人教版2013届高三一轮复习课时训练38:直接证明与间接证明

时间:2019-05-12 15:11:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版2013届高三一轮复习课时训练38:直接证明与间接证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版2013届高三一轮复习课时训练38:直接证明与间接证明》。

第一篇:人教版2013届高三一轮复习课时训练38:直接证明与间接证明

人教版2013届高三一轮复习课时训练38

直接证明与间接证明

x-y1.若|x|<1,|y|<1,试用分析法证明:|1-xy

x-y证明:要证1-xy

x-y2只需证:|<1⇐|x-y|2<|1-xy|2 1-xy

22⇐x+y-2xy<1-2xy+x2y

2⇐x2+y2-1-x2y2<0

⇐(y2-1)(1-x2)<0

⇐(1-y2)(1-x2)>0.因为|x|<1,|y|<1,所以x2<1,y2<1,x-y从而(1-y2)(1-x2)>0成立,故|1-xy

sinB+sinC2.在△ABC中,sinA=,试判断△ABC的形状并证明. cosB+cosC

解:△ABC是直角三角形,证明如下:

sinB+sinC∵sinA=A+B+C=π,cosB+cosC

∴sinAcosB+sinAcosC=sin(A+C)+sin(B+A).

∴sinCcosA+sinBcosA=0,即(sinC+sinB)cosA=0.π又∵sinC+sinB≠0,∴cosA=0,∴A= 2

∴△ABC是直角三角形.

一、选择题

1.(2012·洛阳调研)用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()

A.a,b,c中至少有两个偶数

B.a,b,c中至少有两个偶数或都是奇数

C.a,b,c都是奇数

D.a,b,c都是偶数

解析:选B.自然数a,b,c中为偶数的情况为:a,b,c全为偶数;a,b,c中有两个数为偶数;a,b,c全为奇数;a,b,c中恰有一个数为偶数,所以反设为:a,b,c中至少有两个偶数或都是奇数.

2.若a,b,c为实数,且a

A.ac2ab>b

211baC. abab

2解析:选B.a-ab=a(a-b),∵a0,∴a2>ab.①

又ab-b2=b(a-b)>0,∴ab>b2,②

由①②得a2>ab>b2.1113.设a,b,c∈(-∞,0),则ab+c)bca

A.都不大于-2B.都不小于-2

C.至少有一个不大于-2D.至少有一个不小于-2

111解析:选C.因为a++b+c+≤-6,所以三者不能都大于-2.bca

4.若a,b∈R,则下面四个式子中恒成立的是()

A.lg(1+a2)>0B.a2+b2≥2(a-b-1)

aa+1C.a2+3ab>2b2D.

1解析:选B.在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.

5.若a、b、c是不全相等的正数,给出下列判断

①(a-b)2+(b-c)2+(c-a)2≠0;

②a>b与a

③a≠c,b≠c,a≠b不能同时成立.

其中判断正确的个数是()

A.0B.

1C.2D.

3解析:选C.①②正确,③中,a≠c,b≠c,a≠b可能同时成立,如a=1,b=2,c=3.二、填空题

6.用反证法证明命题“若实数a,b,c,d满足a+b=c+d=1,ac+bd>1,则a,b,c,d中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是:________.解析:“至少有一个”的否定是“一个也没有”,故结论的否定是“a,b,c,d中没有一个非负数,即a,b,c,d全是负数”.

答案:a,b,c,d全是负数

7.(2012·黄冈质检)在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,则三边a,b,c应满足________.

b2+c2-a

2解析:由余弦定理cosA=<0,2bc

所以b2+c2-a2<0,即a2>b2+c2.答案:a2>b2+c2

8.设a3+2,b=27,则a,b的大小关系为________.

解析:a3+2,b=27两式的两边分别平方,可得

a2=11+46,b2=11+47,显然7.∴a

三、解答题

9.已知a>b>c,且a+b+c=0b-ac3a.b-ac3a,只需证b2-ac<3a2,∵a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.因为a>b>c,所以a-b>0,a-c>0,所以(a-b)(a-c)>0,显然成立.

故原不等式成立.

10.已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA=1.(1)求证:SA⊥平面ABCD;

(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.

解:

(1)证明:由已知得SA+AD=SD,∴SA⊥AD.同理SA⊥AB.又AB∩AD=A,∴SA⊥平面ABCD.(2)假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC⊄平面SAD,∴BC∥平面SAD.而BC∩BF=B,∴平面SBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.故不存在这样的点F,使得BF∥平面SAD.11.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点.若f(c)=0,且00.1(1)证明:f(x)的一个零点; a

1(2)试比较c的大小. a

解:(1)证明:∵f(x)的图象与x轴有两个不同的交点,∴f(x)=0有两个不等实根x1,x2,∵f(c)=0,∴x1=c是f(x)=0的根,c又x1x2 a

11∴x2=c),aa

1∴f(x)=0的一个根. a

1即f(x)的一个零点. a

11(2)c>0,aa

1由00,知f()>0,a

11这与f=0c,aa

11又∵≠c,∴>c.aa

222

第二篇:高三一轮复习教案26直接证明与间接证明学生版

直接证明与间接证明

1. 直接证明

(1)综合法 ①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. ②框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→„→Qn⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证明的结论).

(2)分析法

①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.

②框图表示:Q⇐P1→P1⇐P2→P2⇐P3→„→得到一个明显成立的条件.2. 间接证明

反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.

[难点正本 疑点清源]

1. 综合法证明问题是由因导果,分析法证明问题是执果索因.

2. 分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.

基础题 1. 要证明“3+5”可选择的方法有以下几种,其中最合理的是________.(填序号)

①反证法,②分析法,③综合法.

ba2. 下列条件:①ab>0,②ab<0,③a>0,b>0,④a<0,b<0,其中能使≥2成立的条件ab的个数是________.

3. 已知函数f(x)=lg

4. 下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分

析法是逆推法;⑤反证法是间接证法.其中正确的有

A.2个/ 6

1-x,若f(a)=b,则f(-a)=______(用b表示). 1+x()B.3个C.4个D.5个

5. 用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设

A.三个内角都不大于60° B.三个内角都大于60° C.三个内角至多有一个大于60° D.三个内角至多有两个大于60° 题型分类

题型一 综合法的应用

()

1112例1 已知a,b,c均为正数,证明:a2+b2+c2+abc≥63,并确定a,b,c为何

值时,等号成立.

21思维启迪:利用a2+b2≥2ab,再利用ab2,根据这个解题思路去解

ababab答本题即可.

已知a、b、c为正实数,a+b+c=1.求证:(1)a2+b2+c2≥;

3(2)3a+23b+23c+2≤6.题型二 分析法的应用

a+mb2≤a+mb.例2 已知m>0,a,b∈R,求证:1+m1+m

思维启迪:本题若使用综合法,不易寻求证题思路.可考虑使用分析法.

已知a>0,求证:

题型三 反证法的应用

例3 已知a≥-1,求证三个方程:

211a2-2≥a+-2.aa

x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数根.

思维启迪:“至少有一个”的否定是“一个也没有”,即“三个方程都没有实数根”.

等差数列{an}的前n项和为Sn,a1=12,S3=9+32.(1)求数列{an}的通项an与前n项和Sn;

S(2)设bn(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列.

n

随堂练

A组 专项基础训练(时间:35分钟,满分:57分)

一、选择题(每小题5分,共20分)

1. 若a,b,c为实数,且a

A.ac2

B.a2>ab>b2 baD.ab

()

()

2. 设a=lg 2+lg 5,b=ex(x<0),则a与b大小关系为

A.a>b

B.a

C.a=b

D.a≤b

3. 分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,b-ac<

3a”索的因应是 A.a-b>0

()

B.a-c>0 D.(a-b)(a-c)<0

C.(a-b)(a-c)>0

4. 用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为

()

A.a,b,c中至少有两个偶数

B.a,b,c中至少有两个偶数或都是奇数 C.a,b,c都是奇数 D.a,b,c都是偶数

二、填空题(每小题5分,共15分)

5. 设a>b>0,mab,n=a-b,则m,n的大小关系是__________.

6. 用反证法证明命题“若实数a,b,c,d满足a+b=c+d=1,ac+bd>1,则a,b,c,d

中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是_____. 7. 设x,y,z是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若

x⊥z,且y⊥z,则x∥y”为真命题的是________(填写所有正确条件的代号).

①x为直线,y,z为平面;②x,y,z为平面;③x,y为直线,z为平面;④x,y为平面,z为直线;⑤x,y,z为直线.

三、解答题(共22分)

ππ

10,,若x1,x2∈0,且x1≠x2,求证:[f(x1)+8.(10分)已知函数f(x)=tan x,x∈22

2f(x2)]>f

9.(12分)已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD2,SA=1.(1)求证:SA⊥平面ABCD;

(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.

x1+x2

2.B组 专项能力提升(时间:25分钟,满分:43分)

一、选择题(每小题5分,共15分)

1. 若a,b∈R,则下面四个式子中恒成立的是

A.lg(1+a2)>0C.a2+3ab>2b

2()

B.a2+b2≥2(a-b-1)aa+1D.bb+

1()

2. 设a,b,c∈(-∞,0),则a+,b+c

bca

A.都不大于-2B.都不小于-2

C.至少有一个不大于-2D.至少有一个不小于-2

3. 已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任意m,n∈N*都有:①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).给出以下三个结论:(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.其中正确结论的个数为 A.

3()

B.2C.1D.0

二、填空题(每小题5分,共15分)

4. 关于x的方程ax+a-1=0在区间(0,1)内有实根,则实数a的取值范围是__________. 5. 若a,b,c为Rt△ABC的三边,其中c为斜边,那么当n>2,n∈N*时,an+bn与cn的大小关系为____________.

6. 凸函数的性质定理为如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,fx1+fx2+„+fxnx1+x2+„+xn„,xn,有f

nn,已知函数y=sin x在区间(0,π)上 是凸函数,则在△ABC中,sin A+sin B+sin C的最大值为________.

三、解答题

ax-1

7.(13分)已知函数f(x)=ln x-.x+1

(1)若函数f(x)在(0,+∞)上为单调递增函数,求a的取值范围; m-nm+n+

(2)设m,n∈R,且m>n,求证:.ln m-ln n2

第三篇:2012届高三数学一轮复习基础导航:20.2直接证明与间接证明

20.2直接证明与间接证明

【考纲要求】

1、了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.2、了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点.3、了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.【基础知识】

1.分析法:从原因推导到结果的思维方法.2.综合法:从结果追溯到产生这一结果的原因的思维方法.3.反证法:判定非q为假,推出q为真的方法.[来源:Z。xx。k.Com]

应用反证法证明命题的一般步骤:⑴分清命题的条件和结论;⑵做出与命题结论相矛盾的假定;⑶由假定出发,应用正确的推理方法,推出矛盾的结果;⑷间接证明命题为真.4.数学归纳法:设{pn}是一个与自然数相关的命题集合,如果⑴证明起始命题p1成立;⑵在假设pk成立的前提上,推出pk+1也成立,那么可以断定,{pn}对一切正整数成立.5.直接证明的两种基本方法:分析法和综合法;间接证明的一种基本方法──反证法.6.数学归纳法的步骤:(1)证明当n=1时,命题成立。(2)证明假设当n=k时命题成立,则当n=k+1时,命题也成立。由(1)(2)得原命题成立

【例题精讲】

例1已知a,b,c是互不相等的实数.

求证:由y=ax+2bx+c,y=bx+2cx+a和y=cx+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.

证明:假设题设中的函数确定的三条抛物线都不与x轴有两个不同的交点(即任何一条抛物线与x轴没有两个不同的交点),由y=ax+2bx+c,222

2y=bx2+2cx+a,y=cx2+2ax+b,得Δ1=(2b)-4ac≤0,Δ2=(2c)-4ab≤0,[来源:学科网]

Δ3=(2a)-4bc≤0.上述三个同向不等式相加得,4b+4c+4a-4ac-4ab-4bc≤0,∴2a+2b+2c-2ab-2bc-2ca≤0,∴(a-b)+(b-c)+(c-a)≤0,∴a=b=c,这与题设a,b,c互不相等矛盾,因此假设不成立,从而命题得证.

111例2已知a>0,-1, 1+a>.ba1-b 222222222222

1【证明】 证法一:由已知->1及a>0,可知b>0,ba

要证1+a>

1-b可证1+a·1-b>1,a-b11

即证1+a-b-ab>1,这只需证a-b-ab>01,即1,abba

而这正是已知条件,以上各步均可逆推,所以原不等式得证.

1及a>0,可知1>b>0,ba11

∵->1,ba

∴a-b-ab>0,1+a-b-ab>1,(1+a)(1-b)>1.由a>0,1-b>0,得1+a1-b>1,即1+a>.1-b

[来源:学_科_网]20.2【基础精练】

1.用反证法证明命题“如果a>b,那么a>b”时,假设的内容应是()

3A.a=b

33B.a<

3333D.a=b或a

直接证明与间接证明强化训练

3333

C.a=b且a

2.下列条件:①ab>0,②ab<0,③a>0,b>0,④a<0,b<0,其中能使+≥2成立的条件

有()

A.1个B.2个C.3个D.4个

3.设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()

A.(a*b)*a=aB.[a*(b*a)]*(a*b)=a C.b*(b*b)=bD.(a*b)*[b*(a*b)]=b

4.设a、b、c是互不相等的正数,则下列不等式中不恒成立的是()

A.|a-b|≤|a-c|+|b-c|C.|a-b|+

a-b

2B.a+≥a+baab

aa

D.a+3a+1a+2-a

5.已知函数f(x)=ax+2a+1,当x∈[-1,1]时,f(x)有正值也有负值,则实数a的取值

范围为________. 6.如果函数f(x)的定义域为R,对于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1)

是不小于5的正整数,当x>1时,f(x)<0.那么具有这种性质的函数f(x)=________.(注:填上你认为正确的一个函数即可)

7.如下图,在杨辉三角形中,从上往下数共有n(n∈N)行,在这些数中非1的数字之和是

________________.11 121 1331 14641 „„[来源:学|科|网]

8.试证:当n∈N时,f(n)=

39.如右图所示,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点,求证:平面PAC⊥

平面BDE.10.已知数列{an}的前n项的和Sn满足Sn=2an-3n(n∈N).

(1)求证{an+3}为等比数列,并求{an}的通项公式;

(2)数列{an}是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.

【拓展提高】

1.如图,已知两个正方形ABCD和DCEF不在同一平面内,M、N分别为AB、DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线.

*

*

2n+

2

-8n-9能被64整除.

【基础精练参考答案】

5.-1

f(1)·f(-1)<0,∴(a+2a+1)·(2a-a+1)<0.∴-11时,f(x)<0,∴a<0且f(1)=a+6≤0.∴a≤-6(a∈Z).∴a=-6,-7,-8„都符合要求. 7.2-2n解析:所有数字之和Sn=2+2+2+„+2

n

-1)=2-2n.n

n-

1=2-1,除掉1的和2-1-(2n

nn

8.证明:证法一:(1)当n=1时,f(1)=64,命题显然成立.(2)假设当n=k(k∈N,k≥1)时,f(k)=3当n=k+1时,由于

32(k+1)+2*

2k+2

-8k-9能被64整除.

-8(k+1)-

9=9(3

2k+2

-8k-9)+9·8k+9·9-8(k+1)-9=9(3

2k+2

-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),∴n=k+1时命题也成立. 根据(1)、(2)可知,对于任意n∈N,命题都成立. 证法二:(1)当n=1时f(1)=64 命题显然成立.

(2)假设当n=k(k∈N,k≥1)时,f(k)=3由归纳假设,设3将

32k+

22k+2

*

2k+2

*

-8k-9能被64整除.

-8k-9=64m(m为大于1的自然数),=64m+8k+9代入到f(k+1)中得

f(k+1)=9(64m+8k+9)-8(k+1)-9=64(9m+k+1),∴n=k+1时命题也成立.

根据(1)(2)知,对于任意n∈N,命题都成立. 9.证明:∵PO⊥底面ABCD,∴PO⊥BD.又∵O是正方形的中心,∴BD⊥AC.∵PO∩AC=0,∴BD⊥平面PAC,又BD⊂平面BDE,所以平面PAC⊥平面BDE.10.证明:(1)∵Sn=2an-3n(n∈N),∴a1=S1=2a1-3,∴a1=3.又由

Sn=2an-3n,

*

*

Sn+1=2an+1-3(n+1)

n

得an+1=Sn+1-Sn=2an+1-2an-3,[来源:学§科§网

Z§X§X§K]

∴an+1+3=2(an+3),∴{an+3}是首项为a1+3=6,公比为2的等比数列.[来源:Zxxk.Com] ∴an+3=6×2

n-

1,即an=3(2-1).

(2)解答:假设数列{an}中存在三项ar,as,at(r

s

r

t

s+1

=2+2,∴2

rts+1-r

=1+2

t-r

(*)

∵r、s、t均为正整数且r

列。[来源:Zxxk.Com][来源:学科网ZXXK] 【拓展提高参考答案】

解:(1)取CD的中点G,连结MG、NG.设正方形ABCD、DCEF的边长为2,则MG⊥CD,MG=2,NG2.因为平面ABCD⊥平面DCEF,所以MG⊥平面DCEF.可得∠MNG是MN与平面DCEF所成的角.

因为MN6,所以sin∠MNG=MN与平面DCEF所成角的正弦值.

(2)证明:假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于

EN.由已知,两正方形不共面,故AB⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF.而EN为平面MBEN与平面DCEF的交线,所以AB∥EN.又AB∥CD∥EF,所以EN∥EF,这与EN∩EF=E矛盾,故假设不成立.[来源:学+科+网Z+X+X+K][来源:学科网]

所以ME与BN不共面,它们是异面直线.

第四篇:直接证明和间接证明(4个课时)教案

2.2直接证明与间接证明

教学目标:

(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;

(2)掌握用比较法、综合法和分析法证明简单的不等式;

(3)能根据实际题目灵活地选择适当地证明方法;

(4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力.教学建议:

1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用)

2.重点、难点分析

重点:不等式证明的主要方法的意义和应用;

难点:①理解分析法与综合法在推理方向上是相反的;

②综合性问题证明方法的选择.

(1)不等式证明的意义

不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.

(2)比较法证明不等式的分析

①在证明不等式的各种方法中,比较法是最基本、最重要的方法.

②证明不等式的比较法,有求差比较法和求商比较法两种途径.

由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比较法.

由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件.

③求差比较法的基本步骤是:“作差变形断号”.

其中,作差是依据,变形是手段,判断符号才是目的.

变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.④作商比较法的基本步骤是:“作商变形判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.

(3)综合法证明不等式的分析

①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.

②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式.

③综合法证明不等式的逻辑关系是:

(已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)

(4)分析法证明不等式的分析

①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.

有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.

②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.

③用分析法证明不等式的逻辑关系是:

(已知)<==(逐步推演不等式成立的必要条件)<==(结论)

④分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.(5)关于分析法与综合法关系

①分析法与综合法是思维方向相反的两种思考方法.

②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论已知.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知 结论.

③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.

综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.

④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的. 第一课时 不等式的证明(比较法)教学目标

1.掌握证明不等式的方法——比较法;

2.熟悉并掌握比较法证明不等式的意义及基本步骤. 教学重点:

比较法的意义和基本步骤.教学难点:

常见的变形技巧.教学方法; 启发引导法.教学过程:(-)导入新课

教师提问:根据前一节学过(不等式的性质)的知识,我们如何用实数运算来比较两个实数与的大小?

找学生回答问题.

(学生回答:,,)

[点评]要比较两个实数 与 的大小,只要考察 与 的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.

目的:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.

(二)新课讲授

【尝试探索,建立新知】

作差比较法

[问题] 求证

教师引导学生分析、思考,研究不等式的证明.

学生研究证明不等式,尝试完成问题. [本问点评]

①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.

②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.

③理论依据是:

④由 需证明,知:要证明

只需证

;这种证明不等式的方法通常叫做比较法.

目的:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.

【例题示范,学会应用】

教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.

例1. 求证

[分析]由比较法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.

证明:∵

=,∴ .

[本例点评]

①作差后是通过配方法对差式进行恒等变形,确定差的符号;

②作差后,式子符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定;

③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断;

④例1介绍了变形的一种常用方法——配方法.

例2.已知

都是正数,并且,求证:

[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.

证明:

= .

因为 所以

∴ 都是正数,且

. .,即:

[本例点评]

①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号;

②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法;例

3、已知a,b都是实数,且ab,求证ababab3322

证明:(ab)(abab)(aab)(abb)222233223223

2a(ab)b(ab)(ab)(ab)(ab)(ab)

a,b0,ab0又ab(ab)0

2故(ab)(ab)0即(ab)(abab)0 23322ababab3322

[本例点评]

①作差后是通过分组,提取公因式对差式进行恒等变形,化成n 个括号相乘的形式,从而推出差的符号;

②本例题介绍了对差变形,确定差值的符号的一种常用方法——分组,提取公因式法;求商比较法:

例1 已知a,b是正数,求证abab,当且仅当ab时,等号成立.abba证明:ababbabaaabbbaabab

根据要证的不等式的特点(交换a,b的位置,不等式不变)a不妨设ab0,则1,ab0,bb当且仅当ab时,等号成立.abab,当且仅当ab时,等号成立.abbaaab1小结:作商比较法的基本步骤是:“作商变形判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.

(最后是与1比较)

(三)课堂练习

教师指定练习题,要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题.

练习:1.求证,求证

2.已知,,d都是正数,且

目的:掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学.

(四)布置作业

2、已知:a,b∈R+.求证:a5+b5≥a3b2+a2b3

2x3、求证:21x

14、求证:1qqq(q0)734

5、设a,bR

ab,求证:ab(ab)ab2

第二课时 综合法

●教学目标

(一)教学知识点 综合法证明不等式.(二)能力训练要求

1.理解综合法证明不等式的意义.2.熟练掌握过去学过的重要不等式,并用这些不等式来证明新的不等式.(三)德育渗透目标 掌握综合法、分析法证明不等式,培养学生严谨周密的逻辑思维习惯,加强学生实践能力的训练,由因导果,进一步巩固学生辩证唯物主义思想观念的教育,确实提高学生的思想道德品质.●教学重点

1.掌握综合法证明不等式的基本思路,即“由因导果”,从已知条件及已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.理解掌握用综合法证明不等式的逻辑关系.即A(已知)B1B2„BnB(结论).运用不等式的性质和已证明过的不等式时,要注意它们各自成立的条件.这样才能使推理正确,结论无误.3.在综合法证明不等式的过程中常用的关系有:(1)a2≥0或(a±b)2≥0.(2)a2+b2≥2ab,a2+b2≥-2ab即a2+b2≥2|ab|.(3)ab2ab,对a>0,b>0,当且仅当a=b时取“=”号.abba(4)当a,b同号时有(5)abc333

3≥2,当且仅当a=b时取“=”号.3abc(a>0,b>0,c>0),当且仅当a=b=c时取“=”号.(6)a+b+c≥3abc(a>0,b>0,c>0),当且仅当a=b=c时取“=”号.●教学难点

“由因导果”时,从哪个不等式出发合适是综合法证明不等式的难点.●教学过程 1.课题导入

[师]同学们,前面我们学习了两个正数的算术平均数与几何平均数的关系定理及其几个重要的不等式.(打出投影片§6.3.3 A,引导学生复习“算术平均数与几何平均数”的关系定理,阅读投影片§6.3.3 A)我们要掌握下面重要的不等关系:(1)a2≥0,或(a±b)2≥0;(2)a2+b2≥2ab,a2+b2≥-2ab,即a2+b2≥2|ab|;(3)ab22ab,(a,b∈R),当且仅当a=b时取“=”号;2+(4)ab≤ab2,(a,b∈R);ab≤(ab2)2,(a,b∈R+),当且仅当a=b时取“=”号;

(5)abb(6)aabc≥2,(ab>0),当且仅当a=b时取“=”号;

3333abc,(a,b,c∈R),当且仅当a=b=c时取“=”号;

+(7)a+b+c3≥3abc,(a,b,c∈R+),当且仅当a=b=c时取“=”号.今天,我们在上一节课学习“比较法”证明不等式的基础上,继续学习证明不等式的一种常用的重要的方法——综合法.2.讲授新课

一般地,从已知条件出发,利用定义、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法。综合法有较顺利推证法或有引导果法。

下面,我们探索研究用“综合法”证明不等式.[例1]已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右

333边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a+b+c≥3abc.(教师引导学生,完成证明)

22证法一:∵a>0,b+c≥2bc ∴由不等式的性质定理4,得 a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc, ② c(a2+b2)≥2abc.③

因为a,b,c为不全相等的正数,所以b2+c2≥2bc,c2+a2≥2ca,a2+b2≥2ab三式不能全取“=”号,从而①,②,③三式也不能全取“=”号.由不等式的性质定理3的推论,①,②,③三式相加得: a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.证法二:

a(b2+c2)+b(c2+a2)+c(a2+b2)222222=ab+ac+bc+ba+ca+cb

=(a2b+b2c+c2a)+(ab2+bc2+ca2)∵a,b,c为不全相等的正数.222∴ab+bc+ca>33a3b3c2=3abc

ab2+bc2+ca2>33a3b3c3=3abc

由不等式的性质定理3的推论,得 a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.总结:1.“综合法”证明不等式就是从已知(或已经成立)的不等式或定理出发,结合不等式性质,逐步推出(由因导果)所证的不等式成立.2.在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧.用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.则综合法用框图表示为Q: P1

Q1Q2 Q2Q3

QnQ

特点:“由因导果”

例2:在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、分析:由A,B,C成等差数列可得什么?C成等差数列,a、b、c成等比数列,求证△ABC为等边三角形. 由a,b,c成等比数列可得什么?

3、课堂练习

1、在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知A,B,C成等差数列,求证: 1a+b1b+c3a+b+c

+=

4、课后作业

1.a

A.ab+

C.

1a1b

2()

1

a2B.|a|>-b b22 D.b>a

2.a,b∈R,M=,Aab2,Gab,H11a21b,则M、A、G、H间的大小关系是()

A.M≥A≥G≥H

B.M≥H≥A≥G C.A≥G≥M≥H

D.A≥G≥H≥M 3.0

A.a+b 2

2()

B.a+b

C.2ab

D.2ab

4、已知a2+b2+c2=1,求证:

2≤ab+bc+ca≤1.5、已知:a,b,c为正实数,求证:bcaacbabcabc

第三课时 分析法

●教学目标

(一)教学知识点 分析法证明不等式.(二)能力训练要求

1.理解分析法证明不等式的原理和思路.2.理解分析法的实质——执果索因,熟练掌握分析法证明不等式.(三)德育渗透目标

分析法证明不等式意在提高学生的数学素质,培养学生的创新意识,加强学生分析问题和解决问题的逻辑思维及推理能力,进一步使学生认识到事物间是有联系的辩证唯物主义观念.●教学重点

分析法证明不等式,就是“执果索因”,从所证的不等式出发,不断用充分条件代替前面的不等式,直至使不等式成立的条件已具备,就断定原不等式成立.当证题不知从何入手时,有时可以运用分析法而获得解决,特别对于条件简单而结论复杂的题目往往是行之有效的方法.用分析法论证“若A则B”这个命题的模式是:欲证命题B为真,只需证明命题B1为真,从而又只需证明命题B2为真,从而又„„只需证明命题A为真,今已知A真,故B必真.简写为:BB1B2„BnA.●教学难点

1.理解分析法的本质是从结论分析出使结论成立的“充分”条件.2.正确使用连接有关(分析推理)步骤的关键词.如“为了证明”“只需证明”“即”以及“假定„„成立”等.●教学过程

1.课题导入

[师]随着我们对不等式证明学习的逐步深入,我们还会遇到这样的问题:面对一个不等式的证明而一筹莫展,无计可施,由题设不易“切入”展开推理.在此情况下,我们可以尝试从目标不等式“倒推”分析,往往在“倒推”的过程中,逐渐发现解题思路,从而达到证明不等式的目的.今天,我们根据这种基本思路,继续探讨学习证明不等式的又一种重要方法——分析法.2.讲授新课

证明不等式时,有时可以从求证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、定理或以证明的定理、性质等)从而得出要证的命题成立,.这种证明方法通常叫做分析法.这是一种执果索因的思考和证明方法

下面,我们探索分析用“分析法”证明不等式.例1 求证基本不等式ab2ab(a0,b0)

例2 求证2736 证明: 所以要证227和3726都是正数,6,6),23只需证(27)(3展开得92149218,只需证1418,只需证1418,1418成立,所以2 736成立.说明:证明某些含有根式的不等式时,用综合法比较困难.例如,在本例中,我们很难想到从“14<18”

入手.因此,在不等式的证明中,分析法占有重要的位置.我们常用分析法探索证明的途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要思想方法.例2 已知,ksin+cos=2sin,sincossin 1tan1tan求证:221tan2(1tan)2222(kZ)且

3.课时小结

这节课,我们学习了“分析法”证明不等式.用“分析法”证明不等式时,其叙述方式很重要,必须突出分析法的语言“特色”,如:“欲证„„成立,只需证„„”或采用符号“”或 “”.还要注意,用“分析法”证明不等式的一大优点是,当我们面对一个不等式的证明而一筹莫展,无法下手时,它给我们提供了一个方法,即从目标不等式“倒推”分析,而往往在“倒推”的过程中,会逐渐发现解题思路.因此,分析法从本质上说,只是对问题作尝试与探索的过程(即执果索因).在运用“分析法”时,典型的错误是把所证不等式当作已知条件,如证明命题“若A则B”,错误地写成:“因为B成立,则„„”.希望同学们很好掌握

4、课堂练习

课本89页 练习1,2,3.5、课后作业

1.622与57的大小关系是________________ 2.已知a>0,b>0,且a+b=1,求证:2a12b122.3.若x,y是正实数,xy1,求证:(1)(1)9

xy114.已知

1tan2tan1,求证:3sin24cos2

第4课时

反证法

●教学目标

(一)教学知识点 1.反证法的概念.2.反证法证题的基本方法.(二)能力训练要求 1.初步掌握反证法的概念.2.理解反证法证题的基本方法.3.培养学生用反证法简单推理的技能.(三)德育渗透目标 培养学生通过事物的结论的反面出发,进行推理,使之引出矛盾,从而证明事物的结论成立的简单推理能力与思维能力.●教学重点 1.理解反证法的推理依据.2.掌握反证法证明命题的方法.3.反证法证题的步骤.●教学难点 理解反证法的推理依据及方法.●教学过程

1.复习:证明不等式的常用方法:比较法、综合法、分析法.2.讲授新课

反证法:先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理,定义,定理,性质等,进行正确的推理,得到和命题的条件(或已证明的定理,性质,明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法称为反证法.对于那些直接证明比较困难的命题常常用反证法证明.例1 已知x,y0,且xy2,试证1x1y,中至少有一个小于2.yx

证明:假设1x1y1x1y,都不小于2,即2,且2,yxyxx,y0,1x2y, 1y2x,2xy2(xy)xy2,这与已知条件xy2矛盾.1xy与1yx中至少有一个小于2

1例

2、设0 < a, b, c < 1,求证:(1  a)b,(1  b)c,(1  c)a,不可能同时大于4

证:设(1  a)b >4,(1  b)c >4,(1  c)a >4,1则三式相乘:ab <(1  a)b•(1  b)c•(1  c)a <64 ①

(1a)a0(1a)a2又∵0 < a, b, c < 1 ∴(1b)b14(1c)c14214

同理:,1以上三式相乘:(1  a)a•(1  b)b•(1  c)c≤64 与

①矛盾

∴原式成立

例3如果a,b,且a//b,已知直线a,b和平面,a

求证: a//bp例

4、求证:2是无理数

3.课时小结

反证于以下两种情形

(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)如果从正面证明,需要分成多种情形进行分类讨论而从反面进行证明,只研究一种或很少的几种情形.常见否定用语

是---不是

有---没有 等---不等

成立--不成立 都是--不都是,即至少有一个不是 都有--不都有,即至少有一个没有

都不是-部分或全部是,即至少有一个是 唯一--至少有两个

至少有一个有(是)--全部没有(不是)至少有一个不-----全部都

4、课堂练习

课本 91页 练习1,2

5、作业布置

课本 91页 1,2,4

补充教案

放缩法

●教学目标

教学知识点

(一)1.放缩法的概念.2.放缩法证题的基本方法.(二)能力训练要求 1.初步掌握放缩法的概念.2.理解放缩法证题的基本方法.3.培养学生用放缩法简单推理的技能.(三)德育渗透目标:证明不等式意在提高学生的数学素质,培养学生的创新意识,加强学生分析问题和解决问题的逻辑思维及推理能力,进一步使学生认识到事物间是有联系的辩证唯物主义观念.●教学重点 1.理解放缩法的推理依据.2.掌握放缩法证明命题的方法.●教学难点 理解放缩法的推理依据及方法.●教学过程

1.复习:证明不等式的常用方法:比较法、综合法、分析法.2.讲授新课

放缩法:证明不等式时,通过把不等式中的某些部分的值放大或缩小,可以使不等式中有关项之间的大小关系更加明确或使不等式中的项得到简化而有利于代数变形,从而达到证明的目的,我们把这种方法称为放缩法.通常放大或缩小的方法是不唯一的,因而放缩法具有较在原灵活性;另外,用放缩法证明不等式,关键是放、缩适当,否则就不能达到目的,因此放缩法是技巧性较强的一种证法.例1 已知a,b,c,dR,求证1aabdbbcaccdbddac 2证明: a,b,c,d0,aabcdbabcdcabcddabcdaabdbbcaccdbddac

把以上四个不等式相加 得abcdabcd 即1aabd112aabdbbbcacccbddddac2ababcdcd.bca131n22cba1n2dac例

2、求证: ∴11212221证明:

131n11n1n21n(n1)1n1n11n

12213211122

2、.课时小结

放缩法就是将不等式的一边放大或缩小,寻找一个中间量,如将A放大成C,即AC,后证CB.常用的放缩技巧有:(1)舍掉(或加进)一些项;(2)在分式中放大或缩小分子或分母;(3)应用基本不等式进行放缩.如(a1k212)1234(a,1212);1,1k2kk1,2

k(k1)k2kk(k1)1kk1(以上k2且kN)

4、课后作业

1、设x > 0, y > 0,axy1xy, bx1xy1y,求证:a < b

111112、12nn1n22n(nN)

第五篇:直接证明与间接证明

乡宁三中高中部“自主、互助、检测”大学堂学案数学选修2-22014 年3月4日 课题:直接证明与间接证明

主备人:安辉燕参与人:高二数学组1112.①已知a,b,cR,abc1,求证:9.abc

②已知a,b,m都是正数,并且ab.求证:ama.学习任务:

①了解直接证明的两种基本方法----分析法和综合法;并会用直接法证明一般的数

学问题

②了解间接证明的一种方法----反证法,了解反证法的思考过程、特点;会用反证

法证明一般的数学问题 3.求证725

自学导读:

阅读课本P85--P91,完成下列问题。

1.直接证明----综合法、分析法

(1)综合法定义:

框图表示:

问题反馈:

思维特点是:由因导果

(2)分析法定义:

框图表示:

思维特点:执果索因

2.间接证明----反证法

定义:

步骤:

思维特点:正难则反 拓展提升:

3.讨论并完成课本例1--例5 设a为实数,f(x)x2axa.求证:

自主检测:

1.如果3sinsin(2+),求证:tan()2tan.-bmbf(1)与f(2)中至少有一个不小于12.

下载人教版2013届高三一轮复习课时训练38:直接证明与间接证明word格式文档
下载人教版2013届高三一轮复习课时训练38:直接证明与间接证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    6.6 直接证明与间接证明修改版

    高三导学案学科 数学 编号 6.6编写人 陈佑清审核人使用时间班级:小组:姓名:小组评价:教师评价:课题:(直接证明与间接证明)【学习目标】1. 了解直接证明的两种基本方法——分析法和综......

    5直接证明与间接证明

    龙源期刊网 http://.cn 5直接证明与间接证明 作者: 来源:《数学金刊·高考版》2014年第03期 直接证明与间接证明贯穿在整张高考卷的始终,解题过程中处处离不开分析与综合.近年......

    直接证明和间接证明复习教案五篇范文

    高三数学教案【课题】直接证明和间接证明能力要求:A【学习目标】知识与技能:了解直接证明的方法——综合法和分析法;了解间接证明的方法——反证法 过程与方法:通过师生互动,让......

    课时作业39 直接证明与间接证明(5篇模版)

    课时作业39 直接证明与间接证明 时间:45分钟 分值:100分 一、选择题(每小题5分,共30分) 1.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+s......

    35 直接证明与间接证明(五篇材料)

    【2012高考数学理科苏教版课时精品练】作业35第五节 直接证明与间接证明1.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.解析:由log2x≤2,得00a恒......

    直接证明与间接证明测试题[五篇材料]

    直接证明与间接证明测试题一、选择题1.用反证法证明一个命题时,下列说法正确的是A.将结论与条件同时否定,推出矛盾B.肯定条件,否定结论,推出矛盾C.将被否定的结论当条件,经过推理得出的......

    直接证明与间接证明(共5则)

    8.2 直接证明与间接证明教学目标:重点:综合法,分析法与反证法的运用.难点:分析法和综合法的综合应用.能力点:能用三种方法解决简单的证明问题及三种证明方法的综合应用.教育点:体会数......

    直接证明与间接证明-分析法学案(!)

    2.2.2直接证明与间接证明—分析法 班级:姓名: 【学习目标】: (1)结合教学实例,了解直接证明的两种基本方法之一:分析法 (2)通过教学实例,了解综合法的思考过程、特点 (3)通过教学实例了......