2013~2014高二下期末复习卷3推理与证明

时间:2019-05-12 15:11:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013~2014高二下期末复习卷3推理与证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013~2014高二下期末复习卷3推理与证明》。

第一篇:2013~2014高二下期末复习卷3推理与证明

厦门华侨中学2013~2014学年下学期末高二理数复习提纲三

班级________座号_________姓名__________

1、已知数列{an}中,a1=1,当n≥2时,an=2an-1+1,依次计算a2,a3,a4后,猜想an的一个表达式是()

A.n2-1B.(n-1)2+1C.2n-1D.2n1+1 -

2.用反证法证明命题“若整系数一元二次方程ax2bxc0(a0)有有理数根,则a,b,c中至少有一个偶数”时,下列假设正确的是().

A.假设a,b,c都是偶数B.假设a,b,c都不是偶数

C.假设a,b,c至多有一个是偶数D.假设a,b,c至多有两个偶数

3.用数学归纳法证明n(n+1)(2n+1)能被6整除时,由归纳假设推证n=k+1时命题成立,需将n=k+1时的原式表示成()

A.k(k+1)(2k+1)+6(k+1)B.6k(k+1)(2k+1)

C.k(k+1)(2k+1)+6(k+1)2D.以上都不对

4.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+„+f(n)不能等于()

(A)f(1)+2f(1)+„+nf(1)(B)fn(n1)n(n1)f1 (C)n(n+1)(D)22

225.设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a+b>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件是()

(A)仅②③(B)①②③(C)仅③(D)③④⑤

6.f(n)1111(n∈N*),经计算得23n

357f(2),f(4)2,f(8),f(16)3,f(32),推测当n≥2时,22

2有.7.如图所示是按照一定规律画出的一列“树型”图,设第n个图有an个“树枝”,则an+1与an(n≥2)之间的关系是

.8.在平面上,若两个正三角形的边长比为1:

若两个正四面体的棱长比为1:,则它们的面积比为1:类似地,在空间中,则它们的体积比为________.

9.设p=2x4+1,q=2x3+x2,x∈R,则p与q的大小关系是________.

10.用反证法证明命题“如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是________.

11.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+„+k(3k+

1)=k(k+1)2,则当n=k+1时,待证表达式应为________.

12.在含有3件次品的10件产品中,取出n(n10,nN*)件产品,记n表示取出的次品数,算得如下一组期望值En:

0110C3C7C3C3当n=1时,E101117;C10C1010

02110C3C7C3C7C32C76当n=2时,E20;12222C10C10C1010

0312130C3C7C3C7C32C7C3C79当n=3时,E30;1233333C10C10C10C1010

„„

观察以上结果,可以推测:若在含有M件次品的N件产品中,取出

*n(nN,nN)件产品,记ξn表示取出的次品数,则Eξn

13.已知数列an满足:a10,an1

(Ⅰ)计算a2,a3,a4的值; 1an(nN*)3an

(Ⅱ)由(Ⅰ)的结果猜想an的通项公式,并用数学归纳法证明你的结论.14.已知f(x)=x2+px+q.(1)求证:f(1)-2f(2)+f(3)=2;

1(2)用反证法证明:|f(1)|、|f(2)|、|f(3)|.2

15.观察下列不等式11311511171122,,2222222332344111119222 223455

(1)请归纳当n2时,符合上述规律的一个不等式;

(2)用数学归纳法证明上述猜想的正确性.

第二篇:高二期末复习推理与证明

推理与证明

(一).推理:

⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

(二)证明

⒈直接证明

⑴综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。⑵分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。

2.间接证明------反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

3.数学归纳法

一般的证明一个与正整数n有关的一个命题,可按以下步骤进行:

⑴证明当n取第一个值n0是命题成立;

⑵假设当nk(kn0,kN)命题成立,证明当nk1时命题也成立。

那么由⑴⑵就可以判定命题对从n0开始所有的正整数都成立。

注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行; ②n0的取值视题目而定,可能是1,也可能是2等。

注:①证明时,两个步骤,一个都不能少。其中,第一步是递推的基础,第二步则是证明了递推关系成立。,②用归纳法证明命题,格式很重要,通常可以简记为“两步三结论”。两步是指证明的两步(1)(奠定递推基础)和(2)(证明递推关系);三结论分别是指:步骤(1)中最后要指出当n=n0时命题成立,步骤(2)最后要指出当n=k+1时命题成立,证明的最后要

*给出一个结论“根据(1)(2)可知,命题对任意n∈N(n≥n0)都成立”。

易错点分析:①初始值取值是多少;②第二步证明n=k+1时命题成立需要使用归纳假设;

1111n 2

321111

kkk1共2k项从n=k到n=k+1时,实际增加的项是k

2122232

③由n=k到n=k+1时,命题的变化(增减项),如:fn1例1.1.当a0,b0时,有

ab

ab成立,并且还知道此结论对三个正数、四个正数均成立2abc当a,b,c0时,有abc成立

abcd当a,b,c,d0时,有成立。猜想,当a1,a2,,an0时,有怎样的不等式成立?

2..观察以下各等式:

①tan10tan20tan20tan60tan60tan101 ②tan5tan10tan10tan75tan75tan5

1分析上述各式的共同特点,写出能反映一般规律的等式,并对你的结论进行证 3.、将下列三段论形式的演绎推理补充完整: 纯虚数的平方是负实数,_______________________,3i的平方是负实数。.例2.设在R上定义的函数f(x),对任意实数x都)有f(x2)f(x1)f(x),且f(1)lg3lg2,f(2)lg3lg5,试求归纳出f(200

1的值。

例3.1.设SAB的两边SA、SB互相垂直,则SASBBC。类比到空间中,写出相应的结论

2.设A1、B1分别是PAB的两边PA、PB上的点,则

SPA1B1SPAB

PA1PB

1PAPB

四面体猜想:设A1、B1、C1分别是四面体PABC的三条侧棱PA、PB、PC上的点,则有什么结论?

,则3.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为、cos2cos21。若把它推广到空间长方体中,试写出相应的命题形式

例4.1.设k0,且k是奇数,求证:方程x2x2k0没有有理根

2.设a,b都是整数,且ab能被3整除,试用反证法证明a,b都能被3整除

例5.1.已知数列an的前n项和为Sn,且a11,Snn2an(nN),(1)试计算S1,S2,S3,S4,并猜想Sn的表达式;(2)证明你的猜想,并求出an的表达式。

2.设nN,fn52

3

n

n

1(2)你对fn的值2,3,4时,计算fn;1,1当N1,有何猜想,用数学归纳法证明你的猜想

推理与证明

1.从112,23432,3456752中,得出一般性结论是2.已知函数f(x)

xx,则ff....f(x)

n个f

3.f(n)1

111357

(nN),f(2),f(4)2,f(8),f(16)3,f(32),23n22

2推测当n2时,有

4.平面上有kk2条直线,其中任何两条不平行,任何三条不交于同一点,则这kk2条直线将平面分成的区域个数是

5.在RtABC中,若C900,ACb,BCa,则三角形ABC的外接圆半径

r

a2b2,把此结论类比到空间,写出类似的结论 2

,则6.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为、cos2cos21。若把它推广到空间长方体中,试写出相应的命题形式:7.将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫为直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.请仿照直角三角形以下性质:(1)斜边的中线长等于斜边边长的一半;(2)两条直角边边长的平方和等于斜边边长的平方;(3)斜边与两条直角边所成角的余弦平方和等于1.写出直角三棱锥相应性质(至少一条):

8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列的一些性质,①各棱长相等,同一顶点上的两条棱的夹角相等;②各个面都是全等的正三角形,相邻两个面所成的二面角相等;③各个面都是全等的正三角形,同一顶点上的任何两条棱的夹角相等.你认为比较恰当的是.

9.下面说法中是合情推理的是1由圆的性质类比出球的性质;(2)某次考试小明的成绩是100分,由此推出全班同学的成绩是100分;(3)三角形有内角和是180,四边形的内角和是360五边形的内角和是540,由此得凸多边形的内角和是n2180;(4)我

国古代工匠鲁班根据带齿的草叶发明了锯子

10.下面说法中是演绎推理的是(1)由三角形的性质,推测空间四面体的性质;(2)高三有10个班,一班有51人,二班有53人,三班有52人,由此推测各班都超过50人;(3)在数列an中,a11,an

11an1n2,由此可求a2,a3,,即可归纳2an1

出an的通项公式 ;(4)两条直线平行,同旁内角互补,如果A,B是两条平行直线的同旁内角,则AB180

11.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b∥平面,直线a平面,则直线b∥直线a”的结论显然是错误的,这是因为错误?

12.用反证法证明“三角形的内角中至少有一个不大于60”时,正确的反设是 13.用反证法证明“若x2abxab0,则xa且xb”, 正确的反设是14.下列叙述“(1)a2的反面是a2;(2)mn的反面是mn;(3)三角形中最多有一个直角的反面是没有直角;(4)a,b,c不都为0的反面是a2b2c20a,b,cR 15.用数学归纳法证明1

11111111

nN,2342n12nn1n22n

n3n1的第二步中,nk1时的则从nknk1,左边所要添加的项是16.用数学归纳法证明n1n2nn

等式的左边与nk时的等式的左边的差是

17.用数学归纳法证明“52能被3整除”的第二步中,当nk1时,为了使用假设的结论,应将5

k1

n

n

2k1变形为

18.平面内有nn2条直线,其中任何两条不平行,任何3条不过同一点,(1)请归纳它们交点的个数fn的表达式;(2)(理)请用数学归纳法证明你的结论

第三篇:推理与证明 复习

山东省xx一中20xx级

高二数学课时学案(文)

班级小组姓名________使用时间______年______月______日编号05

第2页

第3页

第4页

第四篇:期末复习:推理与证明,复数

高2013级数学(文科)期末复习

期末复习:推理与证明,复数

一、推理

1.归纳推理是由,从的推理。

Ex1:将全体正整数排成一个三角形数阵:按照以上排列的规律,(二)间接证明:反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结

论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:

(1)反设;(2)归谬;(3)结论。

Ex: 用反证法证明数学命题: 设0a,b,c1,求证:(1a)b,(1b)c,(1c)a,不可能同时大于1

4三、复数

24k4k+14k+24k+

31、虚数单位i,规定:i=;i=;i=;i=;i=(kN*)

2、复数的代数形式是,全体复数所成的集合叫做________集。用字母________来表示。

3.z=a+bi(a、bR),则复数z的实部是;复数z的虚部是。复数z是实数,复数z是虚数,复数z是纯虚数

4、z1=a+bi(a、bR),z2=c+di(c、dR),复数z1=z2;复数z1>z2

5、复数的几何表示:建立了直角坐标系来表示复数的平面叫做________,x轴叫做________轴,y轴叫做

_______轴.实轴上的点都表示______数;除原点外,虚轴上的点都表示__________数。

6、z=a+bi(a、bR),则|z|=|a+bi|=,|z|的几何意义是

7、z1=a+bi(a、bR),z2=c+di(c、dR),则z1+z2=,对应向量运算;

z1-z2=,对应向量运算

8、z1=a+bi(a、bR),z2=c+di(c、dR),则|z1-z2|=,|z1-z2|的几何意义是

9、z1,z2是两个已知复数,z是满足下列等式的复数,写出z所对应的图形分别是什么?

(1)|z-z1|=a(aR,a>0)

(2)|z-z1|=|z-z2|

(3)||z-z1|+|z-z2||=2a(aR,|z1-z2|<2a)

(4)||z-z1|-|z-z2||=2a(aR,|z1-z2|>2a)

10、复数乘除法:(1)43i54i(2)2i74i11、z=a+bi(a、bR),则复数z的共轭复数为z=,zz=

12、实系数一元二次方程ax+bx+c=0(a、b、cR,且a0)的根的情况

当>0时,方程有根,分别为

当=0时,方程有根,为

当<0时,方程有根,分别为

四、题型分类

(一)i的运算1、1iiii12321232010、1iiii20101232010i3、i2i3i20105、f(n)=iinn2010、1i111i2i3i2010nn(nN*)的值域是1i

6、1i1i1i=

7、n为奇数,=1i1i

(二)复数分类

21、z=(2+i)m-3(1+i)m-2(1-i)(mR),z是实数,m取值; z是虚数,m取值;z是纯虚数,m取值;

2、z1=a+bi(a、bR),z2=2+ci(cR),则z1> z2的充要条件是

(三)复数的坐标表示、与向量之间的关系1、3+4i的点关于原点对称的点对应的复数为

22、(m+m-2)+(6-m-m2)i对应复平面上的点一定不在第象限

3、平行四边形中,z1=1+2i,z2=-2+i,z3=-1-2i对应复平面上的点为三个顶点,第四个顶点对应的复数

为

4、复数3-4i和5-6i分别对应向量,求向量AB所对应的复数

(四)共轭运算

1、z1z223i,z1=1-5i,则z2=

2、(z+2)(z2)z,则z=

(五)模的运算及几何意义

2(12i)5(34i)

1、=

2、| z1+ z2|| z1|+| z2| 5(2i)

3、若集合M={z| |z+1|=1, zC},集合N={z| |z-2i|=|z|,zC},则MN=

4、复数z满足条件|z|=1,则|z+3-i|的取值范围是

5、复数z=cos+isin,(R),则|z+1-i|的取值范围是

6、复数z1 z2满足| z1|=3,| z2|=4,| z1+ z2|=5,则|z1 –z2|=

7、|z|+z=8-4i,则z=

8、(1+i)z115i, z2=a-2i , |z1z2||z1|, a的范围(六)函数

1、f(z)=1-z,则z1=2+3i, z2=5-i, 则f(z1z22、f(z)=z-1,则z1=2-3i,f(z1 –z2)=4+4i,求z2=, |z1+z2|=

(七)一元二次方程1、2+ai,b+i(a、bR)是实系数一元二次方程x2pxq0的两根,2、、是方程xxm0(mR)的两个根,且||=2,求m的值

3、复数、是方程xxm0(mR)的两个根,且||||=2,4、方程x+(k-2i)x+4+2i=0有一个根是2,复数另一个根为

五、反思小结

六、巩固练习

1、若zC,且|z-3i|-iz=6-3i,则z=_____.2、若|z1|=|z2|=1,|z1+z2|=3,则|z1-z2|=________。

第五篇:推理与证明单元卷

第二、三章综合练习

b2b2b2b21.若a>0,b>0,则有()A.b-a<2b-aC.≥2b-aD.2b-a aaaa

2.F(n)是一个关于自然数n的命题,若F(k)(k∈N*)真,则F(k+1)真,现已知F(7)不真,则有:①F(8)不真;②F(8)真;③F(6)不真;④F(6)真;⑤F(5)不真;⑥F(5)真.其中为真命题的是()

A.③⑤B.①②C.④⑥D.③④

3.对平面内的任意两点A(x1,y1)、B(x2,y2)定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|.给出下列三个命题:①若点C在线段AB上,则||AC||+||CB||=||AB||;②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为()

A.0B.1C.2D.3

abcd4.已知a,b,c,d是正实数,P=+++,则有()a+b+ca+b+dc+d+ac+d+b

A.0

5.一个等差数列{an},其中a10=0,则有a1+a2+„+an=a1+a2+„+a19-n(1≤n≤19).一个等比数列{bn},其中b15=1.类比等差数列{an}有下列结论,正确的是()

A.b1b2„bn=b1b2„b29-n(1≤n≤29,n∈N*)B.b1b2„bn=b1b2„b29-n

C.b1+b2+„+bn=b1+b2+„+b29-n(1≤n≤29,n∈N*)D.b1+b2+„+bn=b1+b2+„+b29-n

111116.设S(n)=+S(n)共有项,当n=2时,S(2)=nn+1n+2n+3n7.按照如下的规律:(3),(5,7),(9,11,13),(15,17,19,21),„,第104个括号内各数字之和为________.

18.证明对于任意实数x,y都有x4+y4(x+y)2.2

9.若函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一点c,使f(c)>0,求实数p的取值范围。

10.已知函数f(n)(n∈N*),满足条件:①f(2)=2,②f(xy)=f(x)·f(y),③f(n)∈N*,④当x>y时,有f(x)>f(y).

(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明猜想的f(n)的解析式的正确性.

下载2013~2014高二下期末复习卷3推理与证明word格式文档
下载2013~2014高二下期末复习卷3推理与证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高二文科数学期末复习---推理与证明

    2008年高二文科数学期末复习教学案高二文科数学期末复习---推理与证明一.1.二.1. 观察下列数:1,3,2,6,5,15,14,x,y,z,122,„中x,y,z的值依次是 (A)42,41,123;(B) 13,39,12......

    高三推理与证明专题复习

    推理与证明专题复习中心发言人:王 鑫时间:2013年04月22日教学目标推理与证明重点与难点合情推理与演绎推理、直接证明与间接证明教学过程知识要点1.推理归纳推理:由某类事物......

    推理与证明复习(基础)

    宁陕中学导学案(数学)高二级班姓名年月日《推理与证明》复习学习目标:1、能对推理与证明的各种方法进行梳理,建立知识网络,把握整体结构。2、能比较数学证明的几种基本方法的思维......

    推理与证明总复习

    推理与证明总复习编写人:杨素华审核:高二数学组(1)一、知识结构框图二、考纲分解解读1合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推......

    推理与证明小结复习

    推理与证明复习一、基础知识1.推理:根据一个或几个已知的判断来确定一个新的判断的思维过程。推理一般分为合情推理与演绎推理两类。2.合情推理比,然后提出猜想的推理,把它们通称......

    高二下期末复习计数原理

    高二下册计数原理复习 一、3个人要坐在一排8个空位置上,若每人左右都有空座位,不同的坐法有多少种?二、某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中......

    025推理与证明复习(大全5篇)

    高二数学文科学案序号025高二年级 13 班教师学生________ 6. 下列推理正确的是 .A.把a(b+c)与loga(x+y)类比,则有:loga(x+y)=logax+logay B.把a(b+c)与sin(x+y)类比,则有:sin(x+y)=sin x+si......

    推理与证明

    第3讲 推理与证明 【知识要点】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理 2.类比推理是从......