第一篇:发现数学之美 感受数学魅力
发现数学之美
感受数学魅力
方山学校
宋宏文
数学是什么?不同的人对数学的认识是不一样的。在多数人心中,它也许只是“1、2、3„„”这些数字之间的游戏。在大多数学生看来数学就是计算,推理和证明,觉得数学很抽象,感觉枯燥无味。其实数学是一门很美的学科,很多大数学家都从不同的角度称颂数学之美。例如:“数学是壮丽多彩,千姿百态,引人入胜的”(华罗庚);“数学之美,美在纯净”(纳什);
既然数学是美丽和魅力无穷的,为什么不少学生从小学开始便讨厌数学,觉得数学难懂难学,枯燥无味呢?主要原因是孩子们刚接触数学时,家长或老师只教他们算法和算理,不重视让他们领略到数学美和好玩的一面。数学家杨乐说得好:“学数学的关键是培养学生的兴趣,使数学成为爱好和兴趣。”因此,如果我们的教师能够欣赏数学的美,重视在教学中让学生体验数学之美,领略数学魅力,培养学生对数学知识美的热爱,从而激发学生对数学的学习兴趣,开发学生的智力,从而达到育人的目的,那是多么的重要。
数学是美的,关键是我们要有一双善于发现美的眼睛,要有一颗善于发现美的心灵。数学是一门美学,它具有符号美、抽象美、和谐美、简洁美、形式美、奇异美、变化美等等。下面就本人在近年的教学探索中的一些做法加以举例说明如何去发现,展 示小学数学中的美。
一、认识数字的有趣和神奇,感受数学美,让学生体验数学的精彩。
学习数学首先是从认识数字开始,如何让学生觉得数字生动、形象、有趣,给学生留下一个深刻的印象,迈好开始的第一步,对今后的学习十分重要。我们在教学中可以采取多种不同的方法来加强学生对数字的学习兴趣。比如:通过故事学数字就是一个很好的方法,在一年级的语文书上有这样一首诗:“一去二三里,烟村四五家,亭台六七座,八九十枝花。”这首诗“巧妙的把‘一’到‘十’这10个数嵌入其中。这样的数字诗,读起来妙趣横生,学生既记住了数字,又学习了古诗,令人回味悠长,学生各积极性很高,学习效果也好。另外,用联想的方法,让学生想象,每个数字的样子像什么,有助于学生对数字产生亲切感,觉得数字原来就在我们的身边,生活中处处是数学,发现数学的妙处不但有趣,而且还能解决问题。比如数字“1”,我们可以把它看作“一枝铅笔,一根筷子,一根棍子”等等。数字“7”这是一个抽象的数字,学生看到它,可能想起神话传说中的“七仙女”,想起白雪公主身旁的“七个小矮人”,想起每周的“七天”等等。根据学生的想象,我们可以编出数字儿歌,这样数形结合,抽象的数字,在学生头脑里变得直观形象,让学生感受到数学的乐趣。
二、探索规律,感受数学之美,领略数学魅力。数学并不是缺少美,而是缺少对数学美的探索,数学美蕴藏在数学的规律之中。数学美就是数学中奇妙的有规律的让人愉悦的美的东西。在我们的数学课本当中有很多探索规律的内容,老师应当引导学生一起去发现,去展示数学中的美,从体验数学美中,领略数学魅力。例如在西师版的四年级上册中就有用计算器计算探索规律。例1: 1×1=1 11×11=-121 111×111=12321 1111×1111=1234321 从上面的算式中,你发现了什么规律?
对于这样一道题,多数老师只是引导学生说出得数的规律,没有和学生一起去欣赏蕴藏在这个规律中的数学美。我们可以发现由1组成的两个完全相同的数相乘,得到的这个数积的数字排列很有规律,它中间的数字是最大的,前面的数字从小到大排列,后面的数字从大到小排列。我们可以形象地称它为橄榄数。学生通过这个形象的名字,从中可以感受到它所隐含的魅力。又如:通过计算:1×9+2=11;12×9+3=111;123×9+4=1111„„123456789×9+10=111 111 111 1可以看出运算的和谐,组建了一个优美的数字金字塔。这是一幅多有意思的数字图!数学的变化是无穷的,但“万变不离其宗”。这个“宗”,就是特殊中的一般性规律。学生掌握了这个规律,就能够欣赏到数学的美丽。
三、应用数学,动手实践去表现和创造美。每个学生心中都有一颗美的种子。作为老师应当在教学中为学生充分创造条件和机会,引导学生用数学的知识和技能去表现和创造美。学生表现数学美的方式是多样的,展示美的途径是多方面的。我们使用的西师版教材上就有不少学生动手实践的内容。其中有拼组图形、设计图案、综合实践活动等等。例如在二年级下册二单元认识图形中就有《拼组图形》,让学生用七巧板拼成许多有趣的图案。在五年级上册中的学习了图形的平移、旋转之后就有《设计图案》。综合应用《花边设计比赛》。这些内容都是学生表现,展示数学美的好素材。创造美的时空是广阔的,数学教师应该借助数学的美去陶冶学生的情操,培养他们的创造性思维能力,提高其数学素养和审美情趣,使他们不断增强探索美的兴趣,真正使数学成为一门吸引学生的课程。
从上面列举的大量例证,可以充分说明,数学真的是魅力无穷,我们要点燃和激起学生火热的思考,让他们不断地探索、发现、欣赏数学之美。这样就达到了我们最终目的,培养学生的数学情感,学生对数学有了情感,就会转变学习的态度,就会喜欢数学,热爱数学。我想如果这样,我们的数学教育就在最重要的地方成功了。
第二篇:引领学生发现数学之美
引领学生发现“数学之美”
伽利略说过:“数学是用来书写宇宙的文字。”我很欣赏这句话,他把数学学科的价值和魅力用简单的一句话表达得淋漓尽致。作为一名数学老师,我非常喜欢数学,因为数学知识无时不在体现出它的周密性、逻辑性、规律性与变化性,无时不在闪烁着人类智慧的火花。它把善于创造、触类旁通者引入神秘的数学殿堂,领略不尽它的美妙。罗素曾经说过:“数学,如果正确地看,不但拥有真理,而且也具有至高的美。”因此在小学数学的教学中,我们不仅要引导学生学好数学知识,还要在学生心中栽下“数学美”的种子,引领学生发现数学之美,欣赏数学之美,感受数学之美,从而激发学生对学习数学的兴趣,培养学生良好的数学素养,为学生后续学习数学奠定可持续的发展动力。对于小学生而言,我引领学生在最基础的方面发现数学之美,下面谈谈自己的认识和做法。
一、引领学生发现数字之美
数字,是学生每一天都接触的,是数学中使用最为频繁的。古希腊数学家普洛克拉斯说过:“哪里有数,哪里就有美”,你看,0——9这些阿拉伯数字,就像琴弦上一个个跳动的音符,它们有机的组合、排列,同样能奏出美妙动听的乐章。简单的10个阿拉伯数字经过排列组合,能表示很多很多的数,反映日常生活中各种事物的数量,所以数字之美首当其冲。
学生初入学时,我会教会学生记忆数字歌,“1像铅笔细又长,2像小鸭水上漂,3像耳朵听声音,4像小旗迎风飘,5像秤钩来卖菜,6象豆芽咧嘴笑,7象镰刀割青草,8像麻花拧一遭,9像勺子能吃饭,0像鸡蛋做蛋糕。”数字字形之美一定要深深印在每个学生的脑中,从这些美的数字开始,孩子们开始了数学学习之旅。
在课堂上,语文中的古诗也拿来在课堂上吟诵,引导学生感受数字的魅力。例如:“一去二三里,烟村四五家,亭台六七座,八九十枝花。” “一片两片三四片,五片六片七八片,九片十片十一片,飞入菜花都不见。”还经常读一些带数字的歌谣,“一二三,爬上山,四五六,翻筋斗,七八九,拍皮球,十个手指头,就是一双手。” 数字与文字的巧妙组合,也能表达出很美的意境,让人回味无穷。学生年龄小,不能自觉地去感知、发现,我们教师在平时要善于挖掘、用一双善于发现美的眼睛引导学生去发现,数字在学生的眼中就会变得美起来,播下美的种子,就会收获美的果实。
二、引领学生发现符号之美
符号对于数学的发展来讲更是极为重要的,没有符号去表示数及其运算,数学的发展是不可想象的。我们都知道数学符号的发明、使用和流传都经历了一个漫长的过程,能保存下来使用至今的符号,定是经历了岁月的沉淀和推敲,在推理运算中定是恰当、简便和美妙的。因此数学符号之美,也应该是老师引领学生发现“数学之美”的一个元素。
小学数学中的运算符号“+”、“-”、“×”、“÷”是美的,一是从视觉上看既简单又大气,二是这些符号从运算意义上看非常形象,非常贴切恰当地表示出了运算的意义。加法表示把两部分合起来,一横和一竖合起来表示“+”,乘法是求几个加数和的简便计算,是一种特殊的加法,于是把“+”旋转45度变成“×”,多么地形象呀。除法表示平均分,“÷”中间一横,上下各有一个圆点,凸显了平均分的意义。
另外还有比较大小的符号,“<”、“>”、“=”、≈”也是很美的呀,哪边的数大,开口就朝向谁。两边的数相等就用两条平行的直线表示,大约相等就把两条平行的直线变成波浪线。抽象的数学知识用上了这些符号,变得生动有趣。
在课堂教学中,每学习一种新的符号,我都会引领学生观察分析符号美不美,如果换成别的样子好不好,为什么?有时候,我还引导学生用手势和各种动作来表示符号,例如用这样的方式,“小手变变变,加号;小手变变变,减号”,当听到一个口令后,学生会马上用小手表示出符号的样子,这样以来,在学习中不仅仅是认识了一种符号,还渗透了符号美的教育,培养了学生的创造意识。
三、引领学生发现图形之美
在数学的图形与几何领域,有很多美的元素,适时进行引导,也会引领学生走近美轮美奂的数学天地,感受美的熏陶。三年级的第一单元《对称》的认识,就是一个经典的发现图形美的案例。在上课之前,我搜集了许多对称图形的图片,并且配上优美的音乐,上课播放的时候,大屏幕上一幅幅有关对称的精美图片马上吸引了学生的目光,并且连连赞叹,“太美了”,在这样的氛围中,去探究对称图形的特点效率也是非常高的。了解了对称图形的特征,然后让学生亲自设计一幅对称图形的图案,发挥了各自的创造性,在运用中继续巩固了所学知识,进一步激发了学习的积极性和创造性,陶冶了美的情操。数学不但拥有真理,而且具有至高的美。只要我们用心地挖掘,在数学的图形教学中还会发现更多的美。
四、引领学生发现数学的简洁美
上面提到的数字美、符号美、图形美,是一种外在的美,学生可以通过视觉去发现,去感知。数学知识还有一种内在的美,在课堂上需要引导学生去体会,那就是数学的简洁美。
在学习了数字编码后,学生明白了数不仅可以用来表示数量和顺序,还可以用来表示编码。
这时,我问到,“学了这些数字编码后,你感到数学美不美?”
“美”,学生异口同声的说道。“为什么美?”
“用数字编码表示我感觉很简单,比如身份证号码,用18个数字就能表示出一个人的出生地、出生年月日以及性别。”
“奥,那么我们可以称为简洁美。”
“对对,我还感觉数字编码既简洁又很神秘,比如发电报就要用数字。”学生指着译码表,“我们真棒,就可以用21,22,24,39来表示。”
看似一串很简单的数字,却能表示出独特的意义,它就像一种无声的语言,在彰显着自己独特的魅力,在生活中发挥着着巨大的价值。通过这样与学生的交流,数学的简洁美在学生的头脑中变得高大起来,渐渐地走近学生的心中。
关于认识数学知识的简洁美,例子不胜枚举。在学习乘法的意义时,n个相同加数的和,列加法算式比较麻烦,引入乘法,马上变得简洁起来。大数的改写、分数的约分、四则混合运算的简便计算等等都充分体现出了数学知识的简洁美。在学习的过程中,学会这些知识还不够,老师要引导学生去体会蕴含其中的简洁美,感受数学美的内涵。
罗丹说:“生活中从不缺少美,而是缺少发现美的眼睛。”同样,在数学学科中也从不缺少美,有关数学美的元素还有很多,例如数学的思想美,方法美,概念美、思维美等等,在未来探索的学习道路上,学生定会看到更加色彩斑斓、美妙绝伦的数学王国。
在数学的课堂上,引领学生发现数学之美,感受数学之美带给我们的视觉冲击和思维冲击,是一种快乐,甚至是一种陶醉;看着孩子们对数学之美的表达,是一种感染,一种幸福。让数学之美在课堂上绽放应该成为我们教师自觉的意识和行动,一直坚持下去,定会收获更多的惊喜!
第三篇:发现数学之美
发现数学之美
在这美丽的春天,大家欢聚一堂,我心里美滋滋的,有机会向大家学习班级管理的小妙招,心里更是美滋滋的。咱班学生在数学课上是不是也能拥有美滋滋的心情呢?当然不可能百分之百,有学生会感到枯燥无味,甚至有的学生会感到惧怕。如果引导学生发现数学之美,体会数学的魅力,那么他们一定会慢慢喜欢数学,喜欢数学课堂。今天我就展示一节实践活动课《发现数学之美》,希望我的汇报能在数学教学方面起“抛砖引玉”的作用。
从小学数学教材中,我归纳了四种数学美,简洁美、对称美、生活美、关联美,通过课件从美的角度展示数学的魅力,引导学生发现数学之美,提高学习积极性。
一、发现数学的简约美
1.求和:一班有32名学生,二班有40名学生,两个班一共有多少名同学?列算式:(一般我们都要求列加法算式,那我们能不能改变一个角度,观察数学算式有什么美呢?引导学生发现数学算式可以简单直观地表达数学信息,一个数字就可以表达一个长长句子,数学多简单啊。在潜移默化中体验数学的简约美。)
2.用字母表示数,用含有字母的式子表达数量关系。(在新授课上,我更多的引导学生去寻找字母的作用,学生会发现一个小小的字母就可以表达出所有的数量关系,字母把这个题目变简单了。)
3.长方形正方形面积公式、周长公式
4.三角形的三边关系、三角形内角之和(3.4点显示了,利用公式解决问题方便快捷,复杂的问题简单化)
5.计算器的应用,找规律(这节课让学生体验数学的奇妙,趣味性,而且不计算也可以写出结果,增强了学好数学的自信心)
6.几何中完美的图形----圆,圆的面积公式s=πr,一个传奇的数“π”把半径和圆的面积紧紧相连。
在课堂上引导学生发现数学的好处和魅力,那他们在数学课堂上就没有压力,只有动力,把数学的公式、规律记得牢牢的,永不磨灭。
2二、发现数学的对称美
一种是算式的对称性美,例如,本学期运算律这一单元,对四年级的学生来说确实是个难点,我也换了一个角度,请同学们观察这两个规律,寻找美,加法的交换律a+b=b+a,乘法的交换律ab=ba,a与b的位置具有对称关系,但有是可以变化的,变化的结果与原来的位置反而形成一种整齐的美感、均衡感,一目了然,同学们恍然大悟,枯燥的课堂瞬间变得热烈起来,然后再做练习中进一步体验算式的神秘感、奇妙感,学生学起来轻松快乐。
另一种是图形的对称美,图形的对称美体现了部分与部分之间、整体与整体之间的一种统一和谐关系。例如轴对称图形和中心对称图形等,这些图形匀称美观,在日常生活中用途非常广泛。又如密铺,许多设计书应用密铺设计出很酷炫的图案。学生是喜欢此类的课,那我就利用这个机会,引导学生发现数学美,增强喜欢数学的感情。
三、感悟数学的关联美,沟通知识之间的联系。
数学教学有一个很重要的思想:迁移。这就说明数学中知识的关联非常密切,比如在平行四边形的认识这节课,我安排了学生认识从一般的四边形到平行四边形到矩形、菱形、正方形之间的变化过程,对于学生认识几种图形,减轻学习中的负担有很重要的作用,同时学生发现了所有平行四边形间的变化过程、掌握这一类图形间的区别与联系;如果再加入多媒体动画的运用,学生就更加能感到学习数学的乐趣了。
一堂蕴含着数学之美的课堂,气氛活跃,情绪高涨。
我在班级教学中的小妙招也就是换个角度,从美的角度授课,换个说法,用孩子们喜欢听的语言、感兴趣的方式来讲解,也希望和各位老师们一起探讨如何在教学中加一些美的元素,增加数学学习的兴趣,使学生逐步走入“乐学”的天地。
以上是我的汇报,谢谢大家!
第四篇:感受数学美
论文编号
枯燥数学课堂反思之感受数学美
摘要:数学是研究现实世界的空间形式和数量关系的学科,具有高度抽象性、应用的普遍性和逻辑上的严密性。这三个特性使学生对数学的印象是单调、枯燥、冷漠的,难以唤起学生学习数学的兴趣。在全面推进素质教育的今天,审美教育受到了广泛的重视。本文从让学生学会“识图”、“鉴赏”、“游戏”、“发言”、“创新”、“质疑”六个方面简单地探索了如何培养学生数学的审美能力。关键词: 学生 数学 审美 能力
苏霍姆林斯基曾说:“没有审美教育就没有任何教育。”数学是研究现实世界的空间形式和数量关系的学科,具有高度抽象性、应用的普遍性和逻辑上的严密性。这三个特性使学生对数学的印象是单调、枯燥、冷漠的,难以唤起学生学习数学的兴趣。所以,在数学教学中,教师应该进行数学审美教育。注意挖掘数学中美的因素,培养学生的审美心理和数学美感,当学生发现数学确是一个美的世界时,便会改变对它的成见,极大地提高学习数学的积极性。因此,加强对中学生数学审美能力的培养,便成为一个值得研究的问题。
一、让学生学会识图,在识图中感受数学的“形状美”。
英国数理学家罗素曾说过:“数学如果正确对待它,不但拥有真理,而且也具有至高无上的美。在新课程标准下,教师应引导学生感受数学的神奇之美。学生一旦感受到教学与生活息息相关,便会强化学习动机,从而更喜欢数学。
在平常的教学中,教师要有意识地培养学生的识图能力,看一看我们周围的世界,在丰富多彩的生活中,让学生去发现数学的影子,找到许许多多的图形。如:在学习了“三角形的相似”后,我布置给学生一份特别的家庭作业,让学生放学后观察乡镇一角的街景,从中去发现一些熟悉的数学图形,并让学生归纳,有哪些图形是相似的?如:在教《轴对称变换》的教学中,可让我们的学生自由发言,讲讲在我们美丽的校园里,哪些叶子是轴对称图形,哪些是中心对称图形,教师里有哪些也是对称的图形呢?让我们的学生真真实实地感受到生活中的数学之美。在学习《圆的基本知识》时,我把圆同描写太阳和月亮的优美诗句、声音与色彩以及数学史上对圆的美学认知的发展历程,有机的结合起来;还利用网络搜集将生活中的圆展示出来,如当小雨滴落在湖面上荡起的涟漪,那种震撼的美,学生屏息凝神,看呆了,深深地感受到了数学的美,此时的内心体验要比老师的说教好上千百倍,这样的课堂学生怎能不感兴趣?新课程提出的情感目标也就落实在此时无声胜有声中。细节无处不可美,一句动听的表扬,一个感人的眼神,一份漂亮的板书,一次有趣的数学活动„„就在这不经意中,数学之美便走进了学生的心灵,起到了很好的效果。我还可适当地延伸知识,介绍奥运五环,带给人们美感享受的同时,又昭示出人类体育运动之美。学习“集合”时,可把它与罗素的“理发师悖论”,特别是集合论的创立者康托尔的故事,有机的结合起来,提高学生学习数学的兴趣与积极性。
在课余的时间,我们还可带领学生漫游在数学“王国”,如:在数学的园地里,完全正方形作为一朵沁人心脾的奇花,曾陶醉过多少观赏者!五种正多面体以其形式美带来的神秘感,使古代人曾把它们分别作为火、风、水、土、空气的象征,而这五种图形总名之为宇宙的图形。由宇宙美神得到的黄金矩形是最令人心醉的优美图形之一。它在形式比例上具有相当高的美学价值。因而,日常生活中的许多物品,诸如像柜、图书、杂志、火柴盒及至国旗都采用了这一优美的图形,以带给人们更多的美感的享受。
通过以上的体验与学习,学生能感觉到数学是美丽而神奇的,数学美不胜收。在识图的过程中,培养了学生审美的能力。
二、让学生学会鉴赏,在鉴赏中感叹数学的“和谐美”。
美是艺术的一种追求,美也是数学中一种公认的评价标准。教师在教给学生数学知识的同时,要让学生在鉴赏中发现数学是美的。
为了提高学生的科学鉴赏能力,我们要经常引导学生用美学的眼光审视所学生的数学知道,研究数学发现的过程,向学生渗透科学美存在于生活中的每一个角落的观念,增强学生的好奇心,调动学生学习的积极性。达芬奇说:“黄金分割是美的原则,一切符合黄金分割值的图形都是最美的图形”。所以我在讲授“黄金分割”的知识点时,先跟同学们讲:“同学们,你们想不想知道自己的体形是否标准?那么,你们回家用尺量一下自己上下身的值,并计算出它们的比值,到明天我们学习黄金分割了之后,你们便可以得到答案的。”同学们立刻被这一“黄金分割”所吸引,兴趣十足主动积极地去预习这一节课,真正达到了由“要我学”变为“我要学”的目的。
在学习应用题时,用线段图帮助学生分析题意,使学生从感受到数学中这富有秩序的设置和乘法的美等。因此,我们应该挖掘教材深层次的多元教育因素,有意识地积极引导学生去发现美、表现美、创造美,使美的情感得到升华,促使学生的人文素养得到提高和发展。数学之美很难定义,但只要我们细心鉴赏,就能在学习数学时感受到美的愉悦。
三、让学生学会游戏,在游戏中体验数学的“趣味美”。
随着《新课程标准》的实施,教师们越来越关注的是:采用怎样的教学方式更能服务于学生的学习方式。实践证明,当教学内容能够用多种形式来呈现时,学生将会学得最好。数学游戏就是其中最受教师和学生喜欢的形式之一。游戏与教学相互包含,使学生们在愉快游戏的同时自主探索知识,发展能力,张扬个性,实现教学方式的大开放。数学游戏能为学生动手、动口、动脑,多种感官参与学习活动创设最佳情景,激发学生的学习兴趣,调动学生积极性,最大限度地发挥学生身心潜能,省时高效地完成学习任务,同时,渗透思想品德教育,在游戏中体验数学的“趣味美”,培养良好的学习习惯和心理素质,使智力和非智力品质协调发展。
如教学《对称、平移与旋转》时,若能把“跳棋”搬进课堂,学习小组在游戏过程中潜移默化地掌握了对称的基本特征,不仅在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心,又初步认识到数学与人类生活的密切联系,体验到数学活动充满着探索与创造。
四、让学生学会表达,在表达中体会数学的“抽象美”。
在新课程中,教师的职能不再仅仅是传递、训导、教育,而要更多地去激励、帮助、参谋;师生之间的关系不再是以知识传递为纽带,而是以情感交流为纽带;教师的作用不再是去填满仓库,而是要点燃火炬。学生学习的灵感不是在静如止水的深思中产生,而多是在积极发言中,相互辩论中突然闪现。
教学如果不经过学生兴味盎然的尝试,不经过理智的挑战与思维的碰撞,不经过多次质疑、自主选择,不经过比较反思、独立判断,没有自己的独特感受和发自内心的真切体验,很难说学生真正掌握了知识,获得了发展。在教学中,教师可大胆放手,给学生充足的时间,让学生成为学习的主角,成为知识的主动探索者;让学生学会实践,在实践中感受数学的“抽象美”。我经常告诉学生:“课堂是你们的,数学课本是你们的,三角板、量角器、圆规等这些学具也是你们的,这节课的学习任务也是你们的。老师和同学都是你们的助手,想学到更好的知识就要靠你们自己。”这样,在课堂上,学生始终处于不断发现问题、解决问题的过程中,一节课下来不但学到了自己感兴趣的知识,还使自己的自主性得到充分发挥。
五、让学生学会创新,在创新中感悟数学的“变幻美”。
“创新教育”是以培养人的创新精神和创新能力为基本价值取向的教育,其核心是创新能力的培养。从这个意义上理解,在数学教学中,通过对中小学生施以教育和影响,促使他们去认识数学领域的新发现、新思想、新方法等,掌握其一般规律,培养他们具有一定的数学能力,为将来成为创新型人才奠定数学素质基础。
例如学习了点关于直线对称点求法后,就要引导学生从联系实际的角度去分析,对原题进行加工、改编,培养学生的创新能力。题目可以是这样的:一条小河l的同旁有两个村庄A、B,在河边修一个抽水站,问该站应修在什么地方,才能使它到两个村庄A、B的距离之和最短?
学生继续讨论,将得到另外不同的几个题目:
延伸:(1)小河两岸(设两岸是平行的)有两个村庄A、B,要在河上修一座与河岸垂直的小桥,使两村庄间的距离为最短,小桥应修在什么地方?
延伸(2),在圆柱形铁皮桶的外侧A 处有一只小虫,请为它设计一条最短的路线,使它沿桶外侧爬到桶内壁B处。
在数学教学中,应转变过去提倡的教师“教”和学生“学”并重的模式,实现由“教”向“学”过渡,创造适宜于学生主动参与、主动学习的活跃的课堂气氛,从而形成有利于学生主体精神、创新意识、创新能力健康发展的宽松的教学环境。学生能在不断的自主创新中,享受数学之乐趣,感悟数学的“变幻美”。
六、让学生学会质疑,在质疑中优化数学的“无穷美”。爱因斯坦说过“提出一个问题比解决一个问题更重要。”教师应教给质疑的方法,使学生乐于质疑,从中能享受到质疑的乐趣,而不是把它看作是苦差事。也就是说“乐在其中,才会有吸引力和产生内趋力。”让学生在知识的来龙去脉上质疑,在知识的作用上质疑,在知识结构上质疑,在知识的模糊处质疑,在概念内涵,外延的拓展上质疑等等。在质疑中优化数学的“无穷美”。
如:教学“轴对称”时,我先是进行操作演示使学生对轴对称图形有了一个初步印象,再让他们阅读课本材料,然后问学生:“当你学习了轴对称图形后,你有什么问题想问你的同学?”这个问题一下子激发了了他们参与学习的热情。有不少学生提出了比较好的问题。如:“圆的对称轴是什么?”“为什么要说所在的直线?”等。但由于学生间存在着个别差异,在质疑问难时,往往不能提在点子上、关键处。这时,教师应以鼓励为主,消除学生的畏惧心理,激发他们质疑问题的热情。同时对学生提出的问题给与恰当的评价,树立他们的自信心,调动积极性。鼓励学生从不同的角度去思考和判断,鼓励学生自己发现问题,解决问题,激发学生的质疑热情,对学生新奇怪异的想法我们要加以保护,决不能随便予以否定,遏制及嘲笑。对于提出好问题的同学,应鼓励起进一步的探索,大胆创新,让学生品尝质疑的乐趣。久而久之,教师在教学中可以建立民主平等、和谐的师生关系,营造出一个宽松、活跃的质疑氛围。那么,对学生能主动获取知识,一定能起到极大的促进作用。
总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,以自己对数学最真诚的热爱、最睿智的领悟、最诗意的诠释引领学生走进美丽的数学,培养学生数学的审美能力,使学生对数学产生美好的情感,让每一位学生都具有一双认识、欣赏并发现“数学美”的慧眼!参考文献:
1、童庆炳《现代心理美学》中国社会科学出版社2000
2、朱永新、杨树兵 《创新教育论纲》《教育研究》1999.8.3、华建宝《知识经济与创新教育》《中国教育学刊》1999.1.4、牟洪宇《问题解决中的审美教育》《中小学数学》2002.9
5、王振华《将游戏带进数学课堂后》 《中学教研》
第五篇:浅谈数学之美
浅谈数学之美
姓名:
学院: 专业: 学号:
摘要:通过重新了解认识数学是什么或不是什么即对数学概念多方位的分析讨论与认识,发现数学之美,感受数学不同的美。数学之美主要概括为:形式美、奇异美和方法美。数学美是自然美的客观反映。数学史自然科学的语言,具有一般语言文学与艺术所共有的美得特点,即数学在其内容结构上,方法上也都具有自身的某种美。所谓数学之美,即数学中所蕴涵着的无穷魅力。关键词:认识;形式美;奇异美;方法美
引言:美是人类创造性实践活动的产物,是人类本质力量的感性显现。通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。数学美是自然美的客观反映,是科学美的核心。简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。
一、重新认识数学
关于数学最大的误区就是把数学看成自然科学。对于一般人说这种分法似乎已经习惯成自然,主要表现在粗糙的学科分类中。但二者还是存在明显的差异,例如,自然科学的本质是发现而数学的本质则是发明;自然科学目标为寻求对客观事实的解释而数学则是寻求概念之间的逻辑关系,其结果形成定理或算法等。数学还与艺术存在共性与差异。虽然表面上数学与其并无直接明显干系,但都具有创造性,强调原创性。以显示为参照物却都突破了现实的局限。二者的差异性也很明显,数学求真而艺术求美。数学理解有程序性而艺术带有直观性。
由此我们看到了数学虽然与自然科学,艺术有共同特征。但也存在相当的差别,数学不是自然科学,也不是艺术。
数学是一个具有内在统一性的科学技术群。数学是一类知识,一种科学语言,一个工具,各门学科的基础,一门科学、艺术、技术,甚至为一种文化。数学是研究现实世界中数与形之间的各种形式模型结构的一门科学。
二、数学之美
(一)形式美
数学美要求以最合理、最恰当的形式及最佳形式表现美的内容;在表现同一内容的众多形式中,力求选择一种最理想的表现形式;力求形式上的创新,不断地改造就形式,创造新的形势。数学的形式美与传统的形式美存在着差异。可以说数学形式美是传统形式美的高级阶段。数学形式质料是抽象的数学符号,反映着自然事物的内在形式即内在关系和结构,因而数学形式美往往给人以理性的冷峻感。数学形式美是由一般科学的内在形式经过历史沉淀和思维抽象演化而来的。其比传统形式美的形式规律更加抽象、精确,并且比传统的形式规律要多得多。
数学的形式美体现在其的简单,对称和多样统一的美。数学的简单体现在其简洁的数学符号、公理体系和精确的计算与严密的推理。对称又包括有对称的图形、原理和对称的思维。除此之外,数学还有统一的数学方法和统一的数学结构。一个数学方程,一条数学定理,反应了一类事物之间质的共性;不同的数学方程,不同的数学定理,反映了不同事物之间质的差异性。不停地发现又不断地统一,为数学其中一种美所在。
(二)奇异美
人们提起数学的时候,通常会说“其妙的数学”,数学的学习和解题中也有一些非常规的奇妙的解法。关于数学的奇异性,讲一个蒲丰用投针求圆周率的近似值的试验也是数学方法奇异性的一个典型例子。有一天蒲丰邀请许多宾朋来家做了一个奇特的实验。他事先在白纸上画好了一条条有等距离的平行线,将纸铺在桌上,又拿出一些质量匀称长度为平行线间距离之半的小针,请客人把针一根根随便仍到纸上,蒲丰则在一旁计数,结果共投2212次,其中与任意平行线相交的有704次,蒲丰又做了一简单的除法,然后他宣布这就是圆周率的近似值,还说投的次数越多越精确。这个实验使人震惊,圆周率和一个表面看来毫不相干的随便投针实验沟通在一起。然而,这确实是有理论根据的。计算圆周率的这一方法新颖、奇妙而让人叫绝,充分显示了数学方法的奇异美。另外,四元数理论、突变理论、非欧几何等等无不显示出数学的奇异美。
神秘的东西都带有某种奇异的色彩,使人产生幻想和揭示其奥妙的欲望。某些数学对象的本质在没有充分暴露之前,往往会使人产生神秘或不可思议感。这便是数学的奇异之美。
还有一个是知识的奇异美。它值所得的结果的新颖奇特,出人意料。七巧板拼图是小学数学课常采用的内容。用七块板可以拼成一个最简单的正方形,也可以拼出千变万化的复杂图案:如人形、鸟兽、花草、房屋等。通过七巧板拼图练习,学生感到图案之多,出人意料;图形之美,妙趣横生。
有趣的数学知识,不仅能让学生感受到不同的美,而且利用数学的奇妙还能装扮人们的生活。比如:搞服装设计,如果拥有黄金分割的知识,就会感觉自己的设计很舒服。数学知识的奇异美体现在生活的各个方面。
(三)方法美
数学同其他各门科学一样,在其发展的进程中,形成了一套有效的思想方法,而且还在不断地产生新的思想方法。可以说,数学思想方法是数学的灵魂。历史表明,一个重大数学成果的取得,往往与数学思想方法的突破分不开。历史表明,数学的发展,不仅表现为量的积累,而且还表现为质的飞跃。数学思想方法在历史上经历了五次重大转折:从算数到代数,从常量数学到变量数学,从必然数学到或然数学,从明晰数学到模糊数学,从小数据到大数据。举几个关于方法美的例子:自然数的个数是无限的:1、2、3、4、„„奇数的个数是无限的1、3、5„„人们采用“一一对应’的数学方法:神奇地发现自然数列与奇数列还有如下关系:1、2、3、4、„„把一个圆形,分割成8份、16份、32份,相等的近似的三角形拼摆后,圆形神奇地转化成近似的长方形,所分的份数越多,所拼得图形越接近于长方形。曲与直的这种转化,在生活中可以找到它的活生生的典型”砌墙用的一块块方砖面是长方形,可以砌成横断面是圆形的烟囱;把用方砖砌成的横断面是圆形的烟囱拆开,又可以得到一块块的面是长方形的方砖。
参考文献:
(1)《大学文科数学》(2)《数学之美 》