第一篇:2014高中数学选修1-2推理与证明(文科班)
2014高考数学复习选修1-2推理与证明专题讲义(文科班)知识点:
1、归纳推理
把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。
归纳推理的一般步骤:
通过观察个别情况发现某些相同的性质;
; 从已知的相同性质中推出一个明确表述的一般命题(猜想)
2、类比推理
由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).
简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:
找出两类对象之间可以确切表述的相似特征;
用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; 检验猜想。
3、合情推理
归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.4、演绎推理
从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理. 简言之,演绎推理是由一般到特殊的推理.演绎推理的一般模式———“三段论”,包括
⑴大前提-----已知的一般原理;
⑵小前提-----所研究的特殊情况;
⑶结论-----据一般原理,对特殊情况做出的判断.
5、直接证明与间接证明 ⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法.反证法法证明一个命题的一般步骤:(1)(反设)假设命题的结论不成立;
(2)(推理)根据假设进行推理,直到导出矛盾为止;(3)(归谬)断言假设不成立;
(4)(结论)肯定原命题的结论成立.考题荟萃
1.下面使用类比推理正确的是A.“若a3b3,则ab”类推出“若a0b0,则ab” B.“若(ab)cacbc”类推出“(ab)cacbc”
C.“若(ab)cacbc” 类推出“
abcab
cc
(c≠0)
” D.“(ab)nanbn” 类推出“(ab)n
anbn”
2.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,1 根据图中的数构成的规律,a所表示的数是()
A.2B.41331C.6D.8
14a
411510105 3.用反证法证明命题“若整数系数一元二次方程ax
2bxc0(a0)有有理数根,那么
a,b,c中至少有一个是偶数时”下列条件假设中正确的是()
A.假设a,b,c都是偶数B.假设a,b,c都不是偶数
C.假设a,b,c中至多有一个偶数D.假设a,b,c中至多有两个偶数 4.若a,b,c满足cba,且ac0,那么下列选项中不一定成立的是()A.abac
B.c(ba)0
C.cb2
ca2
D.ac(ac)0
5.类比平面内 “垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论: ①垂直于同一条直线的两条直线互相平行②垂直于同一个平面的两条直线互相平行③垂直于同一条直线的两个平面互相平行④垂直于同一个平面的两个平面互相平行 则正确的结论是()A.①②B.②③
C.③④
D.①④
6、当n1,2,3,4,5,6时,比较2n
和n
2的大小并猜想()A.n1时,2n
n2
B.n3时,2n
n2
C.n4时,2nD.n5时,2n
7、已知x,yR,则“xy1”是“xy1”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
8、对“a,b,c是不全相等的正数”,给出两个判断:
n2n
222
①(ab)(bc)(ca)0;②ab,bc,ca不能同时成立,下列说法正确的是()
A.①对②错 C.①对②对
B.①错②对
D.①错②错
'
''
9.设f0(x)sinx,f1(x)f0(x),f2(x)f1(x),,fn1(x)fn(x),n∈N,则f2007(x)
A.sinx B.-sinx C.cosx D.-cosx 10.下面几种推理是类比推理的是()
同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+A.两条直线平行,∠B=1800
B.由平面三角形的性质,推测空间四边形的性质
C.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D.一切偶数都能被2整除,2100是偶数,所以2100能被2整除.11.如果f(ab)f(a)f(b)且f(1)2,则
A.
f(2)f(4)f(6)
(). f(1)f(3)f(5)
5B.
5
C.6 D.8
2f(x),猜想f(x)的表达式为,f(1)1(xN*)
f(x)24212
A.f(x)xB.f(x)C.f(x)D.f(x)
22x1x12x
113.已知f(x1)
14.若a>b>0,则下列不等式中总成立的是()
11bb+1A.a+b.
baaa+1112a+baC.a+b.aba+2bb
16.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:
“是乙或是丙获奖。”乙说:“甲、丙都未获奖。”丙说:“我获奖了。”丁说:“是乙获奖了。”四位歌手的话只有两句是对的,则获奖歌手是()
A.甲B.乙C.丙D.丁
17.观察下列的图形中小正方形的个数,则第6个图中有个小正方形
.18.观察下列式子:
1121341
523,34,45,56,,归纳得出一
2411233
4般规律为.
19、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是。
20.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:ABACBC。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系
为.21.在数列an中,a11,an1是.
2an
nN*,猜想这个数列的通项公式an2
22,平面内2条相交直线最多有1个交点;3条相交直线最多有3个交点;试猜想:n条相交直线最多把有____________个交点
23,.从11,可得到一般规律为(用2343,3+4+5+6+7=5中,数学表达式表示),24.将全体正整数排成一个三角形数阵:23 456 78910 . . . . . . .
按照以上排列的规律,第n 行(n3)从左向右的第3个数为.
25.若0a1,0b1,且ab,则在ab,2ab,ab,2ab中最大的是________.
26.已知:sin230sin290sin2150
222
sin25sin265sin2125
27.已知a,b,c均为实数,且ax2y求证:a,b,c中至少有一个大于0.2
通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.,by22z
,cz22x
6,
第二篇:高二 数学 选修 推理与证明(文)(模版)
高中数学(文)推理与证明
知识要点:
1、合情推理
根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理;
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比)。
类比推理的一般步骤:
(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般地,事物之间的各个性质之间并不是孤立存在的,而是相互制约的。如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似,类比的结论可能是真的;
(4)在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。
2、演绎推理
分析上述推理过程,可以看出,推理的灭每一个步骤都是根据一般性命题(如“全等三角形”)推出特殊性命题的过程,这类根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理,叫做演绎推理。演绎推理的特征是:当前提为真时,结论必然为真。
3、证明方法
(1)反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。
反证法的步骤:1)假设命题的结论不成立,即假设结论的反面成立;2)从这个假设出发,通过推理论证,得出矛盾;3)由矛盾判定假设不正确,从而肯定命题的结论正确。
注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论。
(2)分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。
分析法的思维特点是:执果索因;
分析法的书写格式: 要证明命题B为真,只需要证明命题为真,从而有„„,这只需要证明命题为真,从而又有„„
这只需要证明命题A为真,而已知A为真,故命题B必为真。
(3)综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法,综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。
典例分析:
例1:例5.(1)观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?
(2)把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立:
1)如果一条直线与两条平行直线中的一条相交,则必于另一条相交。
2)如果两条直线同时垂直与第三条直线,则这两条直线平行。
例2:(06年天津)如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱
1EF//BC。
2(1)证明FO//平面CDE;
(2)设BC,证明EO平
面CDF。
例3:(1)用反证法证明:如果a>b>0,那么
(2)用综合法证明:如果a>b>0,那么
; ;
例4:用分析法证明:如果ΔABC的三条边分别为a,b,c,那么:
abc 1ab1c
巩固练习:
1.如果数列an是等差数列,则
A.a1a8a4a5 B.a1a8a4a5 C.a1a8a4a5 D.a1a8a4a
52.下面使用类比推理正确的是
A.“若a3b3,则ab”类推出“若a0b0,则ab”
B.“若(ab)cacbc”类推出“(ab)cacbc”
abab(c≠0)” ccc
nn(ab)anbn” 类推出“(ab)anbn” D.“
3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误C.“若(ab)cacbc” 类推出“
4.设f0(x)sinx,f1(x)f0(x),f2(x)f1'(x),,fn1(x)fn'(x),n∈N,则'
f2007(x)
A.sinx B.-sinx C.cosx D.-cosx
5.在十进制中20044100010101022103,那么在5进制中数码200
4折合成十进制为
A.29B.254C.602D.2004
6.函数yax21的图像与直线yx相切,则a= A.18 B.1 4C.12D.11;③47.下面的四个不等式:①a2b2c2abbcca;②a1a
ab2 ;④a2b2c2d2acbd2.其中不成立的有ba
A.1个B.2个C.3个D.4个
2f(x)(xN*),f(1)1 8.已知f(x1),猜想f(x)的表达式为f(x)2
4212A.f(x)xB.f(x)C.f(x)D.f(x) 22x1x12x1
9.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:AB2AC2BC2。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.23432,3+4+5+6+7=52中,可得到一般规律为10.从112,(用数学表达式表示)
11.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是.12.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)
当n>4时,f(n)=(用含n的数学表达式表示)
第三篇:高中数学选修1-2第二章推理与证明练习题[范文模版]
)
心之所愿,无事不成。
高二文科數學選修1--2編寫:校審: 【江西文5】观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为(B)
A.76B.80C.86D.92 【福建文20】20.(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos248°(5)sin2(-25°)+cos255°-sin2(-25°)cos255° Ⅰ 试从上述五个式子中选择一个,求出这个常数
Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论。
高二文科数学选修1-2()心之所愿,无事不成。
【上海文18】若Snsin)
A、16B、72C、86D、100 【天津理】对实数a和b,定义运算“”:ab
7sin
...sinnN),则在S1,S2,...,S100中,正数的个数是(C 77
a,ab1,设函数
b,ab1.f(x)x22xx2,xR.若函数yf(x)c的图像与x轴恰有两个公共点,则实数c的取值范围是
A.,21,
32
B.,21,
34
C.1,,D.1,,
11443144
(山东理15)设函数f(x)
x
(x0),观察: x
2f1(x)f(x)
x,x2
f2(x)f(f1(x))f3(x)f(f2(x))
f4(x)f(f3(x))
x,3x4 x,7x8
x,15x16
根据以上事实,由归纳推理可得:
当nN*且n2时,fn(x)f(fn1(x))(陕西理13)观察下列等式
1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
„„
照此规律,)心之所愿,无事不成。
高二文科數學選修1--2編寫:校審: 则(r2)=2r○1,○1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于○1的式子:○2
(太原模拟)若把正整数按下图所示的规律排序,则从2002到2004年的箭头方向依次为()
1458912„
【湖北理】回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,„,99.3位回文数有90个:101,111,121,„,191,202,„,999.则
(Ⅰ)4位回文数有个;
(Ⅱ)2n1(nN)位回文数有90910n 【江西理6】观察下列各式:
A.B.C.ab1,a2b23,a3b34,a4b47,a5b511,则a10b10(C)
A.28B.76C.123D.199
【必修五P32、斐波那契数列】1、1、2、3、5、8、()13、21、34、55
[·福建卷] 在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①∈[1]; ②-3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”. 其中,正确结论的个数是()A.1B.2C.3D.4
[·江西卷] 观察下列各式:72=49,73=343,74=2401,„,则7的末两位数字为()
A.01B.43C.07D.49
高二文科数学选修1-2()心之所愿,无事不成。
第四篇:高中数学推理与证明测试题
高中数学推理与证明测试题
山东淄博五中孙爱梅
一 选择题(5×12=60分)
1.如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什
么颜色的()
A.白色B.黑色C.白色可能性大D.黑色可能性大
2.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故某奇数(S)
是3的倍数(P).”上述推理是()
A.小前提错B.结论错C.正确的D.大前提错
3.F(n)是一个关于自然数n的命题,若F(k)(k∈N+)真,则F(k+1)真,现已知F
(7)不真,则有:①F(8)不真;②F(8)真;③F(6)不真;④F(6)真;⑤F(5)不
真;⑥F(5)真.其中真命题是()
A.③⑤B.①②C.④⑥D.③④
4.下面叙述正确的是()
A.综合法、分析法是直接证明的方法B.综合法是直接证法、分析法是间接证法
C.综合法、分析法所用语气都是肯定的 D.综合法、分析法所用语气都是假定的5.类比平面正三角形的“三边相等,三内角相等”的性质,可知正四面体的下列哪些性质,你认为比较恰当的是()
① 各棱长相等,同一顶点上的任两条棱的夹角都相等;
② 各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③ 各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
A.①B.①②C.①②③D.③
6.(05·春季上海,15)若a,b,c是常数,则“a>0且b2-4ac<0”是“对x∈R,有ax
2+bx+c>0”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件
17.(04·全国Ⅳ,理12)设f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f2
(2),f(5)=()
5A.0B.1C.D.5 2
111118.设S(n)= + + ++„+,则()nn+1n+2n+3n11A.S(n)共有n项,当n=2时,S(2+
311
1B.S(n)共有n+1项,当n=2时,S(2)=+ +
234111
C.S(n)共有n2-n项,当n=2时,S(2 ++
234111
D.S(n)共有n2-n+1项,当n=2时,S(2 ++
4x
9.在R上定义运算⊙:x⊙y=,若关于x的不等式(x-a)⊙(x+1-a)>0的解集
2-y是集合{x|-2≤x≤2,x∈R}的子集,则实数a的取值范围是()A.-2≤a≤2B.-1≤a≤1C.-2≤a≤1D.1≤a≤2
10.已知f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2,若n∈N,an=f(n),则a2006=()
A.2006B.4C.D.-4
11.函数f(x)在[-1,1]上满足f(-x)=-f(x)是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是()A.f(sinα)>f(sinβ)B. f(cosα)>f(sinβ)C.f(cosα)<f(cosβ)D.f(sinα)<f(sinβ)
12.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。四位歌手的话只有两名是对的,则奖的歌手是()A.甲B.乙C.丙D.丁
二 填空题(4×4=16分)13.“开心辞典”中有这样的问题:给出一组数,要你根据规律填出后面的第几个数,现给1131
5出一组数:,-,-,它的第8个数可以是。
228
43214.在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BDBC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为。
15.(05·天津)在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n,n∈N*,S10=____________.16.(05黄冈市一模题)当a0,a1,a2成等差数时,有a0-2a1+a2=0,当a0,a1,a2,a3成等差数列时,有a0-3a1+3a2-a3=0,当a0,a1,a2,a3,a4成等差数列时,有a0-4a
1012
+6a2-4a3+a4=0,由此归纳:当a0,a1,a2,„,an成等差数列时有Cna0-Cna1+Cna2-„+Cnnan=0.如果a0,a1,a2,„,an成等差数列,类比上述方法归纳出的等式为___。三 解答题(74分)已知△ABC中,角A、B、C成等差数列,求证:18.若a、b、c均为实数,且a=x2-2x+
*
x
.11
3+=(12分)a+bb+ca+b+c
πππ
b=y2-2y+c=z2-2z+,求证:a、b、236
c中至少有一个大于0.(12分)
19.数列{an}的前n项和记为Sn,已知a1=1,an+1n+
2n(n=1,2,3,„).n
Sn
证明:⑴数列{Sn+1=4an.(12分)
n
20.用分析法证明:若a>0,则
a22≥a+-2.(12分)
aa
121.设事件A发生的概率为P,若在A发生的条件下B发生概率为P′,则由A产生B的概率为P·P′.根据这一事实解答下题.一种掷硬币走跳棋的游戏:棋盘上有第0、1、2、„、100,共101站,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次.若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站.直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束.已知硬币出现正、反面的概率相同,设棋子跳到第到第n站时的概率为Pn.(1)求P1,P2,P3;
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列(12分)
ACAE22.(14分)在ΔABC中(如图1),若CE是∠ACB =.其证明过程:
BCBE作EG⊥AC于点G,EH⊥BC于点H,CF⊥AB于点F
∵CE是∠ACB的平分线,∴EG=EH.又∵
ACAC·EGSΔAEC
=,BCBC·EHSΔBEC
AEAE·CFSΔAEC==,BEBE·CFSΔBEC∴
ACAE=.BCBE
(Ⅰ)把上面结论推广到空间中:在四面体A-BCD中(如图2),平面CDE是二面角A-CD-B的角平分面,类比三角形中的结论,你得到的相应空间的结论是______
(Ⅱ)证明你所得到的结论.B HC
图
1A
A G
B
图
2h11C
答案:
一 1 A 2 C 3 A 4 A 5 C 6 A 7 C 8 D 9C10C 11B 12 C
πππ分析:因为锐角三角形,所以α+β>,所以0<-α<β<,222
π
sin(-α)<sinβ,0<cosα<sinβ<1,函数f(x)在[-1,1]上满足是减函数
所以f(cosα)>f(sinβ)。12分析:先猜测甲、乙对,则丙丁错,甲、乙可看出乙获奖则丁不错,所以丙丁中必有一个是对的,设丙对,则甲对,乙错,丁错.∴答案为C.1.二 13-14(S△ABC)2= S△BOC S△BDC15.3
3216a
00n
C
·a
1-C
1n
·a2 n·„·an(-1)nn=1.2C
C
n
[解析]解此题的关键是对类比的理解.通过对所给等差数列性质的理解,类比去探求等比数列相应的性质.实际上,等差数列与等比数列类比的裨是运算级别的类比,即等差数列中的“加、减、乘、除”与等比数列中的“乘、除、乘方、开方”相对应.三 解答题
317(分析法)要证+=
a+bb+ca+b+c
a+b+ca+b+c需证:+ =3
a+bb+c
即证:c(b+c)+a(a+b)=(a+b)(b+c)即证:c2+a2=ac+b
2因为△ABC中,角A、B、C成等差数列,所以B=600,由余弦定理b2= c2+a2-2cacosB 即b= c+a-ca 所以c+a=ac+b
3因此 + =
a+bb+ca+b+c(反证法).证明:设a、b、c都不大于0,a≤0,b≤0,c≤0,∴a+b+c≤0,πππ
而a+b+c=(x2-2y)+(y2-2z+z2-2x+
236
=(x-2x)+(y-2y)+(z-2z)+π=(x-1)+(y-1)+(z-1)+π-3,∴a+b+c>0,这与a+b+c≤0矛盾,故a、b、c中至少有一个大于0.19(综合法).证明:⑴由an+1
2222222
n+2
n,而an+1=Sn+1-Sn得 n
Sn+
1n+12(n+1)n+1Sn∴Sn=Sn+1-Sn,∴Sn+1Sn=2,∴数列{}为等比数列.nnSnn
n
SnSn+1Sn-14an(n-1)⑵由⑴知{2,∴=4·,∴Sn+1=4an.nn+1n-1n-1n+120(分析法).证明:要证
a2+2-≥a+2,只需证
aa
a22+2≥a+aa
∵a>0,∴两边均大于零,因此只需证(a2+22)2≥(a+)2,aa
只需证a2+24+
4a
a2+2≥a2+22+2(a+,aaa
a2+2≥(a+,只需证a2+2≥(a2+2+2),a2aa2aa
即证a2+2≥2,它显然是成立,∴原不等式成立.111131131
521.(1)解:P0=1,∴P1=, P2× +=,P3= ×+× =.2222422428
(2)证明:棋子跳到第n站,必是从第n-1站或第n-2站跳来的(2≤n≤100),所以Pn
Pn-1Pn-2
∴Pn-Pn-1=-Pn-1+Pn-1 Pn-2=(Pn-1-Pn-2),22211
∴an=-an-1(2≤n≤100),且an=P1-P0.22
故{an}是公比为-,首项为-的等比数列(1≤n≤100).2222.结论:
SΔACDSΔAECSΔACDSΔAEDAESΔACD= 或 =SΔBCDBESΔBCDSΔBECSΔBCDSΔBED
证明:设点E是平面ACD、平面BCD的距离分别为h1,h2,则由平面CDE平分二面角A-CD-B知h1=h2.又∵
SΔACDh1SΔACDVA-CDE
= SΔBCDh2SΔBCDVB-CDE
VA-CDEAESΔAEDVC-AED = =BESΔBEDVC-BEDVB-CDESΔACDAE∴ =SΔBCDBE
A G
B
C
2图2 A hB HC
图1
第五篇:高中数学推理与证明练习题
克拉玛依市启航教育培训中心0990-6888887
高中数学推理与证明练习题
一.选择题
1.分析法是从要证明的结论出发,逐步寻求使结论成立的()
A.充分条件 B.必要条件 C.充要条件 D.等价条件
2.下面叙述正确的是()
A.综合法、分析法是直接证明的方法 B.综合法是直接证法、分析法是间接证法
C.综合法、分析法所用语气都是肯定的 D.综合法、分析法所用语气都是假定
3.用反证法证明命题:若整系数一元二次方程ax2bxc0(a0)有有理根,那么a,b,c中至少有一个是偶数时,下列假设中正确的是()
A.假设a,b,c都是偶数
B.假设a,b,c都不是偶数
C.假设a,b,c至多有一个是偶数
D.假设a,b,c至多有两个是偶数
4.在△ABC中,sinAsinCcosAcosC,则△ABC一定是()
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定
5.在证明命题“对于任意角,cos4sin4cos2”的过程:“cos4sin4(cos2sin2)(cos2sin2)cos2sin2cos2”中应用了 A.分析法 B.综合法 C.分析法和综合法综合使用 D.间接证法
二.证明题
6.设a,b,c都是正数,求证
12a12b12c1ab1bc1ca
克拉玛依市启航教育培训中心0990-6888887
7.已知:sin230sin290sin2150
sin2323
25sin265sin1252
通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明
8.ABC的三个内角A,B,C成等差数列,求证:1
ab1
bc3
abc