4.0 下丝读数≥0.3 DS05 ≤65

注:①L为往返测段、附合或环线的水准路线长度,单位km。②DS05表示每千米水准测量高差中误差为±0.5㎜。(3)测站观测限差 等级 上下丝读数平均值与中丝读数的差 基辅分划读数的差 基辅分划所测高差的差 检测间歇点高差的差 精密 1.5 0.5 0.7 1.0 因水准路线较短,故不设间歇点。视距长≤60m; 前后视距差≤1.0m; 前后视距累计差≤3.0m。

上述观测限差超限时,重新观测。

测站数为偶数,一般为6或8个。由往测转往返测时,两支标尺应互换位置,并应重新整置仪器。

3.1.4、CPⅢ控制点高程测量数据处理

CPⅢ控制点高程测量应严密平差,平差计算取位下表中精密水准测量的规定执行。精密水准测量计算取位

等级 往(返)测距离总和(km)往(返)测距离中数(km)各测站高差(㎜)往(返)测高差总和(㎜)往(返)测高差中数(㎜)高程(㎜)精密水准 0.01 0.1 0.01 0.01 0.1 0.1

4、CPⅢ测量所使用的仪器

4.1、全站仪

适合于进行CPⅢ测量的全站仪有Leica(徕卡)系列的:TCA1201+,TCRP1201+,TCA1800,TCA2003等 TCA2003 TCA1800 TCRP1201+ TCA1201+ 每台仪器应至少配13套棱镜,使用前应对棱镜进行检测。

注:使用前应对配合全站仪使用的所有棱镜进行检测,所有棱镜的棱镜常数都必须相同。

4.2、水准仪

在进行CPⅢ精密水准测量时应该使用精密水准仪,徕卡满足使用需求的光学水准仪是NA2;

NA2精密光学水准仪相关技术指标

每公里往返测高程精度 0.7㎜,0.3㎜(带测微计)放大倍率 标准32x,补偿器设置精度 0.3" 补偿器工作范围 ±30' 工作温度-20℃到 +50℃ 贮藏温度-40℃到 +70℃

CPⅢ控制点因为点数繁多,水准测量工作量大,故推荐使用精密电子水准仪。

徕卡DNA03数字水准仪凭借其卓越的性能,稳定的表现获得了多家高铁施工单位的青睐与肯定,在已建成和在建的高速铁路工程中都有着广泛的应用。

DNA03、结语

徕卡测量仪器因为其卓越的测量精度与稳定性,获得了广大测量人员的充分肯定。在中国高速铁路的建设过程中徕卡测量仪器的身影无处不在。

在国内已经建成的高速铁路中,徕卡测量仪器有非常成功的应用经验,其高精度,高可靠性,高稳定性是施工单位按期优质完成任务的重要保证!

徕卡又适时同国内的相关单位展开了广泛的合作,开发出了种类繁多,功能齐全的高铁相关软件及附件。

徕卡必将成为中国高速铁路的最佳伴侣!关键词: 高铁 控制测量 CPIII

第五篇:高铁测量系列04——无砟轨道铺轨测量与精调技术

无砟轨道铺轨测量与精调技术

王建华

(中铁七局集团有限公司,郑州 4 5 0 0 1 6)概述

无砟轨道是以整体道床代替碎石道床的一种新型轨道,其平顺性、稳定性、精度和标准要求高,传统的施工技术和工艺已不能满足设计和运营的要求。这种新型的轨道结构,其静态几何状态中线为2mm,高程2mm,轨距±1mm,检测方法为全站仪配合轨道几何状态测量仪检测。

对于无砟轨道要求的高标准性,施工中一般是采用全站仪配合静态轨检小车对已铺设成型的线路轨道进行测量,人工配合进行线路调整。使用全站仪配合轨检小车进行轨道几何状态测量是一项费时细致的工作,再加上没有成熟的调整顺序和方法,会出现调整过一遍后,再进行复测时又出现线路的几何状态不能满足规范要求,需进行反复测量反复调整。不仅影响铺轨精调的整体进度,而且给钢轨和扣件带来一定的影响,最大的问题是不能保证联调联试的正常进行。在现有的施工技术条件下,如何在保证精调精度的同时提高铺轨精调的速度,本文对此进行探讨,寻求一种快速的精调作业方法,提高铺轨精调的速度。

合武铁路的大别山隧道位于墩义堂至麻城之间,采用双块式无砟轨道,全长13.256km。在隧道两端分别设置25m的过渡段,设计线间距4.6m。隧道终点有一半径7000m的曲线伸入隧道内,伸入长度799.93m。隧道内无砟轨道正线采用专用的双块式轨枕,按1600根/km布置。正线铺设60kg/m U75V无螺栓孔新耐腐蚀钢轨,隧道内正线采用pandrol直列式扣件。轨道几何尺寸要求

2.1 轨道动态几何尺寸要求

轨道动态几何尺寸的检测是通过大型轨检车进行的,利用轨检车试运营来检测轨道在负重情况下的几何状态参数,依列车运营时的平稳性和乘坐舒适度为标准来衡量。为此,在进行静态轨道调整时,也要以线路的平顺性和相对关系为重点对线路进行静态调整。轨检车在时速160km情况下的轨道动态检测指标如表1所示。

2.2 轨道静态几何尺寸要求

轨道静态几何尺寸是指在线路不受外力的作用下,通过检测手段得到的线路平面位置、高程与设计值之间的差值,静态测量值可以显示出建成结构物的绝对位置。由于各种原因,施工后的轨道结构物不一定完全达到设计线路平顺性的要求,规范要求的轨道实际位置与设计位置偏差允许值如表2所示。

轨道静态情况下要满足线路平顺性要求,就需要检测各点在某一线路方向或高程方向左右的游离,这个方向就是需要拟合的线路正确方向,轨道各检测点相对于拟合方向的线路偏差的限差,规范中做了规定如表3所示。

在进行轨道精调时着重控制的技术指标是轨道静态几何尺寸。轨道绝对位置的正确是线路符合设计要求的保证,而轨道的相对位置是行车安全和乘车舒适度的保证。在此基础上进行轨道静态相对位置的调整,才能保证列车运行时的安全与乘车舒适性。

2.3 现场实施控制的轨道静态几何尺寸要求

合武铁路大别山隧道无砟轨道设汁速度为250km/h,规范规定的静态检核尺寸的限差为:10m弦长的高低和轨向为2mm,水平为1mm,轨距为±1mm。精调后进行列车动态检核时又发现轨距、轨顶面的高低存在一定的误差。这说明进行列车动态检核更能体现出轨道的相对位置关系和轨道的几何尺寸的变化率。规范规定的10m弦长对轨道高低和轨向的控制实际上是对这2项指标的变化率的控制,故对轨道水平和轨距也应该用变化率来进行控制。大别山隧道无砟轨道每2根轨枕间距为0.625m,对于每根轨枕都作为静态几何尺寸的检查点,相邻2检查点的数据与设计值之差作为这2点的变化率。从现场的检测情况看:无论是轨向、高低,还是水平、轨距这个变化率都应控制在0.5mm以内,且这个变化率应该在某一个定值上游离。轨道精调

3.1确定基本轨

在轨道的2根钢轨中选择1条作为基本轨,一般在一段线路中选择没有曲线超高的一条钢轨作为高低基本轨;在曲线地段的外轨作为轨向基本轨。基本轨是轨道几何尺寸调整的基础轨,也是轨道调整的基本线,轨向基本轨的确定标志着线路中心线的确定,在合武铁路大别山隧道中选择左轨作为高低基本轨,右轨作为轨向基本轨。因为在隧道出口处有一左转曲线,右轨具有曲线超高。

3.2轨距的调整 轨距是轨道的重要几何尺寸之一,也是最基础的控制要素,在钢轨铺完后就应对轨距进行检测。轨距的检测方法采用带有毫米刻度的道尺,读数应读至0.1mm,并做好记录,为下一步调整做好准备。

调整按照1435.5mm的标准轨距进行,2根轨枕间的轨距变化不应超过0.5mm,对已经调整过的地段重新进行轨距检测,保证在1435~1436mm之间,其变化率不应大于0.5mm。

3.3精测与调整

轨距调整完成后即可用轨检小车进行轨道静态几何尺寸的测量,测量是进行轨向、轨顶面高程调整的基础和依据。静态测量数据的精确与否直接影响到线路的精调质量,测量时要严格按照轨道几何状态测量仪测量的顺序和步骤进行。在大别山隧道无砟轨道精调测量中采用德国的GEDO CE轨道几何状态测量仪和天宝全站仪以及配套的GEDO CE测量软件。

3.3.1 精测方法

3.3.1.1 CPⅢ控制网布设形式

大别山隧道无砟轨道CPⅢ平面控制测量采用后方交会法施测,其测量布网形式如图1所示。

CPⅢ控制测量完成后利用铁道第三勘察设计院集团有限公司编程的后处理软件进行平差,平差后的相邻点位中误差应小于1mm。

CPⅢ控制点水准测量按精密水准测量的要求施测,CPⅢ控制点高程测量在CPⅢ平面测量完成后进行,并起闭于二等水准基点,且一个测段不应少于3个水准点。

3.3.1.2 GEDO CE测量系统原理 采用全站仪自由设站,利用后方交会的测量方法和多对CPⅢ联测得到点位精度小于1mm的全站仪设点三维坐标;全站仪测量利用轨检小车上的棱镜得到高精度的棱镜坐标,通过小车的固定棱镜得到坐标值和高度值,计算得出线路的倾斜数据。将得到的测量数据结合小车传感器数据,计算得出线路中线数据、超高值(测量)和倾斜高(测量);再将计算出的中线数据、超高值、倾斜高和线路设计值进行比较得到差值并通过显示器显示出来。轨检小车计算原理如图2所示。

3.3.2 测量

大别山隧道无砟轨道铺轨精调采用6~8个CPⅢ控制点的后方交会法进行全站仪设站,设站所测点残值都应满足小于2mm的系统要求,站点的坐标中误差应小于1mm。

全站仪架设在4对CPⅢ(左右线各4个)中间并保持与小车棱镜在同一条钢轨上方;全站仪架设要最低,保持小车从小里程到大里程运动(也可以从大里程到小里程运动),小车棱镜安置方向应与固定端相对应,固定端安置在轨向参考轨上。设站时全站仪与小车的距离在80m以内,每次精调测设范围最好控制在10-80m。每测设完1站后移动1对CPⅢ,重新设站,全站仪倒退,每2次设站必须保持一定的重叠段(以10m为宜),测量布设如图3所示。

3.3.3 数据整理

《客运专线无砟轨道铁路工程测量暂行规定》要求轨道线路平顺性指标主要用10m弦控制,轨向和高低10m弦的最大偏差为2mm。10m弦的含义为:在线路上任意选取(或测量)3个点,组成一条弦最大偏差不应大于2mm。在大别山隧道无砟轨道测量中,GEDO CE测量系统的后处理软件也列出了这几项指标,该系统能自动生成一个包含这几项指标在内的实测数据文件表格,生成的数据文件中有10m弦和30m弦2种(可根据实际情况进行定义),大别山隧道主要以30m弦2mm这项指标控制。铁道部最新颁布的铁建函[2009]674号文件《高速铁路无砟轨道工程施工精调作业指南》中规定轨道静态平顺度高低、轨向30m弦均为2mm。

现场测量中根据实测形成的数据文件,对线路上的超限部分进行数据分析,并重新对线路轨向、高低进行拟合,形成一条满足线路平顺性要求的内业拟合方向线,再依据这条拟合的方向线对各实测点的轨向和高低确定调整量,对测量点的钢轨进行调整。下面以表4为例具体说明。

以表中60~53测量点来说明具体数据分析调整方法:首先看轨顶高低的30m弦数据(测量数据可以形成10m、30m弦,为保证数据的可靠性这里采用30m弦2mm的限值),在整个30m弦轨顶高低偏差值项没有大于2mm的检核点,这说明该段线路在轨顶高低平顺性中是平顺的,满足规范对线路高低平顺性的要求,所以对本段轨顶面高程不需要进行调整。而在本段的轨向(中心线)上可以看出对应的30弦偏差出现了不同程度的超限(表中的加黑方框部分),不难发现这几点的水平中线与前后相比有明显的偏离(前后的中线方向都在一1之上),调整时需要将这部分轨道中心线调整到相对平顺的位置上(表4中加黑方框内粗线数据即为具体调整数据),才能使弦差不超限,保证线路的平顺性。

3.3.4 轨道调整

轨道调整在轨距调整完成后的段落进行,减少因轨距调整对方向和高程的影响,有效避免反复测量和调整。

首先调整轨向:根据软件形成的资料,由专人复核,并到现场按里程将需要调整的数据标记在钢轨对应的轨枕上(注意调整方向)。调整时需有技术人员指导对钢轨进行调整,首先用道尺量出调整处的轨距,并做好记录;松开扣件按照要调整的方向和数据将基本轨调整到位;再用道尺按照记录好的轨距将另一根钢轨调整到位。

基本轨轨顶面高低的调整:根据整理的测量资料由技术人员到现场将调整数据标记在钢轨对应的轨枕处,并指导工作人员对钢轨进行抬升或降低。对于既存在超高又需调整基本轨的测量点,首先将高低基本轨调整到位,再根据超高调整另一根钢轨到位。

无论是曲线地段还是直线地段都应该按照里程前进方向进行测量调整(保证调整方向的一直性)。在进行轨顶面高程调整的同时对调整部分的前后进行空掉板项的检查,发现空掉板应即时进行处理,保证线路几何状态在重力作用下的稳定性。做完第一遍调整后,重新对轨道数据进行测量,作为第二遍轨道调整的依据,依次类推。

下载高速铁路博格式轨道板的精调测量word格式文档
下载高速铁路博格式轨道板的精调测量.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高速铁路测量监理工作

    高速铁路测量监理工作监理测量工作内容总体来说就是所有施工单位涉及要做的测量工作我们都需要参与、检查复核。其中分三个阶段,施工前、施工中和竣工后的测量工作。 施工前......

    施工小结(轨道板铺设施工)

    轨道板铺设施工小结 一、工程概况 中水集团京沪高速铁路三标段项目部三工区线上工程范围起于跨津浦铁路特大桥京向台(DK428+680.00),止于金牛山隧道中心点(DK466+287.50),全长37.5......

    高速铁路测量监理工作年终总结

    高速铁路测量监理工作年终总结 在2011年的各项测量监理工作中:测量监理人员认真落实xxxx公司对测量工作的各项要求,加强日常工作管理,严格执行各种规章制度,落实现场检查工作制......

    高速铁路联调联试[优秀范文5篇]

    7.15 联调联试及运行试验 本项目联调联试在完成对基础工程、站后专业及站房等系统的静态验收、确认具备条件后组织实施,通过对综合系统进行实车验证,使整体系统达到设计要求。......

    京沪高速铁路测量暂行规定学习要点

    京沪高速铁路测量暂行规定学习要点 1、高速铁路测量中的三角测量、导线测量等级和测角精度要求:三等级测角中误差为1.8秒,四等级测角中误差为2.5秒、五等级测角中误差为4.0秒......

    高速铁路对测量仪器的要求

    高速铁路对测量仪器的要求 1.GPS 在控制网测量过程中,主要使用GPS静态测量模式,根据规范要求,标称精度应达到:水平±5mm+0.5ppm RMS;垂直 ±5mm+1ppm RMS;仪器必须是双频,未来最好能......

    高速铁路无砟轨道控制网使用及维护管理办法范文

    上海铁路局高 速铁路无砟轨道控制网使用及维护管理办法 上海铁路局工务处 维护管理办法(暂行) 》的通知 工线函〔2010〕127 号 关于发布《上海铁路局高速铁路无砟轨道控制网使......

    高速铁路轨道平顺性的高精度检测方法

    一种高速铁路轨道平顺性的高精度检测方法 张磊,贺文俊,郑阳,王加科,郑建平(长春理工大学 光电工程学院,吉林 长春 130000) 摘要:提出一种新的高速铁路轨道平顺性的检测方法。采用了......