高中数学选修2-2推理与证明复数期末复习学案5篇范文

时间:2019-05-13 04:07:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学选修2-2推理与证明复数期末复习学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学选修2-2推理与证明复数期末复习学案》。

第一篇:高中数学选修2-2推理与证明复数期末复习学案

专题复习推理与证明、复数

一、基础知识

1.推理:根据一个或几个已知的判断来确定一个新的判断的思维过程。推理一般分为合情推理与演绎

推理两类。

25.间接证明

定义:要证明某一结论Q是正确的,但不直接证明,而是先去假设(即Q的反面非Q是正

确的),经过正确的推理,最后得出矛盾,因此说明假设非Q是错误的,从而断定结论Q是正确的的证明方法。6.数学归纳法

证明一个与正整数n 有关的命题,可按以下步骤:(1)证明当n取n0时命题成立;(归纳奠基)

(2)假设n=k(k≥n0)时命题成立,证明n=k+1时命题也成立。(归纳递推)完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立。这种证明方法就是数学归纳法。然后提出猜想的推理,把它们通称合情推理。3.演绎推理

定义:从出发,推出某个下的结论的推理。特点:由到。模式:三段论——演绎推理的一般模式

“三段论”的结构:大前提——已知的;小前提——所研究的;

结论——根据一般原理,对做出的判断。“三段论”的表示:大前提:;小前提:;结论:S是P。

4二、典型例题已知函数f(x)=x

2例1x2。

(1)分别求f(2)+f(12)、f(3)+f(1

3)、f(4)+f(14)的值;

(2)归纳猜想一般性结论,并给出证明;

(3)求值:f(1)+f(2)+f(3)+„+f(201

2)+f(1)+f(1)+„+f(1

32012)。

例2.已知a1,求证方程:ax24ax4a30,x2(a1)xa20,x2

2ax2a0至少有一个方程有实数根。

例3已知数列{an}的前n项和为Sn,a21=-

3,S1n+S+2=an(n≥2),计算S1、S2、S3、S4,n

并猜想Sn的表达式。

例4(1)(2014山东理)已知a,bR,i是虚数单位,若ai与2bi互为共轭复数,则(abi)

2(2)(2014浙江理)已知a,bR,i是虚数单位,则“ab1”是“(abi)22i”的条件;

(3)(2014辽宁理)若已知(z2i)(zi)5,则z

(4)(2014重庆理)复平面内表示i(12i)的点位于第象限

达标练习

1.下面几种推理是合情推理的是:

①由圆的性质类比推出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是1800,归纳出所有三角形的内角和都是1800

;③某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是1800,四边形内角和是3600,五边形的内角和是5400,得出凸n边形内角和是(n-2)·1800

.()A.①②

B.①③④

C.①②④

D.②④

2.下面使用类比推理恰当的是---------()A.“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”

B.“(a+b)c=ac+bc”类推出“a+bab

c=cc”

C.“(a+b)c=ac+bc”类推出“a+bc=acb

c

(c≠0)”

D.“(ab)n=anbn”类推出“(a+b)n=an+bn”

3.观察(x2)/=2x,(x4)/=4x3,(cosx)/

=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)= A.f(x)B.-f(x)C.g(x)D.-g(x)

4.若大前提是:任何实数的平方都大于0,小前提是:a R,结论是:a2

>0,那么这个演绎推理出错在()A.大前提

B.小前提

C.推理过程

D.其他

5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为()

A.大前提错误B.小前提错误C.推理形式错误D.不是以上错误

6.用反证法证明命题“若a2

+b2

+c2

0,则a,b,c不全为零”反设正确的是()

A.a,b,c全不为零B.a,b,c全为零 C.a,b,c恰有一个为零 D.a,b,c至少有一个为零 7.用反证法证明“关于x的方程ax=b(a≠0)有且只有一个根”时,应该假设方程()A.无解B.两解C.至少两解D.无解或至少两解

8.(2014山东理)用反证法证明命题“设a,bR,则方程x2

axb0至少有一个实根”时要做的假设是()

A.方程x2

axb0没有实根B.方程x2axb0至多有一个实根 C.方程x2

axb0至多有两个实根D.方程x2

axb0恰好有两个实根 9.用数学归纳法证明等式1+2+3+„+(n+3)(n+3)(n+4)2(n∈N*)时,验证n=1,左边应取的项是()

A.1 B.1+2C.1+2+3D.1+2+3+4 10.用数学归纳法证明(n1)(n2)

(nn)2n··13··(2n1),从k到k1,左边需要增乘的代数式

为()A.2k1

B.2(2k1)C.

2k1

k1

D.

2k3

k1

11.若复数z2

11i,z21i,则复数z

z1

z的共轭..复数所对应的点位于复平面的()2

A.第一象限B.第二象限C.第三象限D.第四象限

12.z21mm1m2m4

i,mR,z232i,则m1是z1z2的------------()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件

13.已知z则1z50z100-----------------------()

A.3B.1C.2iD.i 14.已知n∈N1+,证明1-2+13-14+„+12n1-12n=1n1+1n2+„+12n。

第二篇:期末复习:推理与证明,复数

高2013级数学(文科)期末复习

期末复习:推理与证明,复数

一、推理

1.归纳推理是由,从的推理。

Ex1:将全体正整数排成一个三角形数阵:按照以上排列的规律,(二)间接证明:反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结

论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:

(1)反设;(2)归谬;(3)结论。

Ex: 用反证法证明数学命题: 设0a,b,c1,求证:(1a)b,(1b)c,(1c)a,不可能同时大于1

4三、复数

24k4k+14k+24k+

31、虚数单位i,规定:i=;i=;i=;i=;i=(kN*)

2、复数的代数形式是,全体复数所成的集合叫做________集。用字母________来表示。

3.z=a+bi(a、bR),则复数z的实部是;复数z的虚部是。复数z是实数,复数z是虚数,复数z是纯虚数

4、z1=a+bi(a、bR),z2=c+di(c、dR),复数z1=z2;复数z1>z2

5、复数的几何表示:建立了直角坐标系来表示复数的平面叫做________,x轴叫做________轴,y轴叫做

_______轴.实轴上的点都表示______数;除原点外,虚轴上的点都表示__________数。

6、z=a+bi(a、bR),则|z|=|a+bi|=,|z|的几何意义是

7、z1=a+bi(a、bR),z2=c+di(c、dR),则z1+z2=,对应向量运算;

z1-z2=,对应向量运算

8、z1=a+bi(a、bR),z2=c+di(c、dR),则|z1-z2|=,|z1-z2|的几何意义是

9、z1,z2是两个已知复数,z是满足下列等式的复数,写出z所对应的图形分别是什么?

(1)|z-z1|=a(aR,a>0)

(2)|z-z1|=|z-z2|

(3)||z-z1|+|z-z2||=2a(aR,|z1-z2|<2a)

(4)||z-z1|-|z-z2||=2a(aR,|z1-z2|>2a)

10、复数乘除法:(1)43i54i(2)2i74i11、z=a+bi(a、bR),则复数z的共轭复数为z=,zz=

12、实系数一元二次方程ax+bx+c=0(a、b、cR,且a0)的根的情况

当>0时,方程有根,分别为

当=0时,方程有根,为

当<0时,方程有根,分别为

四、题型分类

(一)i的运算1、1iiii12321232010、1iiii20101232010i3、i2i3i20105、f(n)=iinn2010、1i111i2i3i2010nn(nN*)的值域是1i

6、1i1i1i=

7、n为奇数,=1i1i

(二)复数分类

21、z=(2+i)m-3(1+i)m-2(1-i)(mR),z是实数,m取值; z是虚数,m取值;z是纯虚数,m取值;

2、z1=a+bi(a、bR),z2=2+ci(cR),则z1> z2的充要条件是

(三)复数的坐标表示、与向量之间的关系1、3+4i的点关于原点对称的点对应的复数为

22、(m+m-2)+(6-m-m2)i对应复平面上的点一定不在第象限

3、平行四边形中,z1=1+2i,z2=-2+i,z3=-1-2i对应复平面上的点为三个顶点,第四个顶点对应的复数

为

4、复数3-4i和5-6i分别对应向量,求向量AB所对应的复数

(四)共轭运算

1、z1z223i,z1=1-5i,则z2=

2、(z+2)(z2)z,则z=

(五)模的运算及几何意义

2(12i)5(34i)

1、=

2、| z1+ z2|| z1|+| z2| 5(2i)

3、若集合M={z| |z+1|=1, zC},集合N={z| |z-2i|=|z|,zC},则MN=

4、复数z满足条件|z|=1,则|z+3-i|的取值范围是

5、复数z=cos+isin,(R),则|z+1-i|的取值范围是

6、复数z1 z2满足| z1|=3,| z2|=4,| z1+ z2|=5,则|z1 –z2|=

7、|z|+z=8-4i,则z=

8、(1+i)z115i, z2=a-2i , |z1z2||z1|, a的范围(六)函数

1、f(z)=1-z,则z1=2+3i, z2=5-i, 则f(z1z22、f(z)=z-1,则z1=2-3i,f(z1 –z2)=4+4i,求z2=, |z1+z2|=

(七)一元二次方程1、2+ai,b+i(a、bR)是实系数一元二次方程x2pxq0的两根,2、、是方程xxm0(mR)的两个根,且||=2,求m的值

3、复数、是方程xxm0(mR)的两个根,且||||=2,4、方程x+(k-2i)x+4+2i=0有一个根是2,复数另一个根为

五、反思小结

六、巩固练习

1、若zC,且|z-3i|-iz=6-3i,则z=_____.2、若|z1|=|z2|=1,|z1+z2|=3,则|z1-z2|=________。

第三篇:高中数学选修2-2第二章推理与证明学案1,2

第二章推理与证明

2.1合情推理与演绎推理

2.1.1合情推理

学案编制张永国

目标定位:

了解合情推理的含义(易混点)

理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点)

了解合情推理在数学发展中的作用(难点)

一、自主学习:

归纳推理:

1.归纳推理:由某类事物的_______对象具有某些特征,推出该类事物的________对象________这些特征的推理,或者由_________概括出_______的推理,称为归纳推理.简言之,归纳推理是由________到_______、由_______到_______的推理.2.归纳推理的一般步骤:

第一步,通过观察个别情况发现____________;

第二步,从已知的相同性质中推出一个能_______________.思考探究:

1.归纳推理的结论一定正确吗?

2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?

类比推理

1.类比推理:由两类对象具有某些类似特征和其中___________对象的某些已知特征,推出另一类对象_________这些特征的推理.简言之,类比推理是由_________到________的推理.2.类比推理的一般步骤:

第一步:找出两类事物之间的________________;

第二步:用一类事物的性质去推理另一类事物的性质,得出__________________.思考探究:

1.类比推理的结论能作为定理应用吗?

2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体?

(2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论?

合情推理

1.定义:归纳推理和类比推理都有是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.简言之,合情推理就是合乎情理的推理.2.推理的过程:

思考探究:

1.归纳推理与类比推理有何区别与联系?

2.(1)由直角三角形、等腰三角形、等边三角形内角和是180°,得出所有三角形内角和都是180°;

(2)某次考试张军成绩是100分,得出全班同学成绩都是100分.以上是否属于合情推理?

二、典例剖析:

例1.根据下列条件,写出数列的前4项,并归纳猜想它的通项公式.(1)a1= 0, an1=an+(2n-1)(n∈N*);

(2)a1= 1, an1=1 a(n∈N*).2n

自主解答:

方法技巧:

例2.已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率kPM、kPN都存在时,那么kPM与kPN之积是与点P的位置无关的定

x2y

2值,试写出双曲线221具有类似的性质,并加以证明.ab

自主解答:

方法技巧:

三、学后总结反思.1.2演绎推理

学案编制张永国

目标定位:

理解演绎推理的含义(重点)

掌握演绎推理的模式,会利用三段论进行简单推理(重点、难点)

合情推理与演绎推理之间的区别与联系

一、自主学习:

演绎推理的含义:

1.演绎推理是从一般性的原理出发,推出_________的结论.演绎推理又叫_______推理.2.演绎推理的特点是_____________的推理.思考探究:

演绎推理的结论一定正确吗?

演绎推理的模式

1.演绎推理的模式采用“三段论”:

(1)大前提——已知的___________(M是P);

(2)小前提——所研究的__________(S是M);

(3)结论——根据一般原理,对特殊情况做出的判断(S是P).2.从集合的角度看演绎推理:

(1)大前提:x∈M且x具有性质P;

(2)小前提:y∈S且SM

(3)结论__________.思考探究:

1.把“函数y=x+2x-3的图象是一条抛物线”作为结论,用三段论表示为:大前提:_________,小前提:______,结论___________.2.指出下面推理的大前提小前提及结论并判断是否有错误.无限小数是无理数,22=0.6666666…是无限小数,32是无理数.3

演绎推理与合情推理

合情推理与演绎推理的关系:

(1)从推理形式上看,归纳是由________到_______个别到一般的推理,类比是由_________到______的推理;演绎推理是由________到________的推理.(2)从推理所得的结论来看,合情推理的结论_____________,有待进一步证明;演绎推理在_______和___________都正确的前提下,得到的结论一定正确.思考探究:

1.合情推理与演绎推理有什么联系.2.指出下列推理的形式是什么?

(1)《论语》云:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民不无所措手足;所以名不正,则民无所措手足.”

(2)金、银、铜、铁都能导电,金、银、铜、铁都是金属,所以金属都能导电.二、典例剖析:

例1.把下列演绎推理写成三段论的形式.①所有导体通电时发热,铁是导体,所以铁通电时发热;

②平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分; ③一次函数是单调函数,函数y=3x-2是一次函数,所以函数y=3x-2是单调函数.自主解答:

方法技巧:

例2.如图所示,D、E、F分别是BC、CA、AB边上的点,∠BFD=∠A,DE∥BA,求证:DE=AF.自主解答:

方法技巧:

例3.求证:函数ƒ(x)=-x+2x在(-∞,1)上为增函数.自主解答:

方法技巧:

三、学后总结反思:

第四篇:“推理与证明、复数”测试卷

龙源期刊网 http://.cn

“推理与证明、复数”测试卷 作者:

来源:《新高考·高二数学》2013年第03期

一、填空题(共14小题,每小题5分,共70分)

第五篇:推理与证明复数习题

推理证明与复数复习题

1.分析法是从要证明的结论出发,逐步寻求使结论成立的()A.充分条件 B.必要条件 C.充要条件 D.等价条件

2.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列

B.从第二项起,以后第一项与前一项的差都不相等的数列叫等和数列 C.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列 D.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列

3.已知数列1,aa2,a2a3a4,a3a4a5a6,,则数列的第k项是()A.akak1a2kB.ak1aka2k1 C.ak1aka2kD.ak1aka2k2

4.在等差数列an中,若an0,公差d0,则有a·4

a6a3·a7,类比上述性质,在等比数列bn中,若bn0,q1,则b4,b5,b7,b8的一个不等关系是()A.b4b8b5b7

B.b5b7b4b8C.b4b7b5b8

D.b4b5b7b8

5.(1)已知p3q32,求证

pq2,用反证法证明时,可假设pq2,(2)已知a,bR,ab1,求证方程x2axb0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设x1≥1,以下结论正确的是()

A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确

C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确

6.如图,在梯形ABCD中,AB∥DC,ABa,CDb(ab).若EF∥AB,EF到CD与AB的距离之比为m:n,则可推算出EF

manb

mn

.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD中,延长梯形两腰AD,BC相交于O点,设△OAB,△OCD的面积分别为S1,S2,EF∥AB且EF到CD与AB的距离之比为m:n,则△OEF的面积S0与S1,S2的关系是()A.S1nS2

nS1mS2

0

mSmn

B.S0

mn

7.用数学归纳法证明(n1)(n2)(nn)2n··13··(2n1),从k到k1,左边需要增乘的代数式为()A.2k1

B.2(2k1)

C.

2k1

k1

D.

2k3

k1

8.下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理.A.①②③; B.②③④; C.②④⑤; D.①③⑤.9.观察数列1121231234

2213214321

,则数6将出现在此数列的第()

A.21项B.22项C.23项D.24项 10.正整数按下表的规律排列

12510173611188 71219142023 22

则上起第2005行,左起第2006列的数应为()

213.下面是按照一定规律画出的一列“树型”图:

设第n个图有an个树枝,则an1与an(n≥2)之间的关系是.

14.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为. 15.已知a是整数,a2是偶数,求证:a也是偶数.(请用反证法证明)

16.观察以下各等式:

sin2

300

cos2

600

sin300

cos600

34sin2200cos2500sin200cos500

4

sin2

150

cos2

450

sin150

cos450

3,分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.

17.已知命题:“若数列a

n是等比数列,且an0,则数列bnnN)也是等比数列”.类

比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.

.已知abc,且abc

018

19.已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。

1.若复数zm2

5m6

m3i是实数,则实数m

2.若复数za21(a1)i是纯虚数(其中aR),则z=________.3.复数z=

2i,则z的共轭复数为__________ 4.若复数z1a2i, z234i,且z1

z为纯虚数,则实数a的值为2

5.复数

2i

1i

(i是虚数单位)的实部为6.已知复数zm2(1i)(mi)(mR),若z是实数,则m的值为。

7.已知

m

1i

1ni,其中m,n是实数,i是虚数单位,则z(mni)2在复平面内对应的点Z位于()

A.第一象限B.第二象限C.第三象限D.第四象限 8.复数z13i,z21i,则复数z1z在复平面内对应的点位于第__ ____象限.

9.数z

mi

1i

(mR,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限

B.第二象限

C.第三象限

D.第四象限

10.复数z11i,|z2|3,那么|z1z2|的最大值是。11.已知zC,且z22i1,i为虚数单位,则z22i的最小值是()

(A)2.(B)3.(C)4.(D)5.12.化简(cos225isin225)2(其中i为虚数单位)的结果为13.若z,则z100z50

1____________ 14.x1iy12i513i,则xy__________ 15.已知复数z满足zz10,z1

z1

是纯虚数,求复数z

16.已知复数z2

1m(4m)i,z22cos(3sin)i,(,mR,[0,

]),z1z2,求的取值范围。

17.设z是虚数,z1z是实数,且12,(1)求|z|及z实部取值范围;(2)设u1z1z,那么u是不是纯虚数?说明理由;(3)求u2的最小值.

下载高中数学选修2-2推理与证明复数期末复习学案5篇范文word格式文档
下载高中数学选修2-2推理与证明复数期末复习学案5篇范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    复数与推理证明练习题

    复数与推理证明练习题1.若复数z134i,z212i,则z1z2。 2.若复数(1i)(ai)是实数,则实数a。 3.已知复数z的实部为1,虚部为2,则i13iz的虚部为。4.(i是虚数单位)对应的点在第象限。5.复数......

    2014高中数学选修1-2推理与证明(文科班)

    2014高考数学复习选修1-2推理与证明专题讲义(文科班) 知识点:1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳). 简言之,归纳推理是由部分到整体、由......

    高中数学选修1-2第二章推理与证明练习题[范文模版]

    第二章推理与证明1.合情推理与演绎推理;2.直接证明与间接证明;【2013三校二模】15.已知数列an满足a1,an1121(nN*),点Ai(i,ai)在x轴上的射影an1为点Bi(iN*),若SnA1B1A2B2AiBiAnBn则......

    高中数学高考总复习推理与证明

    高考总复习推理与证明一、选择题0,1这三个整数中取值的数列,若a1a2a509,1.设a1,a2,,a50是从1,且(a11)2(a21)2(a501)2107,则a1,a2,,a05A.10B.11C.12D.13 中为0的个数为2.平面内有n条直线,最多可......

    高二期末复习推理与证明

    推理与证明(一).推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。①归纳推理:由某类......

    高中数学推理与证明测试题[本站推荐]

    高中数学推理与证明测试题山东淄博五中孙爱梅一 选择题(5×12=60分)1. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的A.白色B.黑色C.白色可......

    高中数学推理与证明练习题

    克拉玛依市启航教育培训中心0990-6888887高中数学推理与证明练习题一. 选择题1.分析法是从要证明的结论出发,逐步寻求使结论成立的A.充分条件 B.必要条件 C.充要条件 D.等价条件2.下面......

    【高中数学】推理与证明[大全五篇]

    【高中数学】推理与证明归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳) 归纳推理的一般步骤:通过观察个别情况发现某些相同的性质;从已知的相同性......