第一篇:生物药物分析与检测学习小结(免疫放射分析RIA)
指导老师:…………
生物工程09-2班
学号:
姓名:
《生物药物分析与检验》学习小结
生物药物分析与检测学习小结
—关于放射免疫分析法(RIA)
随着在生物制药领域发挥重要作用的生物技术的研究与应用日趋成熟,生物制药也迎来了极好的发展机遇,在医药产业中将发挥越来越重要的作用。作为生物工程专业的学生,学习这门课程不仅有利于我们进一步加深对生物工程专业课的学习,也有利于我们独立分析解决实际问题的能力的提升。
学习这门课程,我对免疫分析法尤为感兴趣。免疫分析法是以特异性抗原-抗体反映为基础的分析方法。在药物分析中,免疫分析法主要应用于在以下几方面:(1)在实验药物动力学和临床药物学中测定生物利用度和药物代谢动力学参数等生物药剂学中的重要数据,以便了解药物在体内的吸收、分解、代谢和排泄情况;(2)在药物的临床检测中,对治疗指数小、超过安全剂量易发生严重不良反应或最佳治疗浓度和毒性反应浓度有交叉的药物血液浓度进行监测;(3)在药物生产中从发酵液或细胞培养液中快速测定有效组分的含量,以实现对生产过程的在线监测;(4)对药品中是否存在特定的微量有害杂质进行评价。
其中放射免疫分析法是最早建立的经典免疫分析方法。尽管由于其需要严格的废物处理手续和特殊的实验室,曾很早就被认为会从市场上消失,但目前仍被广泛应用,且在相当长时间内仍将保留。它的基本原理是使放射性标记抗原和未标记抗原(待测物)与不足量的特异性抗体竞争性地结合,反应后分离并测量放
射性而求得未标记抗原的量。由于放射性同位素核衰变是,所放射出的各种射线都很容易用仪器探测出来,并且灵敏度很高,因此在放射免疫测定中,主要就用这些同位素作示踪原子。
目前,放射免疫分析中常用的标记物采用最多的是
5I标记物和氚标记物,最成熟且采用最多的是氯胺T法,主要则是用于对蛋白质、多肽激素和含碘氨基酸的标记。
分离结合或游离的放射性物质,进而进行测定时放射免疫分析的关键,目前采用的分离方法有以下几种:固相法、微孔滤膜法、抗抗体法、吸附法、柱层析法和电泳法。这些方法也都有各自的优缺点。例如柱层析法和电泳法,分离效果虽然很好,但是操作复杂,且费时,不适合大量样品的检测。
总的来说放射免疫分析法虽然也用放射性物质,但一般都是在测试样品时再加入标记的同位素示踪物,此示踪物的放射性强度极低一般不会对实验者引起辐射损伤。缺点在于有时会出现交叉反应、假阳性反应,组织样品处理不够迅速,不能够灭活降解酶和盐及PH有时会影响结果等。
展望未来,在此法在原有的基础上近年来又发展了其他免疫分析法,用其他特有性质的物质代替放射性同位素来标记抗原,同样利用标记与未标记抗原与抗体的竞争性结合然后用适宜方法测定。其中研究较多的是荧光免疫分析,采用荧光化合物标记抗原,结合分离后通过荧光值的测定进行定量分析。
第二篇:生物药物分析与检验知识分析
生物药物分析与检验知识分析
摘 要:本次课程主要讲生物药物分析与检验常用的方法,杂质与安全检查,氨基酸、多肽和蛋白质类药物的分析与检验,酶类药物的分析与检验,脂类药物的分析与检验,核酸类药物的分析与检验,糖类药物的分析与检验,基因工程药物质量控制,生物药物的现代分析方法与检验技术。
关键词:发展前景分析检验方法安全应用
生物药物分析与检验在将来相当长的时间内也仍是研究开发的主要方面,但随着现代生物技术的研究与应用日趋成熟,生物技术制药领域将发挥越来越重要的作用。其发展趋势主要表现在:⑴应用基因工程技术,制取天然来源少和过去难以获得的生物活性物质;⑵应用蛋白质工程技术研制新型蛋白质类药物;⑶大分子物质活性片段的制取和化学修饰;⑷发展大分子药物的新剂型。
生物药物分析与检验的基本任务和作用是:使学生掌握生物药物分析与检验的基本理论知识和生物药物基本分析检验方法,培养学生重视生物药物质量的观念,从而不断提高分析问题和解决问题的能力。
它的内容主要包括生物药物分析与检验常用的方法,杂质与安全检查,氨基酸、多肽和蛋白质类药物的分析与检验,酶类药物的分析与检验,脂类药物的分析与检验,核酸类药物的分析与检验,糖类药物的分析与检验,基因工程药物质量控制,生物药物的现代分析方法与检验技术。
生物药物广泛用作医疗用品,特别是在传染病的预防和某些疑难杂症的诊断和治疗上起着其他药物所不能代替的独特作用。随着预防医学和保健医学的发展,生物药物正日益渗入到人民生活的各个领域,大大扩展了其应用范围。(1)、治疗药物 肿瘤、爱滋病、心脑血管疾病等。(2)、预防药物传染性强的疾病,疫苗、菌苗、类毒素。(3)、诊断药物 速度快、灵敏度高、特异性强。免疫诊断、酶诊断、放射性诊断、基因诊断试剂。(4)、其它 生化试剂、保健品、化妆品、食品、医用材料。
生物药物是指利用生物体、生物组织或器官等成分,综合运用生物学、生物化学等学科的原理与方法制得的天然生物活性物质以及人工合成或半合成的天然物质类似物。主要包括生化药物、生物技术药物和生物制品等。生物药物分析”主要包括对生物药物进行分析的理论和实验技术。而生物药物是指利用生物体、生物组织或器官等成分,综合运用生物学、生物化学等学科的原理与方法制得的天然生物活性物质以及人工合成或半合成的天然物质类似物。主要包括生化药物、生物技术药物和生物制品等。
药物分析工作的基本程序:(1)、样品审查。(2)、取样。(3)、鉴别。(4)、检查。(5)、含量测定。(6)、记录。(7)、检验报告。
酶分析法是一种生物药物分析方法。酶分析法在生物药物分析中的应用主要有两个方面:第一,以酶为分析对象,根据需要对生物药物生产过程中所使用的酶和生物药物样品所含的酶进行酶的含量或酶活力的测定,称为酶分析法;第二,利用酶的特点,以酶作为分析工具或分析试剂,用于测定生物药物样品中用一般化学方法难于俭测的物质,如底物、辅酶、抑制剂和激动剂(活化剂)或辅助因子含量的方法称为酶法分析。
优势:酶是一种专一性强、催化效率高的生物催化剂。酶法分析具有特异性强,干扰少,操作简便,样品和试剂用量少,测定快速精确,灵敏度高等特点
免疫分析法:免疫分析法利用抗原抗体特异性结合反应检测各种物质(药物、激
素、蛋白质、微生物等)的分析方法。
应用:在药物分析中,免疫分析法的应用主要集中在以下几方面:(1)在实验药物动力学和临床药物学中测定生物利用度和药物代谢动力学参数等生物药剂学中的重要数据,以便了解药物在体内的吸收、分解、代谢和排泄情况;(2)在药物的临床检测中,对治疗指数小、超过安全剂量易发生严重不良反应或最佳治疗浓度和毒性反应浓度有交叉的药物血液浓度进行监测;(3)在药物生产中从发酵液或细胞培养液中快速测定有效组分的含量,以实现对生产过程的在线监测;(4)对药品中是否存在特定的微量有害杂质进行评价。高效液相色谱:以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。
生物检定法:利用某些生物对某些物质(如维生素、氨基酸)的特殊需要,或对某些物质(如激素、植物激素、抗生素、药物等)的特殊反应来定性、定量测定这些物质的方法
生物测定今后的方向是:发展更敏感的短期实验方法和能测定综合因素的方法,并选择适当的方法组成系列检测系统;研究其他生物试验得到的数据如何推演到人;研究外界物质进入机体后如何代谢,进入细胞后起什么作用,如何影响遗传物质,化学结构与毒性有什么关系;探索“三致”的机理等,以为人类战胜癌症、遗传性疾病和衰老提供科学依据。
杂质是指药物中存在的无治疗作用或影响药物的稳定性和疗效,甚至对人健康有害的物质。一般杂质及其检查方法:
(一)、氯化物检查法。
(二)、硫酸盐检查法。
(三)、铁盐检查法。
(四)、重金属检查法。
(五)、其他检查法
氨基酸,多肽,蛋白质和酶类药品检验:氨基酸类药品检验:酸碱滴定法,非水溶液滴定法,定氮法,碘量法或溴量法等。多肽类药品检验:酸碱滴定法,紫外分光光度法,效价测定法。
基因工程药物检测:基因工程药物的质量控制主要包括以下几项要求:产品的鉴别、纯度、活性、安全性、稳定性和一致性。常用的鉴定方法:电泳方法: SDS-PAGE、等电聚焦、免疫电泳;免疫学方法: 放射免疫(RIA)、酶联免疫(ELISA)
参考文献
[1] 白文玲;毛细管电泳化学发光联用技术在药物分析中的应用[D].广西师范大学 200
[2]徐景峰.药物分析教学改革的思考与实践[J].常州工程职业技术学院学报,2008,2(56):12-14.[3] 徒永华;基于核酸适配体的纳米荧光生物传感器对蛋白质的研究[D].华东师范大学 2006
[4]陈新谦,金有豫,汤光.新编药物学[M].第15版.北京:人民卫生出版社,2003.45.[5]张永信.哪些情况可预防性应用抗菌药[J].中级医刊,1994,29(3):60.
第三篇:生物药剂学与药物动力学名词解释
生物药剂学:是研究药物及其剂型在体内的吸收、分布、代谢与排泄的过程,阐明药物的剂型因素、机体的生物因素与药物效应三者之间相互关系的学科。
药物跨膜转运:药物通过生物膜(或细胞膜)的现象。
被动扩散:存在于膜两侧的药物服从浓度梯度,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散和膜孔转运两种形式。
膜孔转运:在胃肠道上皮细胞膜上有0.4-0.8nm大小的微孔,这些贯穿细胞膜且充满水的微孔是水溶性小分子药物的吸收途径。
易化扩散:某些物质在细胞膜载体的帮助下,由膜高浓度侧向低浓度侧扩散的过程。主动转运:借助载体或酶促系统的作用,药物从较低浓度向高浓度侧的转运。胃排空:胃内容物从胃幽门排入十二指肠的过程称为胃排空。吸收:物质通过细胞膜或其它膜状物而到达细胞内部的过程。药物分布:药物在血液和组织之间的转运过程。表观分布容积V:用来描述药物在体内分布状况的重要参数,是将血浆中的药物浓度与体内药量联系起来的比例常数。
蓄积:当长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高的趋势。
血药蛋白结合:进入血液的药物,一部分在血液中呈非结合的游离状态存在,一部分与血浆蛋白结合成结合型药物,暂时失去活性,“储存”于血液中,不能向组织器官内转运。
血脑屏障:脑毛细血管阻止某些物质由血液进入脑组织的结构。
前体药物:有一些药物本身没有药理活性,在体内经过代谢后产生有活性的代谢产物。药物代谢:药物被机体吸收后,在体内各种酶以及体液环境作用下,可发生一系列化学反应,导致药物化学结构上的转变。
酶诱导作用:药物代谢被酶促进的现象。酶抑制作用:药物代谢被酶减慢的现象。
首过效应:吸收过程中,药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。
第一相反应:包括氧化、还原和水解三种,通常是脂溶性药物通过反应生成极性基团。第二相反应:即结合反应,通常是药物或第一相反应生成的代谢产物结构中的极性基团,与体内内源性物质反应生成结合物。
肝肠循环:由肝脏排泄的药物,随胆汁进入肠道再吸收而重新经肝脏进入全身循环的过程。双峰现象:某些药物因肝肠循环可出现第二个血药浓度高峰,称为双峰现象。药物排泄:吸收进入体内的药物以及代谢产物,从体内排出体外的过程。药物动力学:应用动力学原理与数学处理方法,研究药物通过各种途径给药后在体内的吸收、分布、代谢、排泄过程的量变规律的学科,致力于用数学表达式阐明不同部位药物浓度与时间之间的关系。
隔室模型:将整个集体按动力学特性划分为若干个独立的隔室,把这些隔室串联起来构成一种足以反映药物动力学特征的模型,称为隔室模型。
生物半衰期:药物在体内的药物量或血药浓度通过各种途径消除一半所需要的时间。清除率:整个机体或机体内某些消除器官组织在单位时间内能清除掉相当于多少体积的流经血液中的药物,即单位时间内从体内消除的药物表观分布容积。
波动度:稳态最大血药浓度与稳态最小血药浓度之差与平均稳态血药浓度的比值。生物等效性:一种药物的不同制剂在相同实验条件下,给予相同的剂量,其吸收速度与程度没有明显差别。
第四篇:生物药剂学与药物动力学名词解释(推荐)
《生物药剂学与药物动力学》名词解释大全
① 生物药剂学:是研究药物极其剂型在体内的吸收,分布,代谢与排泄的过程,阐明药物的剂型因素,机体生物因素和药效之间相互的科学。
② 治疗药物监测(TDM)又称临床药动学监测,是在药动学原理的指导下,应用灵敏快速分析技术,测定血液中或其他体液中药物的浓度,分析药物浓度与疗效及毒性间的关系,进而设计或调整给药方案。临床意义:1.使给药方案个体化,2.诊断和处理药物过量中毒3.进行临床药动学和药效学的研究4.探讨新药给药方案5.节省患者治疗时间,提高治疗成功率6.降低治疗费用7.避免法律纠纷。
③ 分布(distribution):药物进入循环后向各组织、器官或者体液转运的过程。④ 代谢(metabolism):药物在吸收过程或进入人体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。又叫生物转化。
⑤ 吸收:是药物从用药部位进入人体循环的过程。⑥ 排泄(excretion):药物或其代谢产物排出体外的过程。⑦ 转运(transport):药物的吸收、分布和排泄过程统称转运。⑧ 处置(disposition):分布、代谢和排泄的过程。⑨ 清除(elimination):代谢与排泄过程药物被清除,合称为清除。
⑩ BCS: 是依据药物的渗透性和溶解度,将药物分成四大类,并可根据这两个特征参数预测药物在体内-体外的相关性。表观分布容积(apparent volume of distribution):是体内药量与血药浓度相互关系的一个比例常数,它可以设想为体内的药物按血浆浓度分布时,所需要体液的理论容积。Dn::溶出数。Do:计量数。An:吸收数 清除率:是单位时间内从体内消除的含血浆体积或单位时间丛体内消除的药物表观分布容积。13 体内总清除率:是指机体在单位时间内能清除掉多少体积的相当于流经血液的药物。14 生物利用度(Bioacailability,BA):是指剂型中的药物被吸收进入体循环的速度和程度。是评价药物有效性的指标。通常用药时曲线下浓度、达峰时间、峰值血药浓度来表示。(它的吸收程度用AUC表示,而且吸收速度是以用药后到达最高血药浓度的时间即达峰时间来表示。)评价指标AUC,Tmax,Cmax。绝对生物利用度(absolute bioavailability,Fabs):是药物吸收进入体循环的量与给药剂量的比值,是以静脉给药制剂为参比制剂获得的药物吸收进入体循环的相对量。相对生物利用度(relative bioavailability,Frel):又称比较生物利用度,是以其他非静脉途径给药的制剂为参比制剂获得的药物吸收进入体循环的相对量,是同一种药物不同制剂之间比较吸收程度与速度而得到的生物利用度。生物等效性(Bioequivalence,BE):是指一种药物的不同制剂在相同试验条件下,给以相同剂量,反映其吸收程度和速度的主要药物动力学参数无统计学差异。药学等效性(Pharmaceutical equivalence):如果两制剂含等量的相同活性成分,具有相同的剂型,符合同样的或可比较的质量标准,则可以认为它们是药学等效性。首关效应:药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。药代动力学:应用动力学原理和数学模型,定量的描述药物的吸收、分布、代谢、排泄过程随时间变化的动态规律,研究体内药物的存在位置、数量与时间之间的关系的一门科学。速率常数:是描述速度过程重要的动力学参数。速率常数越大,该过程进行也越快。单位为min-1或h-1。生物半衰期:是指药物在体内的药物量或血药浓度通过各种途径消除一半所需要的时间,用t1/2表示。特点:一级速率过程的消除半衰期与剂量无关,而消除速率常数成反比因而半衰期为常数。滞后时间:有些口服制剂,服用后往往要经过一段时间才能吸收,滞后时间是指给药开始只血液中开始出现药物的那段时间。Css(稳态血药浓度/坪浓度):指药物进入体内的速率等于体内消除的速率时的血药浓度。25 达坪分数fss(n):是指n次给药后的血药浓度Cn与坪浓度Css相比,相当于Css的分数。26平均稳态血药浓度:当血药浓度达到平衡后,在一个剂量间隔时间内,血药浓度-时间曲线下的面积除以间隔时间所得的商。MRT:药物在体内平均滞留时间。蓄积:是长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高的趋势,这种现象称为蓄积。肠肝循环:有些药物可有小肠上皮细胞吸收,有些在肝代谢为与葡萄糖醛酸结合的代谢产物,在肠道被菌丛水解成固体药物而被重吸收,这些直接或间接在小肠肝脏血循环 肾清除率:指肾脏在单位时间内能将多少容与血浆中所含的某物质完全清楚出去,这个被完全清除了某物质的血浆容积就称为该物的血浆清除率。用CLr表示。
药物代谢动力学:是应用动力学原理与数学模型,定量的描述药物的吸收、分步、代谢和排泄的过程随时间变化动态规律的一门学科 即研究体内药物的存在位置、数量与时间之间的关系
单室模型:假设机体给药后,药物立即在全身各部位达到动态平衡,这时把整个机体视为一个房室,称为一室模型或单室模型,单室模型并不意味着所有身体各组织在任何时刻药物浓度都一样,蛋要求机体各组织药物水平能随血浆浓度变化而变化。
隔室模型:时将身体视为一个系统,系统内部按动力学特点,分为若干室,只要体内某些部位接受药物及消除药物速率相似,都可归纳为一个房室。3二室模型:从速度论的观点将机体划分为药物分布均匀程度不同的两个独立系统。一般将血流丰富及药物能瞬时达到分不平衡的部分如心肝脾肺肾,划分为一个隔室,成为中央室,降血流相对供应少,药物分布达到血液平衡较长时间的部分划分为周边室。
群体药物动力学:PPK 即药物动力学的群体分析法,是将经典药物动力学基本原理和统计方法结合,研究药物体内过程的群体规律的药物动力学分支学科。
负荷剂量:静滴之初,血药浓度和稳态浓度相差很大,因此在滴注开始需要静注一个负荷剂量使血药浓度迅速接近Css,然后以静滴维持该浓度。
膜转运:物质通过生物膜的现象。
细胞通道转运:药物借助脂溶性或膜内蛋白的载体作用,穿过细胞而被吸收的过程。38 细胞旁路通道转运:是指一些小分子物质经过细胞间连接处的微孔进入体循环的过 程。39 被动转运:是指存在与膜两侧的药物顺浓度梯度,即高浓度一侧向低浓度一侧扩算的过程。40 单纯转运;是指药物的跨膜转运受膜两侧浓度差限 制过程。
载体媒介转运:借助生物膜上的载体蛋白作用,使药物透过生物膜而被吸收的过程。
促进扩散:是指某些药物在细胞膜载体的帮助下,由膜高浓度 一侧向低浓度一侧的转运。43 主动转运:借助载体或酶促系统的作用,药物从膜低浓度侧向高浓度的转运。
膜动转运:是指通过细胞膜的主动变形将药物摄入 细胞内或从细胞内释放到细胞外的转运过程。
胃排空:胃内容物胃幽门排入十二指肠的过程。
溶出速度:是指在一定溶出条件下,单位时间溶解度量。47 临街颗粒:是指不影响药物吸收的最大粒径。
多晶型:化学结构相同的药物,由于结晶条件不同,可得到数种晶格排列不同非晶型,这种现象称为多晶型。
溶剂化物:药物含有溶媒而构成的结晶。
崩解:系指固体制剂在检查时限内全部崩解或溶解成碎粒的过程
溶出度:是指在规定溶出介质中,药物从片剂或 胶囊剂等固体制剂溶出的速度和程度。52 溶液型药物:是以分子或离子状态分散在介质中,所以口服溶液剂的吸收是口服剂型最快,且较完全的,生物利用度高。53 包合作用:将药物分子包钳与另一种物质分子的空穴结构内的制剂技术 54 压片:是在压力下把颗粒状或粉末状药物压实的过程。
高渗透药物:是指在没有 证据说明药物在肠道不稳定的情况下,有90%以上的药物被吸收。56 吸收数:是预测口服药物吸收的基本变量,是反映药物在胃肠道渗透高低的函数与药物的有 效渗透率,肠道半径和药物在肠道内滞留时间有关。
剂量数:是反映药物溶解性与口服吸收关系的参数,是药物溶解性能的函数。
快速释药制剂:指相对与缓释制剂的普通制剂,另一种是采用特殊的辅料和方法制备出的比普通制剂释出速率还要快的制剂。
缓控释制剂:是通过延缓或控制药物的释放来控制药物的吸收药物能在较长时间内时间内持续释放药物以达到长效作用。
组织流动室法技术:是通过化合物透过未损肠组织的实验来模拟药物体内的吸收。
外翻肠囊法:时将动物的一定长度的小肠置于特殊的装置中通过测试药物透过肠粘膜的速度和程度,定量描述药物透黏膜性的方法。
外翻环法:为一种研究肠道组织摄取药物能力的方法。
淋巴:是静脉循环系统的辅助组成部分,主要由淋:是静脉循环系统的辅助组成部分,主要由淋巴管。淋巴器官。淋巴液和淋巴组织组成。
内吞:是指微生物被内状内皮系统细胞,特别是单核巨噬细胞作为外来异物吞噬进入细胞内,并迅速被溶酶体消化裂解释放药物。
吸附;是指微粒吸附在细胞表面是微粒和 细胞相互作用的开始。
融合:是由于纸质体膜中的凝脂和细胞膜的组成成分相似而产生完全缓和作用。67 膜间转运:是指微粒和相邻的细胞膜间的脂质成分发生相互交换作用。
接触释放:是膜间作用的另一种形式,主要是由于微粒和细胞接触后,微粒中的药物释放并想细胞内转运。
阿霉素;是一个有效的化疗药物,但由于对心脏的毒性较大,常常使用受到限制。70 细胞色素p450:是微粒体重催化药物代谢的活性成分,由一系列同功酶组成。
首过效应:这种在吸收过程中,药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量的减少现象。
结合反应:通常是药物成第一相反应生成的代谢产物结构中的极性基因与机体内源性物质反应生成结合物的结构。
酶抑制作用:通常药物代谢被减慢的现象,能使代谢加快的物质叫做酶诱导剂。74 体外法:是利用离体生物组织样品如肝脏直接分析其药物代谢能力。
前提药物:是指将活性药物衍生化成药理惰性物质,但该惰性物质在体内经化学反应或酶反应后,能够恢复到原来的固体药物,在发挥治疗作用。
肾小管分泌:时将药物转运至尿中排泄,是主动转运。
药物动力学:是应用动力学原理与数学处理方法,定量地描述药物通过各种途径进入体内的吸收,分布,代谢,排泄过程的“量时”变化或“血药浓度经时”变化动态规律的一门科学。
一级速度过程是指药物在体内某部位的转运速率与该部位的药物量成血药浓度的一次方成正比。
极性速度过程;当药物的半衰期与剂量无关,血药浓度一时间曲线下面积与剂量成正比时,其速度过程被称为零级速率常数。
零级速率常数:是指药物的转运速率在任何时间都是恒定的,与药物量或浓度无差。81 速度常数:是描述速度过程重要的动力学参数。
稳态血药浓度:临床用药若以一定的时间间隔,以相同的剂量多次给药,在给药过程中血药浓度可逐次叠加,直至血药浓度维持在一定水平或在一定水平内上下波动,该范围即称为稳态浓度,它有一个峰值(稳态时最大血药浓度),有一个谷值(稳态时最小血药浓度)。
表观分布容积:是血药浓度与体内药物间的一个比值,意指体内药物按血浆中同样浓度分布时所需的液体总容积,并不代表具体生理空间。反映药物分布的广泛程度或药物与组织成分的结合程度。
残数法:是药物动力学中把一条曲线分段分解成若干指数函数的一种常用方法。
滞后时间:是指给药开始致血药中开始出现药物的那段时间。组织隔室:浅外室为血流灌注较差的组织和器官。
达坪分数:是指n次给药后的血药浓度与坪浓度相比,相当于坪浓度的分数。
平稳血药浓度:当血药浓度到达到稳态后。在一个计量间隔时间内血药浓度-时间曲线下面积处以间隔时间t所得的商。
量积系数:系指稳态血药浓度与第一次给药后的血药浓度的比例值,以r表示,也是一个很有价值的表示药物在体内蓄积程度。
波动百分数:系指稳态最大血药浓度与稳态最小血药浓度之差与稳态最大血药浓度值的百分数。
波动度:系指稳态最大血药浓度与稳态最小血药浓度之差与平稳血药浓度的比值。
血药浓度变化率:系指稳态最大血药浓度与稳态最小血药浓差与稳态最小血药浓度比值的百分数。
非线性药物动力学:有些药物的吸收,分布和体内消除过程,并不符合线性药物动力学特征,这种药物动力学称为非线性药物动力学。
米曼常数:是指药物在体内的消除速率为一半时所对应的血药浓度。
维持性剂量:是药物吸收进入体循环的量与给药剂量的比值,给药制剂为参比制剂获得的药物吸收进入体循环的相对量。
群体:是根据研究目的所确定定的研究对象的全体,大量的研究表明在一个患者群体内药动学参数存在很大变异体。
肝首过效应:药物进入体循环前的降解或失活。
血药浓度时间曲线下面积(AUC)是指血药浓度数据(纵坐标)对时间(横坐标)作图,所得曲线下面积。AUC与吸收后体循环的药量成正比,反映进入体循环药物的相对量。
第五篇:生物药剂学与药物动力学重点
一、名词解释
1分布、代谢与排泄过程,阐明药物的剂型因素、机体生物因素和药物疗效三者之间相互关系的学科。
2用来描述药物在体内分布的状况,将血液中药物浓度与体内药量联系起来的比例常数,它是指假设在药物充分分布的前提下,体内全部药物按血中同样浓度溶解时所需的体液总容积。单位为L或L/kg.3肝肠循环:是指经胆汁中排入肠道的药物或其代谢物,在肠道移动期间重新被吸收,经门静脉又返回肝脏的现象。
4药物代谢:药物被机体吸收后,在体内各种酶及体液环境作用下,其化学机构可发生改变,这一过程即为药物代谢,又称生物转化。
5负荷剂量:为尽快达到有效治疗浓度,之后再按给药周期给予维持剂量,使血药浓度维持恒定,这个首次给予的较大剂量,称为负荷剂量
6生物等效性:是指一种药物的不同制剂在相同实验条件下,给以相同剂量,反应其吸收程度和速度的主要药物动力学参数无统计学差异。
7半衰期:是指药物在体内的药物量或血药浓度通过各种途径消除一半所需要的时间。8单室模型:某些药物进入全身循环后迅速向全身各部位分布,并在血液、组织与液体之间达到分布动态平衡,即动力学上的“均一状态”。这种将整个机体视为一个隔室而建立的药动学模型称为单室模型。
二、简答
1、生物利用度研究方法
(1)血药浓度法(最常用)(2)尿药浓度法(3)药理效应法
2、药物转运机理
(1)被动转运(单纯扩散、膜孔转运)(2)载体媒介转运(促进扩散、主动转运)(3)膜动转运(胞饮与吞噬、胞吐)
3、新药药物动力学实验取样时间点安排时间点确定要求?
取样点的设计应兼顾吸收相、分布相和消除相。根据研究样品的特性,取样点通常可安排9-13个点,一般在吸收相至少需要2-3个采样点,对于吸收快的血管外给药的药物,应尽量避免第一个点是Cmax;在Cmax附近至少需要3个采样点;消除相需要4-6个采样点。整个采样时间至少应持续到药物的3-5个半衰期,或持续到血药浓度为Cmax的1/20-1/10.4、药物代谢与疗效关系
(1)代谢使药物失去活性(2)代谢使药物活性降低(3)代谢使药物活性增强(4)代谢使药理作用激活(5)代谢产生毒性代谢物
5、当药物的血浆蛋白结合率(β)高时,解释为什么患者患有肝硬化时,游离药物浓度上升,而总血浆药物浓度下降
血浆蛋白结合率与血浆蛋白量、游离型药物量有关。肝硬化患者由于体内蛋白质总浓度降低,会导致药物蛋白结合率β降低,使蛋白质结合很快出现饱和现象,随剂量的增加使游离型药物浓度急剧上升,出现中毒现象,而总血浆药物浓度下降。
6眼部吸收,混悬剂为什么生物利用度高
混悬型滴眼剂中的药物微粒在结膜囊内能不断的提供药物投入角膜,因而能够产生较高的药物浓度。混悬液中的粒子大小是影响药物吸收的重要因素,粒度过大可引起眼部刺激和流泪,药物易于流失。眼膏和膜剂接触时间都比水溶液长,因而有利于吸收,作用时间也延长。