《二面角的概念》说课稿
一、说教材
二面角的概念是普通高中课程标准人教A版数学必修2第2章第3节两个平面垂直的判定中的内容。它是在学生学习了异面直线所称的角、直线与平面所成的角之后,有一个要学习的空间角,而二面角的本质特征时候从度量的角度,通过二面角的平面角揭示了平面与平面的位置关系(垂直关系是其中的一种特殊关系),它是为以后从度量角研究面与面的非垂直关系奠定了基础,因此二面角的内容在教材中起到了一个承上启下的作用,同时,通过本节课的学习,学生的空间想象能力和逻辑思维能力进一步得到提升。
二、说学情
高一学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,针对学生主观能动性强,思维活跃的特点,我在授课中主要以问题为纽带引导学生发现问题—类比联想—解决问题。
三、说教学目标
(一)知识与技能
能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。
(二)过程与方法
利用类比的方法推理二面角的有关概念,提升知识迁移的能力。
(三)情感态度与价值观
营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。
四、说教学重难点
(一)重点
“二面角”和“二面角的平面角”的概念。
(二)难点
“二面角的平面角”概念的形成过程。
五、说教学方法
数学是一门培养人思维,发展人思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境—提出数学问题—尝试解决问题—验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体与模型相结合,将抽象问题形象化,使教学目标体现的更加完美。
六、说教学过程
(一)新课导入
首先我会用多媒体课件展示生活中的一些模型,请学生观察:
1、打开书本的过程;
2、发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;
3、修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;
引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的角度关系。
【设计意图】通过一系列的模型与动画展示,从生活中提取模型,让学生由感性认识出发,从多种模型中抽象出二面角的概念,这符合认知的一般规律。同时,也让学生体会到数学来源于生活,也服务于生活,增加学生学习本节内容的兴趣
(二)新课探究
1、二面角的概念
利用多媒体展示初中所学的平面角的形成过程,并向学生提问,可否根据平面内角的定义给上述的这些图形下一个定义。
在提问过程中注意引导学生进行类比,大胆概括。同时,对学生的表现加以肯定,注意规范学生的语言。最后引出二面角的概念。在此要注意讲解半平面的概念,即平面内的一条直线把平面分成两部分,这两部分通常称为半平面。并根据具体模型讲解二面角的棱,面等相关概念。
(1)对比平面角得出二面角的概念
(2)二面角的表示
接下来注意讲解二面角表示法:α—a—β或α—AB—β。在此要注意分析讲解三个量的含义。
二面角的画法
然后是师生同步,练习画二面角。着重练习近平卧式和直立式,可请学生同桌之间互相点评,强调平行关系。
2。二面角的平面角
一般地说,量角器只能测量“平面角”让学生大胆猜想如何去测量二面角的大小。学生类比平面角,会想到将空间角化为平面角。
(1)二面角的平面角的定义
教师给出二面角的平面交的定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
教师进一步对定义进行深化,请学生找出“二面角的平面角”的定义三个主要特征,即点在棱上、线在面内、与棱垂直
并通过实物展示让学生认识直二面角。
(2)二面角的平面角的作法
接下来,师生同步,共同作出某一二面角的平面角,注意点P的三种情况:
①点P在棱上—定义法
②点P在一个半平面上—三垂线定理法
③点P在二面角内—垂面法
【设计意图】培养学生的观察能力,学生会发现身边很多的图形都和教师展示的模型一样。同时,这样的教学也符合认识事物的一般规律:由感性认识到理性认识,再到感性认识,再到理性认识。
(三)深化新知
提问二面角的取值范围,强调一般规定为[0,π]。重点要让学生理解0和的区别。
(四)巩固提高
为了让学生切实掌握二面角的概念及其求法,设计两个环节:通过例题讲解让学生学会运用。通过课堂作业,让学生巩固新知。
首先是基础题,利用概念判断命题的真假,如:
(1)两个相交平面组成的图形叫做二面角。( )
(2)角的两边分别在二面角的两个面内,则这个角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
【设计意图】通过这几道判断题,巩固学生对二面角概念的理解。
此外我会在添加两道以正方体为模型,求解两个平面的二面角的题目,抽取两位同学在黑板上扮演,我将会在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善,规范的书写格式。
(五)小结作业
教师口头提问:
(1)这节课学习的主要内容是什么?
(2)在数学问题的解决过程中运用了哪些数学思想?
设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。
作业:以正方体为模型请找出一个所成角度为四十五度的二面角,并证明。
设计意图:利用正方体模型,激发学生的探索欲望,体现分层教学的思想,才能达到因材施教的目的。
七、说板书设计
我的板书本着简介、直观、清晰的原则,这就是我的板书设计。
高中数学说课稿《二面角》
一、教材分析
1.教材地位和作用
二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。2.教学目标 知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识;
(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。3.重点、难点 重点:“二面角”和“二面角的平面角”的概念; 难点:“二面角的平面角”概念的形成过程。
二、教法分析
1.教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
3.教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。
三、学法指导 1.乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。2.学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。
3.会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。
四、教学过程 心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。
(一)二面角
1.揭示概念产生背景。
问题情境1 在平面几何中“角”是怎样定义的? 问题情境2 在立体几何中我们还学习了哪些角?
问题情境3 运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。
通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2.展现概念形成过程。
问题情境 4 那么,应该如何定义二面角呢?
创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。
问题情境5 同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。
(二)二面角的平面角
1.揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。
问题情境6 二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。2.展现概念形成过程
(1)类比。教师启发,寻找类比联想的对象。
问题情境7 我们以前碰到过类似的问题吗? 引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。
问题情境8 两定义的共同点是什么? 生:空间角总是转化为平面的角,并且这个角是唯一确定的。
问题情境9 这个平面的角的顶点及两边是如何确定的?
(2)提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。问题情境10 那么,这个角的顶点及两边应如何确定呢? 生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。
(3)探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。(4)继续探索,得到定义。
问题情境11 那么,怎样使这个角的大小唯一确定呢? 师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。
(5)自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。
(三)二面角及其平面角的画法
主要分为直立式和平卧式两种,用电脑《几何画板》作图。
(四)范例分析
为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。
0 例:一张边长为 10 厘米的正三角形纸片ABC,以它的高AD为折痕,折成一个120 二面角,求此时B、C两点间的距离。
分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDC是二面角B—AD—C的平面角。变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。题后反思:(1)解题过程中必须证明∠BDC是二面角B—AD—C的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)
(五)练习、小结与作业 练习:习题9.7的第3题
小结:在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。作业:习题9.7的第4题 思考题:见例题
五、板书设计(见课件)
以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢!