小学生考奥数、上兴趣班,真的有用吗?(xiexiebang推荐)

时间:2019-05-12 08:29:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学生考奥数、上兴趣班,真的有用吗?(xiexiebang推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学生考奥数、上兴趣班,真的有用吗?(xiexiebang推荐)》。

第一篇:小学生考奥数、上兴趣班,真的有用吗?(xiexiebang推荐)

小学生考奥数、上兴趣班,真的有用吗?

近年来,为了孩子的教育,许多家庭举家上下陷入焦虑。

不要让孩子输在起跑线上!在这个口号的驱使下,家长们纷纷逼着自己的娃去学奥数、练乐器、上补习班……

这个思路与军备竞赛如出一辙:别人家拥有某种装备,咱就必须拥有更好的武器。有没有用不知道,先弄到手再说。

这场轰轰烈烈的“军备竞赛”,正在严重破坏孩子们的童年,而且并没有什么实际效用。

看到许多父母不顾孩子哭嚎抗议、非得“赶鸭子上架”,笔者感觉非常不妙:这分明就是当年苏联被美国“星球大战”计划给拐到沟里的架势。教育革命即将到来,你准备好了吗?

首先,我们应该弄清楚现在的教育制度是怎么来的。

1806年,在耶拿战役中,普鲁士军队被拿破仑统帅的法军彻底击败,普鲁士被迫割地赔款,以极不光彩的方式结束了战争。

洪堡觉得,普鲁士无法在短期内通过军事手段击败法国,要救国得把眼光放长远,提高国民素质、发展经济。

于是,他为普鲁士建立了一套新的教育制度:小学、中学和大学在时间上相互衔接,教育目标各有侧重,主要目的是满足早期工业化的人才需求。

在这个制度下:受教育者走完一遍升学的流程,再加上工作岗位上的一些培训,获得的劳动技能和知识储备差不多够吃上一辈子。

从早期工业化到20世纪中期,人类社会知识更新的速度还不算特别快,这套教育制度能够大致满足发展需求。

然而,从20世纪后期开始,后工业化社会就这样到来了——发达经济体进入了一个科技大发展、知识大爆炸的时代,中国被卷入这场洪流之中。

如今,各个行业的知识都在以极高的速度迭代,传统的“一次性教育”难以满足产业需求,基础教育和高等教育的内容都面临着巨变,在工作环境中保持终身学习状态已是大势所趋。

注:CRISPR定向基因编辑技术是2013年生物科学最为重大的技术突破,短短4年后的今天,随便找个靠谱的研究生都能在实验室里操作该技术——“前沿技术”竟然已成“家常便饭”。再比如,计算机编程的语言,差不多3、4年就要换一代,5年前的老技术方案早已被淘汰。

后工业化社会的迅速发展正在倒逼一场教育革命。许多教育工作者并没有意识到这一点:现有基础教育的形式和内容都已不能满足未来社会的需要。

许多中国父母给孩子从小施加的“强化教育”并不可取,打个通俗的比方:高铁构建的高速交通网络即将成型,逼着自家的马儿玩命拉车又有什么意义呢?“军备竞赛”思路已经过时

我们必须看到,很多家长强迫孩子去学的东西,在未来社会中并不重要。

症状之一:盲目的“奥数”崇拜

这种拔苗助长的做法并不会带来明显收益。

首先,“奥数”不涉及高等数学知识,也就是说,“奥数”涉及的多数内容都会在初高中期间正常传授,学习“奥数”并不会使人在18岁之前积累更多数学知识。

其次,“奥数”灌输的初等数学知识缺乏系统性,顶多让学生了解一些低级算法,却没有接触到真正有用的数学概念和逻辑推理能力。

货真价实的高等数学分为两个方向:

一个是数学和物理专业所需要的数学分析方向,强调严密的逻辑推理;另一个是工科专业所需要的应用数学方向,强调数学建模和算法的有效性。

所谓“奥数”与上述两个方向均无任何衔接关系,学习“奥数”并不意味着能够使孩子更好地掌握高等数学。并且,“奥数”没有任何真正意义上的数学思想。真要想学好数学,其实读一些有关数学思想史的科普读物是更好的选择。

笔者认识许多中国顶级大学的理工科毕业生,没一个将自己的数学水平归功于“奥数”的。

某些小学和初中故弄玄虚,强调“奥数”何等重要,使得许多家长和学生趋之若鹜地给辅导机构送钱。

说得直白一些,在某种程度上,“奥数”的本质是一条利益链。

美国学校对于数学教育的态度相对理性,所以压根不搞什么“奥数”竞赛。真正对数学感兴趣,而且学有余力的美国学生,会在高中阶段选修Advanced Placement(简称“AP课程”)。

数学AP课程的难度与大学初等课程相当,能让学生比较系统地掌握高等数学的基础知识,从而更好地衔接大学阶段的学习。

症状之二:功利心大于兴趣的艺术课

除了我们在“奥数”上做的无用功之外,强迫孩子去学习音乐、舞蹈等艺术课程,收益也趋近于无穷小。

请注意,我并不是说音乐、舞蹈等艺术无用,而是强调“强迫”孩子学习这类课程无用。如爱因斯坦所说,兴趣是最好的老师。如果孩子确实对艺术有浓厚的兴趣,达到了每天自觉、自愿演奏几个小时乐器、跳几个小时舞的程度,增加一些相关投入未尝不可。

如果孩子没这个兴趣,需要家长“监工”才肯上路,那就真的算了吧。太多的家长,抱着功利主义的心态希望孩子们学门艺术当“手艺”,无一例外地以失败告终。

他们恐怕并不清楚,孩子们硬着头皮参加的业余考级的最高水平(如中国音协钢琴10级),与演奏级的专业表演水平尚有数量级的差距。也就是说,业余考级无论达到什么程度,都没法当“饭碗”来用。

学习艺术课程就应该抱着陶冶情操、“玩玩就好”的心态,何必将大把时间用于枯燥的、重复性的练功和考级?青少年时代的光阴是何等宝贵,逼着孩子在并不喜欢的事情上投入大量时间?

症状之三:片面追求成绩的“绝对值”

还有的家长生怕孩子的成绩不够“出类拔萃”,巴不得孩子每回都能考全班前3名、甚至第1名。为达此目的,他们逼着孩子去上各种补习班、剥夺了孩子所有的课余时间。

其实,平时追求成绩拔尖没多大意义。因为基础教育阶段所谓的“成绩好”,无非是对有限知识集合的熟练程度达到了较高水平。对基础知识的熟练程度自然不宜太低,否则意味着该学的东西没学到。

但是从经济学的视角来看,如果熟练程度已经很高,那么继续提高熟练程度的边际成本将递增、而边际收益会递减。说得通俗一些,把成绩保持在90分以上相对容易实现,但保持在96分以上却需要多花一倍甚至几倍的功夫。

由此推断,综合投入产出比最高的学习方案应该是这样的:

在基础教育阶段,平时保持比较靠前的学习成绩、与一流水平不产生数量级的差距即可;在升学之前的非常时期加大投入、踢好“临门一脚”,用临时提高的熟练程度做一次敲门砖足矣。

上述主张绝非鼓吹不思进取,而是鼓励孩子们把时间用在其他边际收益更高的地方,不要死读书、读死书。

从社会发展的趋势来看,无限提高对有限知识集合的熟练程度实在没多大意义,因为人工智能会很快消灭所有初级熟练工种。

例如,珠算和快速心算已经成为被淘汰的知识,智能手机上随便装个应用就可以进行复杂的科学计算,把三角函数的各种转化公式背得烂熟又有多大用?被忽视的重点:孩子到底应该学什么?

传统的基础教育并不强调自主学习的重要性,老师会把现成的知识体系像喂饭一样一勺勺喂给学生,升学考试之前还会带着学生们复习,一个知识点讲上五六遍。这种一板一眼传授现成知识体系的事情,几乎不可能出现在未来的工作环境中。

由于知识迭代极快,企业的发展又会不断产生新的需求,在未来,优秀人才的最重要标识就是快速自主学习能力和强大的社交能力。

这些重要能力恰恰被家长和教师们忽视了。

重点之一:搜集信息和判读情报

自主学习往往没有现成的教材,需要通过自主搜集信息才能获得学习资料。举个例子,王某不是法学专业出身,如果要他代表公司参加制订重要合同的商务谈判,就需要学习合同法。

从哪里才能找到合同法的相关知识呢?

王某稍微思考了一下,确定知乎、当当网、百度文库、家门口的市图书馆,都是容易找到的信息来源。

搜集到信息之后,接下来就要做情报判读了——因为信息量太大,已经超越了王某短时间内能够处理的通量,必须迅速判定哪些信息真正有用、并舍弃无用的信息。

很快,王某发现,知乎上的知识点比较碎,不利于在短时间内建立新的知识体系,所以不宜作为主要知识来源;

当当网有与合同法相关的简明教程,还有电子书版本,只有300页不到,三五天内看得完,于是果断入手;

百度文库上能找到些判例和案例讲解,对于理解具体知识有帮助,但内容的权威性略差,可以作为辅助情报来源;

市图书馆的相关图书过于陈旧,都是2010年以前出版的,不可能包括近年来出台的司法解释,所以该信息来源应果断舍弃。于是,王某通过情报判读确立了清晰的指导思想和学习目标,马上就可以开工。

重点之二:逻辑分析和提炼知识

学校提供的教材是现成的知识体系,拥有整齐的章节、清晰的逻辑,教师们甚至还会在考试前划出重点复习的内容,生怕学生们遗漏什么。

然而,自主学习的对象往往不是现成的知识体系,这意味着学习者要从复杂信息中梳理出简洁的情报,进一步总结成知识要点;接下来还需厘清知识要点之间的逻辑关系,将知识要点搭建成知识体系。

例如,如果你需要迅速了解一个你原先并不熟悉的行业,比较有效的方法是先找一些券商或市场研究机构的行业研究报告。通读这些研究报告之后,就会对这个行业的大致方向有所了解。接下来,应该搜集与这个行业相关的科学文献或新闻报道,对接研究报告所提供的信息。

这种“先搭骨架后添肉”的快速自主学习在实际工作中非常有用,但恰恰被基础教育忽略掉了。

所以,现实中经常出现这种现象:被中小学教师宠爱的某些“好学生”,参加工作之后表现平庸,甚至对一些重要的事情“一问三不知”,这便是逻辑分析和提炼知识的能力高度弱化导致的结果。

重点之三:健全和开放的知识体系

比较健全的知识体系是成功实现“现学现卖”的重要前提。

各种门类的知识有一定的关联性和延续性。例如,物理学其实是关于物质运动规律的数学表述,流体力学、量子力学都是用大量微积分公式堆出来的,要想理解物理学就必须有相应的数学基础。

因此,人能够通过自主学习获得什么新知识,很大程度上取决于头脑中现有的知识体系。

这有点像自主装配电脑“攒机”的过程:电脑主板其实是最重要的东西,主板上设臵了什么数据总线、有多少个扩展槽,决定了将来能够安装哪些额外的硬件来提升系统功能。倘若主板上连个扩展槽都没有,就算有现成的显卡、声卡也装不上去,整个系统也就没什么升级的空间了。

自主学习的过程是将新的知识与现有的知识进行对接。

现有的知识越多,为知识对接提供的“接口”也就越多,知识体系健全的重要性由此凸显出来——聪明的人容易变得更聪明。

后工业化社会发展的需求倒逼基础教育的革命,灌输有限知识集合的传统必定被淘汰,基础教育的目标应该是普及通识教育、帮助学生构建开放的知识体系,为他们日后的自主学习打下良好基础。

“少壮不努力,老大徒伤悲”这个规律不仅仍然适用,而且显得越发重要。从未来社会对人才的需求来看,人应该从小保持广泛的兴趣和好奇心,致力于尽早建立比较健全的知识体系,避免出现严重的知识盲区。

在知识体系比较健全的基础上,以后在工作中需要什么就学什么。“现学现卖”将是未来社会的常态,能够快速实现知识迭代的人才将占有极大优势。

重点之四:品行与社交能力

很多家长只关心孩子的学业,认为孩子可以在成长过程中自然而然地获得社交能力。这是一种完全错误的认识,社交能力是一种专门的技能,和物理学、化学、生物学知识一样,必须通过有针对性的学习才能获得。

人是社会性动物,倘若不具备良好的社交能力,将来如何在社会上获得各种各样的资源?

社交能力是由内而外的,一个人广结人脉的前提是品行让其他人感到愉快。然而很多人欠缺的恰恰是品行。很多年前,笔者曾就读于全省最好的重点中学,后来又有幸进入国内顶级高校。

在求学过程中,笔者遇到一些这样的人:他们成绩很好,作为“优等生”得到教师的溺爱,但让同学们极为反感——这些人平日里心胸狭窄、言语粗俗,常以取笑他人为乐;而且为人极其自私,整天琢磨怎么占同学的便宜,却从不给予同学任何帮助。

根据笔者观察,这些人在成长过程中,父母平时只在乎他们成绩如何、考上了什么学校,能不能把亲戚、邻居、同事的孩子比下去一头等,而对他们的品行和道德基本不闻不问。

父母的错误价值导向扭曲了他们的人格,而有的教师对“优等生”的溺爱客观上加重了这种错误。

这些人后来的发展趋势惊人地相似:凭借名牌高校学历,顺利获得了第一份工作,而后,很快遇到了职业生涯的“天花板”,连续多年没有起色,无一例外。

“在家靠父母,出门靠朋友”,人在社会上发展特别需要朋友们帮衬。单打独斗而无人帮衬提携,造就的必然是一个个极端个人主义的悲剧。一个人如果不具备起码的人品,则能力毫无意义。

成为“一个有道德的人,一个脱离了低级趣味的人,一个有益于人民的人”,远比小聪明、小才华更重要。

人生毕竟有限,时间无法重来。认真经营人生,意味着用有限的时间去做好最重要的事情。

什么才是对孩子真正重要的东西,家长们想明白了吗?

中国爸妈正在用“军备竞赛”思路毁掉下一代!当年苏联就是这么被美国拐到沟里的......转载自徐实《瞭望智库》

第二篇:三年级奥数兴趣班试题

三年级奥数兴趣班试题(3)

1,求出下面图形各表示几。

(1)□ + △=21□ + 15=28□ =()△=()(2)☆ - ◇=227-◇ =5

姓名:

6,牧场上有一群牛,羊和马在吃草,牧羊人告诉小明,牛和马共有160只,羊和马共有150只,牛和羊共有190只,请你帮小明算一算,牛,马,羊个多少只?

☆=()◇ =()2,10只兔子可换1只羊,3只羊可换1头猪,那么4头猪可换多少只兔子?

3,已知1个西瓜等于4个菠萝。一个菠萝

等于5个桃子。

(1)1个西瓜-1个菠萝=()个

桃子

(2)如果1个桃子重200克,则,1个西瓜=()克

1个菠萝=()克

4,一台电脑比一台电视贵2500元,买3

台电脑和2台电视共花了32500元,买

一台电脑和一台电视各花多少元?

5,小名去超市买了3枝圆珠笔和2本练习

本共花7元钱,小刚买了同样的2枝圆珠

笔和3本练习本共花8元钱,每只圆珠笔

多少元?每只练习本多少元?,甲,乙,丙,丁比身高,甲不是

最高的,但比丙,丁高,而丁比丙高,请把四个人按身高从高到低排列出来。

8,已知:□ + ○=96,○ =□ + □ + □ + □ + □

求:□ =()○=()

9,已知:鸡 + 鹅 + 鸭 = 8只

鸡 + 鹅 + 鸭 + 鸭 = 11只

鸡 + 鸡 + 鹅= 7只

求; 鸡 =()只

鹅 =()只

鸭 =()只

10,30只兔子可换3只羊,9只羊可换3头猪,6头猪可换2头牛,那么3头牛可换多少只兔子?

14,已知;钢笔 + 铅笔= 19只铅笔 + 圆珠笔= 1 7只钢笔 + 圆珠笔= 18只

铅笔 =()只 圆珠笔 =()只

求; 钢笔 =()只

11,5张桌子和2把椅子共花700元,5张桌子和2把椅子共花1100元,买一把椅子和一张桌子各花多少元?

12,张家,李家,王家用同样多的钱买了一些日常用品,张家买了4条毛巾,1个桶;李家买了6条毛巾和一个桶;王家买了8条毛巾和一个盆,毛巾每条1元,他们各带了多少元?

13,已知:4个香蕉 = 2个苹果,1个苹果 = 8个草莓

2个苹果 = 4个草莓 + 3块巧克力 问:1个苹果=()香蕉1根香蕉=()个草莓 1个苹果=()巧克力

15,1双鞋比1顶帽子贵17元,2顶帽子和3双鞋共花261元,买一

双鞋和1顶帽子各花多少元?

16,已知:桃子+杏子+李子=7个 桃子+2个李子+3个杏子 =17个 李子+杏子=6个

求:桃子=()杏子=()

李子=()

17,有三种水果,橘子和苹果共60千克,苹果和梨共100千克,橘子和梨共80千克,三种水果个多少千克?橘子,苹果,梨各多少千克?

第三篇:小学奥数兴趣班奥数教案

小学奥数兴趣班奥数教案

第一课时

教学目标:

1、掌握等差数列的定义,了解等差数列首项,末项和公差。

2、学会等差数列的简单求和。教学重难点: 重点:公式的简单应用 难点:公式的理解 教学过程:

一、引入:世界上有一名著名的数学家叫高斯,他在很小的时候,老师给同学们出了一道数学题,让大家计算:1+2+3+4+5„+99+100=?

高斯仔细观察后,很快就计算出了结果。你们能猜出他是怎么计算的吗?

高斯解题过程:1+100=2+99=3+98=„=49+52=50+51=101,共有100÷2=50(个)。于是

1+2+3+4+5„+99+100 =(1+100)×100÷2 =5050

在这里,出现了一列数据。我们定义:按一定次序排列的一串数叫做数列。一个数列,如果从第二项开始,每一项减去它紧前边的一项,所得的差都相等,就叫做等差数列。

等差数列中的每一个数都叫做项,其中从左起第一项叫做首项,最后一项叫做末项,项的个数叫做项数。等差数列中相邻两项的差叫做公差。

例如:上面高斯求解的问题:首项是1,末项是100,项数是100,公差是1.我们得出高斯求解方法更多的是告诉我们一个求解等差数列的公式:

等差数列的和=(首项+末项)×项数÷2 例一:找出下列算式当中的首项,末项,项数和公差。(1)2,5,8,11,14,17,20,23(2)0,4,8,12,16,20,24,28(3)3,15,27,39,51,63 让学生上黑板演示结果。

(1)首项2,末项23,项数8,公差3(2)首项0,末项28,项数8,公差4(3)首项3,末项63,项数6,公差12 知道在等差数列中如何准备找出首项,末项,项数及公差以后,更重要的是熟练运用等差数列求和公式解决一般等差数列问题。例二:1+2+3+4+„+1998+1999.问:算式当中的首项,末项,项数分别是什么? 答:首项是1,末项是1999,项数是1999。解析:原式=(1+1999)×1999÷2

=2000×1999÷2

=1999000 小结:这是一道一般等差数列类型题,可以直接找到求解公式中需要的几个量。在计算过程中,当一个数乘另外一个数末尾有零时,先不看末尾的零,计算结束后,将零的相同个数添在积的末尾就行。练习:(1)1+2+3+4+„+250

(2)1+2+3+4+„+200

(3)1+3+5+7+„+97+99

第二课时教案

教学目标:

1、灵活运用等差数列公式求所有两位数的和。

2、能够运用等差数列的公式求解现实生活中的等差问题。教学重难点: 公式的灵活应用。教学过程:

师:我们这节课利用高斯求和法计算所有两位数的和以及求解生活中的等差问题。

例一:求出所有两位数的和。

问:(1)两位数是从哪个数开始,又是到哪个数为止?

(2)两位数一共有多少个? 解:原式=(10+99)×90÷2

=109×90÷2

=4905 注意:解上面这道题需要我们动脑经的是先要准确的写出这个数列,找出数列的首项,末项和项数。在解题过程中会用到我们刚学过的三位数乘两位数的乘法,计算一定要小心。练习:(1)40+41+42+43+„+80+81

(2)10+11+12+„+49+50 例二:某单位的总务处主任,不小心把50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次? 问:(1)“最多”应该怎么样理解?(2)能否试着把数列写出来?

分析:这是一道解决实际问题的题,就要注意联系生活实际来思考。如开第一把锁时,试了49把钥匙都不对,那所剩下的一把肯定能打开,不用试50次,试49次就可以了。同样开第二把锁,最多试48次,依次类推,试完49把锁,剩下最后的一把不用试,一定能打开。这道题,开锁最多要试多少次,应该是一个,49+48+47+„+1+0的等差数列的和。它的首项是49,末项是0,项数是50,公差是1。根据等差数列求和公式就可以求出最多要试多少次。解:49+48+47+„+1+0 =(49+0)×50÷2 =1225 练习:(1)新年到了,10个好朋友聚会,每两个人之间要握一次手,他们一共要握多少次手?

(2)市里举行数学竞赛,参加数学竞赛的有16个小组,每两组之间都要赛一场,他们一共要进行多少场比赛? 难度上升题:(1)437-1-2-3-4„-29(2)2000-1-2-3-4„-60(3)(1+3+5+„+1997+1999)-(2+4+6+„+1996+1998)

(4)盒子里放有1只球,一位魔术师第一次从盒子里将这只球拿出,变成了3只球后放回盒子里,第二次从盒子里拿出2只球,将每只球各变成3只球后放回盒子里,如此继续下去,最后第10次从盒子里拿出10只球,将每只球各变成3只球后放回盒子里。这时盒子里共有多少只球?

解:(1)原式=437-(1+29)×29÷2

=2

(2)原式=2000-(1+60)×60÷2

=170(3)法一:

原式=(1+1999)×1000÷2-(2+1998)×999÷2

=1000000-999000

=1000 法二:

原式=1+(3-2)+(5-4)+„+(1999-1998)

=1+1+1+„+1(共1000个)=1000(4)解析:找出盒子球的变化规律,第一次增加2个球,第二次增加2×2个球,第三次增加2×3个球,如此下去,第10次增加10×2个球。即问题变为求解1+2+2×2+2×3+„+10×2(a)式的和。解:(a)式=1+2+4+6+„+20

=1+(2+20)×10÷2

=111(只)总结:今天学习的主要内容是等差数列求和,即简单高斯求和。学习高斯求和最关键的是要掌握等差数列的主要特征,明确高斯求和中的首项,末项,项数及公差。在求解现实生活中的等差问题,关键是找到等差数列,写出完整的数列,是求解实际问题的着手点。

第四篇:奥数兴趣小组活动计划

奥数兴趣小组活动计划

一、指导思想

展示数学的神奇智慧和艺术般的魅力,激发学生的数学兴趣和探索求知的欲望,在不知不觉中将学生引进深奥的数学世界之中。

二、内容及活动安排:

第一次

活动内容:规律填数

活动目的:通过规律填数的研究,使学生能找到一个数列中的规律,提高学生的观察能力及解题能力。

训练形式:讲解、分组练相结合 第二次

活动内容:规律填数

活动目的:进一步进行规律填数的研究,使学生能找到一个数列中的规律,提高学生的观察能力及解题能力。

训练形式:讲解、分组练相结合 第三次

活动内容:简单推理

活动目的:通过对日常生活中一些“逻辑推理问题”的研究,使学生能在许多问题中找到关键的问题,进行分析、推理,从而培养学生的推理能力。

训练形式:讲解、分组练相结合 第四次

活动内容:简单推理

活动目的:通过进一步对日常生活中一些“逻辑推理问题”的研究,使学生能在许多问题中找到关键的问题,进行分析、推理,从而培养学生的推理能力。

训练形式:讲解、分组练相结合 第五次

活动内容:应用题

(一)活动目的:通过应用题的研究,使学生掌握解一般应用题的方法,会解一些应用题,培养学生的解题能力。

训练形式:讲解、分组练相结合 第六次 活动内容:应用题

(一)活动目的:通过应用题的研究,使学生掌握解一般应用题的方法,会解一些应用题,培养学生的解题能力。

训练形式:讲解、分组练相结合 第七次

活动内容:算式谜题

活动目的:通过对算术运算式子的研究,依据运算法则,进行适当的判断推理,从而把算式补充完整,培养学生的解题能力。

训练形式:讲解、分组练相结合 第八次

活动内容:变与不变

活动目的:通过对加、减、乘、除法的研究,了解和、差、积、商变化的规律,培养学生的解题能力

训练形式:讲解、分组练相结合 第九次

活动内容:变与不变

活动目的:通过进一步对加、减、乘、除法的研究,了解和、差、积、商变化的规律,培养学生的解题能力

训练形式:讲解、分组练相结合 第十次

活动内容:错中求解

活动目的:通过对“错中求解”的研究,使学生在熟悉加、减、乘、除各部分间的关系的基础上,分析隐含的数量关系,从而找到正确的结果。

训练形式:讲解、分组练相结合 第十一次

活动内容:错中求解

活动目的:通过进一步对“错中求解”的研究,使学生在熟悉加、减、乘、除各部分间的关系的基础上,分析隐含的数量关系,从而找到正确的结果。

训练形式:讲解、分组练相结合 第十二次

活动内容:和倍问题 活动目的:通过进一步对和倍问题的研究,使生了解什么是和倍问题及如何解和倍问题,培养学生的解题能力。

训练形式:讲解、分组练相结合

数学是思维的体操,兴趣是最好的老师。大量的研究表明,数学学习兴趣是一种自觉的动机,具有追求探索的倾向,是数学学习中具有创造性态度的重要条件;数学学习兴趣是学生学习动力中最现实、最活跃的成分,也是数学教学的一个关键内容。

数学学习兴趣常表现为喜欢或不喜欢数学。研究表明,随着年级的升高,学生的数学学习兴趣逐渐下降,高年级下期是兴趣分化的明显时期。但总的来说,在各学科的学习中,学生还是最喜欢数学。数学学习成绩与数学学习兴趣有显著的相关性。浓厚的兴趣产生较大的学习动力,使学生的注意集中于数学学习,以积极的态度投入学习,并乐于迎接学习中的各种挑战。稳定的数学学习兴趣是逐渐形成的,需要长期培养。

培养过程中应注意下面几个环节:

一、构建和谐的师生协作关系

师生情感不仅是师生交往的基础,而且也是使学生对数学产生兴趣的关键。教师是师生情感的主导者。热爱学生是进行数学教学的前提。当教师的情感倾注在数学教学中,激发了学生的数学学习情感时,学生就能够更加积极主动地投入数学学习。这是培养学生数学学习兴趣的秘诀。

二、高超的教学艺术是引发数学学习兴趣的保证

调查表明,学生学科兴趣形成的最重要条件是教师的教学水平。为此,教师应努力提高自己的教学能力。努力的方向包括:

(1)练好教学基本功

随着教学理论的深化,人们对教学基本功含义的理解也发生了变化。除了课堂组织、语言表达、板书、画图等传统内容以外,还包括信息技术的熟练应用,尤其中新课程理念下,互联网技术在教学中的大量应用,教师通过网络吸取大量的信息是必不可少的。

当然教师的分析能力也是完成数学教学工作的一项重要素质。心理学家认为,任务分析大致可以区分为四大类,即过程分析、能力(或技能)构成成分分析、专家-新手差异分析和综合分析。

(2)处理好教学中的各种关系

数学教学中应当处理好的关系包括:数学基础知识、基本技能、教学与数学基本能力、基本态度培养之间的关系;学生的自主探究活动与教师的讲解引导之间的关系;新的数学知识与已有数学认知结构之间的关系;共同要求与学生个性差异之间的关系;课内与课外的关系等等。这里就基础知识、基本技能、基本能力和基本态度这“四个基础”之间的关系作些讨论。数学基础知识基本技能的掌握和累积是形成数学基本能力基本态度的前提,能力和态度又反作用于知识和技能的掌握,制约着知识掌握和技能形成的速度、深度、难易程度和巩固程度。因此,数学知识的习得、数学技能的形成和数学基本能力、基本态度的培养数学活动过程中,它们之间有同一性、同步性,从根本上说必须协调发展。“四个基础”是数学学力的基本构成要素。我们可以借用 “冰山模型”来对“四个基础”之间的关系进行解释。冰山有浮在海面上的“冰山一角”和隐藏在海面以下的“冰山基座”,浮在水面上的看得见摸得着的部分就是数学的基础知识、基本技能;隐藏于水面下的看不见的部分则是基本能力和基本态度,它是支撑着浮出水面部分的基础。正如冰山由显出水面和隐于水面两部分组成一样,数学学力也可以分为显性学力和隐性学力两部分。显然,显性学力是由隐性学力支撑的,隐性学力是显性学力发展的动力;而显性学力的获得和不断加强,又使得隐性学力更加巩固,并得到不断升华。数学学力是在数学学习过程中,通过掌握基础知识和基本技能而形成显性部分,同时,在教师的启发引导下,通过对数学知识中蕴含的观念、思想和方法的领悟,获得数学学习方法、科学研究方法、探究能力以及数学观念态度等作为数学学习潜力的隐性学力。这里特别要指出的是,隐性学力的形成,有一个从模仿到认同再到内化的过程,这个过程是长期的、内隐的、潜移默化的。隐性学力的获得,教师有意识的指导是关键。过去的数学教学比较多地关注了学力的显性部分,而对隐性部分有些忽视。“四个基础”协调发展的数学学力规则追求显性学力与隐性学力的和谐统一,是一种发展性学力观。

(3)学会创设问题情境,搞好启发式教学

问题情境,是指一种具有一定困难、需要学生努力克服,而又是力所能及的学习情境。教学实践表明,只有那些与学生“最近发展区”相适应的问题情境,才具有强大的吸引力,才能激发学生的数学学习兴趣。任务的难度是形成问题情境的重要因素之一。不需经过努力就能完成的任务,或经过再大努力也不能完成的任务,都不能引起学生兴趣。只有那些“半生不熟”、“似懂非懂”、“似会非会”的内容,才能引起学生的兴趣并迫切希望掌握之。所以,问题情境的形成表明了学习任务与学生数学认知结构之间的一种特定关系:既适应又不适应。完全适应或完全不适应的状态都不构成问题情境。

问题情境的创设,首先需要教师准确把握教学要求,熟悉教学内容,掌握教材结构,把握新旧数学知识间的内在联系;其次,要求教师充分了解学生,了解学生已有数学认知结构和智能发展状况。在此基础上,按照数学知识发展的逻辑顺序、学生数学思维规律,从已知到未知、由现象到本质、由简单到复杂、由容易到困难地安排内容。

问题情境的创设,既可通过教师设问的方式提出,又可以作业的方式提出;既可从新旧教材的联系方面引进,也可从学生的日常经验中引进。例如,开始学习“有理数加减运算”时,教师可以针对学生准确率不好的特点,结合数学故事《一个小数点和一场大悲剧》来教育学生养成科学、严谨的学习态度,仔细完成好运算。.数学是一个色彩缤纷的万花筒,美丽而奇妙。数学是神奇的世界,肯定有不少学生产生了浓厚的兴趣。为此,训练学生的思维活动是重中之重。在数学教学中探求问题的思考、推理、论证的过程等一系列数学活动都是数学教学中实施思维训练的理论依据之一。因此,趣味数学能更好的促进学生数学思维能力的发展。

奥数兴趣小组活动计划

张明月

2017年7月18日星期二

第五篇:奥数兴趣小组活动计划

奥数兴趣小组活动计划

一、指导思想

展示数学的神奇智慧和艺术般的魅力,激发学生的数学兴趣和探索求知的欲望,在不知不觉中将学生引进深奥的数学世界之中。

二、内容及活动安排:

第一次

活动内容:规律填数

活动目的:通过规律填数的研究,使学生能找到一个数列中的规律,提高学生的观察能力及解题能力。

训练形式:讲解、分组练相结合 第二次

活动内容:规律填数

活动目的:进一步进行规律填数的研究,使学生能找到一个数列中的规律,提高学生的观察能力及解题能力。

训练形式:讲解、分组练相结合 第三次

活动内容:简单推理

活动目的:通过对日常生活中一些“逻辑推理问题”的研究,使学生能在许多问题中找到关键的问题,进行分析、推理,从而培养学生的推理能力。

训练形式:讲解、分组练相结合 第四次

活动内容:简单推理

活动目的:通过进一步对日常生活中一些“逻辑推理问题”的研究,使学生能在许多问题中找到关键的问题,进行分析、推理,从而培养学生的推理能力。

训练形式:讲解、分组练相结合 第五次

活动内容:应用题

(一)活动目的:通过应用题的研究,使学生掌握解一般应用题的方法,会解一些应用题,培养学生的解题能力。训练形式:讲解、分组练相结合 第六次

活动内容:应用题

(一)活动目的:通过应用题的研究,使学生掌握解一般应用题的方法,会解一些应用题,培养学生的解题能力。

训练形式:讲解、分组练相结合 第七次

活动内容:算式谜题

活动目的:通过对算术运算式子的研究,依据运算法则,进行适当的判断推理,从而把算式补充完整,培养学生的解题能力。

训练形式:讲解、分组练相结合 第八次

活动内容:算式谜题

活动目的:通过对算术运算式子的研究,依据运算法则,进行适当的判断推理,从而把算式补充完整,培养学生的解题能力。

训练形式:讲解、分组练相结合 第九次

活动内容:变与不变

活动目的:通过对加、减、乘、除法的研究,了解和、差、积、商变化的规律,培养学生的解题能力

训练形式:讲解、分组练相结合 第十次

活动内容:变与不变

活动目的:通过进一步对加、减、乘、除法的研究,了解和、差、积、商变化的规律,培养学生的解题能力

训练形式:讲解、分组练相结合 第十一次

活动内容:错中求解

活动目的:通过对“错中求解”的研究,使学生在熟悉加、减、乘、除各部分间的关系的基础上,分析隐含的数量关系,从而找到正确的结果。

训练形式:讲解、分组练相结合 第十二次 活动内容:错中求解

活动目的:通过进一步对“错中求解”的研究,使学生在熟悉加、减、乘、除各部分间的关系的基础上,分析隐含的数量关系,从而找到正确的结果。

训练形式:讲解、分组练相结合 第十三次

活动内容:合理安排

活动目的:通过对合理安排的研究,使生掌握统筹方法,提高学生的解题能力。

训练形式:讲解、分组练相结合 第十四次

活动内容:合理安排

活动目的:通过进一步对合理安排的研究,使生掌握统筹方法,提高学生的解题能力。

训练形式:讲解、分组练相结合 第十五次

活动内容:简单排列

活动目的:通过对简单排列的研究,使学生掌握排列、组合的一些简单解法。训练形式:讲解、分组练相结合 第十六次

活动内容:简单排列

活动目的:通过进一步对简单排列的研究,使学生掌握排列、组合的一些简单解法。

训练形式:讲解、分组练相结合 第十七次

活动内容:和倍问题

活动目的:通过对和倍问题的研究,使生了解什么是和倍问题及如何解和倍问题,培养学生的解题能力。

训练形式:讲解、分组练相结合 第十八次

活动内容:和倍问题

活动目的:通过进一步对和倍问题的研究,使生了解什么是和倍问题及如何解和倍问题,培养学生的解题能力。训练形式:讲解、分组练相结合 第十九次

活动内容:有趣余数

活动目的:通过对有趣余数的研究,会解此类题,培养学生的解题能力。训练形式:讲解、分组练相结合 第二十次

活动内容:有趣余数

活动目的:通过进一步对有趣余数的研究,会解此类题,培养学生的解题能力。

训练形式:讲解、分组练相结合。

数学是思维的体操,兴趣是最好的老师。大量的研究表明,数学学习兴趣是一种自觉的动机,具有追求探索的倾向,是数学学习中具有创造性态度的重要条件;数学学习兴趣是学生学习动力中最现实、最活跃的成分,也是数学教学的一个关键内容。

数学学习兴趣常表现为喜欢或不喜欢数学。研究表明,随着年级的升高,学生的数学学习兴趣逐渐下降,七年级下期是兴趣分化的明显时期。但总的来说,在各学科的学习中,学生还是最喜欢数学。数学学习成绩与数学学习兴趣有显著的相关性。浓厚的兴趣产生较大的学习动力,使学生的注意集中于数学学习,以积极的态度投入学习,并乐于迎接学习中的各种挑战。稳定的数学学习兴趣是逐渐形成的,需要长期培养。

培养过程中应注意下面几个环节:

一、构建和谐的师生协作关系

师生情感不仅是师生交往的基础,而且也是使学生对数学产生兴趣的关键。教师是师生情感的主导者。热爱学生是进行数学教学的前提。当教师的情感倾注在数学教学中,激发了学生的数学学习情感时,学生就能够更加积极主动地投入数学学习。这是培养学生数学学习兴趣的秘诀。

二、高超的教学艺术是引发数学学习兴趣的保证

调查表明,学生学科兴趣形成的最重要条件是教师的教学水平。为此,教师应努力提高自己的教学能力。努力的方向包括:

(1)练好教学基本功

随着教学理论的深化,人们对教学基本功含义的理解也发生了变化。除了课堂组织、语言表达、板书、画图等传统内容以外,还包括信息技术的熟练应用,尤其中新课程理念下,互联网技术在教学中的大量应用,教师通过网络吸取大量的信息是必不可少的。当然教师的分析能力也是完成数学教学工作的一项重要素质。心理学家认为,任务分析大致可以区分为四大类,即过程分析、能力(或技能)构成成分分析、专家-新手差异分析和综合分析。

(2)处理好教学中的各种关系

数学教学中应当处理好的关系包括:数学基础知识、基本技能、教学与数学基本能力、基本态度培养之间的关系;学生的自主探究活动与教师的讲解引导之间的关系;新的数学知识与已有数学认知结构之间的关系;共同要求与学生个性差异之间的关系;课内与课外的关系等等。这里就基础知识、基本技能、基本能力和基本态度这“四个基础”之间的关系作些讨论。

数学基础知识基本技能的掌握和累积是形成数学基本能力基本态度的前提,能力和态度又反作用于知识和技能的掌握,制约着知识掌握和技能形成的速度、深度、难易程度和巩固程度。因此,数学知识的习得、数学技能的形成和数学基本能力、基本态度的培养数学活动过程中,它们之间有同一性、同步性,从根本上说必须协调发展。“四个基础”是数学学力的基本构成要素。我们可以借用 “冰山模型”来对“四个基础”之间的关系进行解释。冰山有浮在海面上的“冰山一角”和隐藏在海面以下的“冰山基座”,浮在水面上的看得见摸得着的部分就是数学的基础知识、基本技能;隐藏于水面下的看不见的部分则是基本能力和基本态度,它是支撑着浮出水面部分的基础。正如冰山由显出水面和隐于水面两部分组成一样,数学学力也可以分为显性学力和隐性学力两部分。显然,显性学力是由隐性学力支撑的,隐性学力是显性学力发展的动力;而显性学力的获得和不断加强,又使得隐性学力更加巩固,并得到不断升华。数学学力是在数学学习过程中,通过掌握基础知识和基本技能而形成显性部分,同时,在教师的启发引导下,通过对数学知识中蕴含的观念、思想和方法的领悟,获得数学学习方法、科学研究方法、探究能力以及数学观念态度等作为数学学习潜力的隐性学力。这里特别要指出的是,隐性学力的形成,有一个从模仿到认同再到内化的过程,这个过程是长期的、内隐的、潜移默化的。隐性学力的获得,教师有意识的指导是关键。过去的数学教学比较多地关注了学力的显性部分,而对隐性部分有些忽视。“四个基础”协调发展的数学学力规则追求显性学力与隐性学力的和谐统一,是一种发展性学力观。

(3)学会创设问题情境,搞好启发式教学

问题情境,是指一种具有一定困难、需要学生努力克服,而又是力所能及的学习情境。教学实践表明,只有那些与学生“最近发展区”相适应的问题情境,才具有强大的吸引力,才能激发学生的数学学习兴趣。任务的难度是形成问题情境的重要因素之一。不需经过努力就能完成的任务,或经过再大努力也不能完成的任务,都不能引起学生兴趣。只有那些“半生不熟”、“似懂非懂”、“似会非会”的内容,才能引起学生的兴趣并迫切希望掌握之。所以,问题情境的形成表明了学习任务与学生数学认知结构之间的一种特定关系:既适应又不适应。完全适应或完全不适应的状态都不构成问题情境。

问题情境的创设,首先需要教师准确把握教学要求,熟悉教学内容,掌握教材结构,把握新旧数学知识间的内在联系;其次,要求教师充分了解学生,了解学生已有数学认知结构和智能发展状况。在此基础上,按照数学知识发展的逻辑顺序、学生数学思维规律,从已知到未知、由现象到本质、由简单到复杂、由容易到困难地安排内容。

问题情境的创设,既可通过教师设问的方式提出,又可以作业的方式提出;既可从新旧教材的联系方面引进,也可从学生的日常经验中引进。例如,开始学习“有理数加减运算”时,教师可以针对学生准确率不好的特点,结合数学故事《一个小数点和一场大悲剧》来教育学生养成科学、严谨的学习态度,仔细完成好运算。课堂上事先由一名学生准备好故事.在数学课堂上自然的引入故事,通过活动来教育感染学生,当然这只是我个人的意见

一、指导思想:

数学是一个色彩缤纷的万花筒,美丽而奇妙。数学是神奇的世界,肯定有不少学生产生了浓厚的兴趣。为此,训练学生的思维活动是重中之重。在数学教学中探求问题的思考、推理、论证的过程等一系列数学活动都是数学教学中实施思维训练的理论依据之一。因此,趣味数学能更好的促进学生数学思维能力的发

展。

二、教材简析:

一年级《趣味数学》教材课程,主要设计理念是:趣味性、实践性。通过一系列数学活动培养学生对数学的兴趣,把数学与儿童生活实际联系起来,让学生看到生活中处处充满数学,学生学起来也亲切、自然,可以通过自己的认知活动,实现数学观念的构建,促进知识结构的优化。学习内容以数学游戏、数学

故事、数学实践活动为主。

三、目的要求:

1、培养学生学习数学的兴趣和爱好,使学生在学习过程中获得成功的体验,建立自信心。

2、使学生掌握一定的学习方法、学习技能。

3、使学生获得一些初步的数学实践活动经验,能运用所学知识和方法解决简单问题,感受数学在生活

中的作用。

4、培养学生与人合作、与人交流的意识和能力。

5、培养学生积极参与数学学习活动、敢于质疑、独立思考、不怕困难等良好的学习习惯。

6、培养学生数学思考能力、观察能力、动手操作能力创新能力。

四、时间安排:

单周四下午3:40——4:40

五、主要措施

1、以新课程的理念和新课程纲要为指导思想,以学生的年龄特点和现有知识水平为依据,采用丰富多彩的形式,让学生对数学产生浓厚的兴趣,愿意主动去发现生活中的数学现象,在日常学习生活中敢于质疑,乐于讨论探究各种现象,喜欢和他人合作解决问题。

2、逐步养成良好的数学思维习惯,培养和强化解决实际问题的能力,让学生在应用中感受数学创造的乐趣,增进学生学好数学的信心。

3、课前让学生准备好学具,课上组织好每一个教学活动,把每一个教学设计都落实下去。

六、内容安排

1、认数

2、我的位置

3、趣味拼图

4、折一折,比一比

5、我会编故事

6、猜一猜

7、找规律

8、生活中的数字

9、巧摆火柴棒

10、有趣的数学题

一、成立背景

我党在十六届三中、五中全会上分别提出了“以人为本”和“构建和谐社会”的伟大思想,十七大报告中又明确提出“我们要建设全民学习和终身学习的学习型社会”。同时,随着新课程改革的全面推进,这给我们教育工作者提出了新的挑战和契机。新课程理念把“育人为本”确立为教育观,“人才多化,人人能成材”确立为人才观,把“为学生的一生发展和幸福奠定基础”作为教育价值观。在数学课程中,要求“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”。另外,我校狠抓“小事工程”,今年,又倡导理科教学,而数学是立刻之基。在这种背景下,笔者作为中学数学教师,决定成立一个兴趣小组委员会,旨在引导、激励各小组更好的开展工作,使新课程改革走进课堂、走进学生,使学生真正成为课堂主人。经过近一个月的酝酿,最后,决定将委员会名称定为“北极星数学兴趣小组委员会”。它有两层含义,一是,具有指引作用。北极星是天空北部的一颗亮星,距天球北极很近,差不多正对着地轴,从地球上看,它的位置几乎不变,所以,可以靠它来辨别方向。二是,代表发起者。发起者名叫史纪鑫,甘肃镇原人,地处中国北部,因此,取了一个“北”字,“极星”含有(纪鑫)的谐音。

二、教育理念

为全面提高学生的数学素质和可持续发展奠基

三、文化价值

以人为本,人尽其才

四、理论指导

以《数学课程标准》(2003年修订本)理念为指导

五、总体目标

1、通过委员会指引、激励,培养一大部分数学爱好者、研究型学生,尽早发现一些数学上有天赋的学生。

2、通过模拟课——当小老师。全方位地提高学生的胆量、表达、思维、组织、合作、交流等各种素质。

3、通过小组长、大组长、课代表、数学辅导员的管理工作,提高部分学生的组织、管理能力和团队精神。

4、通过小组内互相帮助,共同提高,让每位学生亲身体会自己的价值,感受集体的温暖,从而形成良好的、正面的、积极的健康心态。

5、通过各组员、小组长、大组长、数学辅导员、课代表、学习委员及数学老师,相互间合作交流、合作,提高学生自主、合作、交流意识,进而提高他们自主、合作、交流能力。

6、通过《数学与生活》校本教材的学习,使学生感到数学与生活有关,数学与我有关,从而形成我要学数学,我要用数学的强烈愿望。

7、通过设立创新奖、奥数奖、记忆奖、进步奖、优秀奖、鼓励奖、突出贡献奖、书写工整奖、先进工作奖、模范带头奖、小老师奖、多次完成目标奖、积极回答问题奖、等奖项。全面的、最大限度的调动各个层次学生的学习积极性,营造出一个积极地、和谐的、以人为本的学习氛围。

8、通过全方位的激励,使每位学生在这里感受成功的喜悦,分享成功的快乐。

六、管理模式(见邮箱)

(一)北极星数学兴趣小组委员会课堂管理模式

(二)北极星数学兴趣小组委员会课外管理模

(三)学生个体交流示意图

(四)北极星数学兴趣小组委员会领导机构

(七)评价体制

以鼓励为主,定量与定性相结合的评价手段,全面科学地评价每一位学生。

(八)岗位职责

1、顾问:对委员会的整体工作进行理论指导。

2、主任:主持委员会全盘工作。

3、副主任甲:负责组织数学辅导员,在空当时间对数学中的共性问题进行辅导,同时指导检查员的工作。

4、副主任乙:负责指导文书、会计、记录员工作。

5、文书:负责起草各种计划、制度及奖励决定。

6、会计:负责账务及经费管理。

7、记录员:做好每次会议记录及小老师课的听课笔记。

8、检查员:负责检查各组任务的落实情况及考核工作。

9、数学辅导员:在数学老师不在时,指导学生学习,解决共性问题。

(九)远景规划

1、切实提高学生学习数学的兴趣。

2、增强学生的数学应用意识,提升自身的数学素质。

3、丰富文化生活,给学生中学阶段留一点美好的回忆。

4、帮助后进学生树立学习信心,培养一大部分尖子学生。

5、完成《数学与生活》校本教材的编写工作。

6、建立网站,在网上互动学习。

(十)活动经费

1、发起人每期捐款50元。

2、其他学员自愿捐款。

(十一)其他方面

1、先成立“北极星数学兴趣小组初一(4)班委员会”进行试验。

2、委员会顾问请包级领导和班主任担任。主任由发起人史纪鑫担任,其他委员在班级民主选举产生。

3、委员每期更选一次。数学辅导员半学期选一次。

4、奖品为学习用品、书籍、励志图画等。

5、《数学与生活》校本教材共分三部——学前版(六年级一下)、初级版(七~九年级)、中级版(高一~高三)。在近一两年内,先争取完成《数学与生活》校本教材的初级版编写工作。内容可面向全体学生收集,投稿人写清姓名、班级、内容出自的刊物名称、作者、出版时间、页码。

(十二)《数学与生活》基本框架

一、数学家小故事(了解数学家的生活,奋斗历程及相关贡献)

二、有趣的数学(数学谜语、数学幽默、趣味数学题)

三、神奇的数学(探究性题,主要通过观察、归纳、猜想、证明感受数学的理性美、深邃美)

四、统计中的数学(博弈、概率与统计方面的问题)

五、有用的数学(数学知识在各方面的应用问题)

六、先进的数学(几何画板应用、幻灯片制作演示、Photoshop CS等)

下载小学生考奥数、上兴趣班,真的有用吗?(xiexiebang推荐)word格式文档
下载小学生考奥数、上兴趣班,真的有用吗?(xiexiebang推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一年级小学生奥数100

    一年级小学生初学奥数100题 1.哥哥4个苹果,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多? 2.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁? 3.同学......

    暑假班奥数教学计划

    暑假班奥数教学计划 翁华明张细英 为增强优等生数学学习兴趣,培养严谨的数学思维,优良的数学品质,超强的思维能力,特作出暑假奥数班教学计划如下:课程目标: 1.提高学生学习数学的......

    六年级奥数兴趣小组活动计划

    小学六年级奥数兴趣小组活动计划 张新荣 指导思想:教育学生掌握数学基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会......

    二年级奥数兴趣小组活动计划

    二年级奥数兴趣小组活动计划 靳利平新学期奥数兴趣班开班了,为了有计划、有目标、更系统地进行教学,特制定本计划。 一、教学宗旨 以培养学生对数学的兴趣、开拓学生的数学思......

    小学生奥数练习题及答案

    小学生奥数练习题及答案五篇篇一一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?某人沿着铁路边的便道步行,一列客车从......

    小学生奥数题目四

    地不耕种,再肥沃也长不出果实;人不学习,再聪明也目不识丁. —— 西塞罗联系电话:62164116 1. 用12根火柴,摆四个大小一样的正方形,怎么摆? 【答案】2. 如右图所示,用火柴棒摆了五个......

    厦门大学物理化学2003奥赛(兴趣班)

    今年入夏以来,我省持续的高温天气已对工农业生产造成不利的影响。虽然造成地球变暖、气温上升的原因是多方面的,但家庭用的小汽车的日益增加也是其中的原因之一。请你以一平均......

    如何培养孩子学习奥数的兴趣呢

    如何培养孩子学习奥数的兴趣呢?爱因斯坦说:“兴趣是最好的老师。” 孩子只有对学习感兴趣,才能把心理活动指向和集中在学习的对象上,使感知觉活跃,注意力集中,观察敏锐,记忆持久而......