第一篇:函数是高中数学的主线
函数是高中数学的主线,是高考考查的重点内容,主要考查:函数的定义域与值域、函数的性质、函数与方程、基本初等函数、函数的应用等,在高考试卷中,一般以选择题和填空题的形式考查函数的性质、函数与方程、基本初等函数等,以解答题的形式与导数交汇在一起考查函数的定义域、单调性以及函数与不等式、函数与方程等知识.其中函数与方程思想、数形结合思想等都是考查的热点.高考对导数的考查主要有以下几个方面:一是考查导数的运算与导数的几何意义,二是考查导数的简单应用,例如求函数的单调区间、极值与最值等,三是考查导数的综合应用.导数的几何意义以及简单应用通常以客观题的形式出现,属于容易题和中档题;而对于导数的综合应用,则主要是和函数、不等式、方程等联系在一起以解答题的形式进行考查,例如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题.动向解读:
一是考查二次函数、不等式以及函数的最值问题.对于二次函数,高考有着较高的考查要求,应熟练掌握二次函数及其有关问题的解法.在研究函数的单调性以及最值问题时,要善于运用基本不等式以及函数的单调性进行求解.二是考查函数的图像问题,这是高考考查的热点题型,其特点是给出函数图象,求函数解析式或确定其中的参数取值范围.解决这类问题时,要善于根据函数图象分析研究函数的性质,从定义域、值域、对称性、单调性、经过的特殊点等方面获取函数的性质,从而确定函数的解析式或其中的参数取值范围.三是考查导数的几何意义,这是高考对导数考查的一个重要内容和热点内容,涉及曲线的切线问题都可考虑利用导数的几何意义解决,求解这类问题时,要始终以“切点”为核心,并注意对问题进行转化.四是考查分段函数、函数的单调性以及分类讨论思想,这些都是高考的重要考点.五是考查函数、导数、不等式的综合问题是近几年高考的一个热点题型,这类问题以“参数处理”为主要特征,以“导数运用”为主要手段,以“函数的单调性、极值、最值”为结合点,往往涉及到函数、导数、不等式、方程等多方面的知识,需要综合运用等价转换、分类讨论、数形结合等重要数学思想方法.三角函数在高考中的要求较低,解答题作为第一个题,是绝大多数考生应该得分的一个题。但也有一些考生没有得分或者得分不全,主要有以下几个原因:
一、公式不熟或者不能灵活运用。三角函数的考查主要是公式的考查,不能熟记公式或不能灵活运用公式都将是我们失分的主要原因。
二、方法不能完全到位。在任何一个章节和单元,都有其独特的方法,若不能很好地运用,也将使学生失去主动得分的机会,因此平常训练时要留意。
三、与其他知识的综合。三角函数考题往往和向量组成一定程度的综合题,但一般是以向量作为一种条件或是一种过度,最终化为三角函数问题来解决,难度不大。要注意和其他的问题的综合。
第二篇:高中数学函数知识点
一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。下面小编给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读!
高中数学函数知识一、一次函数定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
六、常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)
高中数学函数知识2
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax’2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax’2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)’2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x’2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b’2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b’2-4ac>0时,抛物线与x轴有2个交点。
Δ=b’2-4ac=0时,抛物线与x轴有1个交点。
Δ=b’2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b’2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax’2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax’2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
高中数学函数知识3
反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
高中数学函数知识点
第三篇:高中数学二次函数教案
二次函数
一、知识回顾
1、二次函数的解析式
(1)一般式:顶点式:双根式:求二次函数解析式的方法:
2、二次函数的图像和性质
二次函数fxax2bxc(a0)的图像是一条抛物线,对称轴的方程为。
(1)当a0时,抛物线开口,函数在上递减,在上递增,当x
(2)当a0时,抛物线开口,函数在上递减,在上递增,当x
(3)二次函数fxaxbxc(a0)2b2a时,函数有最值为b2a时,函数有最为。
当时,恒有 fx.0,当时,恒有 fx.0。
2(4)二次函数fxaxbxc(a0),当b4ac0时,图像与x轴有两个交点,2
M1(x1,0),M2(x2,0),M1M2x1x2a.3.常见的实根分布情况设x1x2为f(x)=0(a>0)的两个实根。
(1)当x1m,x2m时,则有___________________
(2)当在区间(m,n)有且只有一个实根时,则有:__________________________
(3)当在区间(m,n)有两个实根时,则有:_________________________________
(4)当在两个区间中各有一个实根mx1npx2q时,——————————
二、基础训练
1、已知二次函数fxaxbxc(a0)的对称轴方程为x=2,则在f(1),f(2),f(3),f(4),f(5)中,相等的两个值2
为,最大值为。
22函数fx2xmx3,当x(,1]时,是减函数,则实数m的取值范围是3函数fxx2axa的定义域为R,则实数a的取值范围是(4已知不等式xbxc0 的解集为11),则bc23
5若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且他的值域为(-∞,4],则6 设二次函数y=f(x)的最大值为13,且f(3)= f(-1)=5,则7已知二次函数f(x)x4ax2a6(xR)的值域为[0,),则实数a
三、例题精讲
例1 求下列二次函数的解析式 2
(1)图像顶点的坐标为(2,-1),与y轴交点坐标为(0,11);
(2)已知函数f(x)满足f(0)=1,且f(x+1)-f(x)=2x;
(3)f(2)=0,f(-1)=0且过点(0,4)求f(x).例2 已知函数f(x)ax2(b8)xaab,当x(3,2)时,f(x)0,当x(,3)(2,)时,f(x)0。(1)求f(x)在[0,1]内的值域。
(2)若axbxc0的解集为R,求实数c的取值范围。
例3 已知函数f(x)ax2bx(a0)满足条件f(x5)f(x3)且方程f(x)x有等根,(1)求f(x)的解析式;(2)是否存在实数m,n(mn),使f(x)的定义域和值域分别是[m,n]和[3m,3n]?如果存在,求出m,n的值;若不存在说明理由。
2例4已知关于x的方程mx2+(m-3)x+1=0①若存在正根,求实数m的取值范围②2个正根m的取值范围③一正一负根m的取值范围④2个负根的m的取值范围
四、巩固练习
1.2.若关于x的不等式x2-4x≥m对任意 x∈(0,1]恒成立,则 m的取值范围为不等式ax2+bx+c>0 的解集为(x1,x2)(x1 x2<0),则不等式cxbxa0的解集为
223 函数y2cosxsinx的值域为x
axb4 已知函数f(x)(a,b为常数且ab0)且f(2)1,f(x)x有唯一解,则yf(x)的解析式为
225.已知a,b为常数,若f(x)x4x3,f(axb)x10x24,则5ab26.函数f(x)4xmx5在区间[2,)上是增函数,则f(1)的取值范围是
7.函数f(x)=2x-mx+3, 当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,8.若二次函数f(x)axbxc满足f(x1)f(x2)(x1x2)则f(x1x2)9.若关于x的方程ax2x10至少有一个负根,则a的值为
10.已知关于x的二次方程x+2mx+2m+1=0
(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围。(2)若方程两根均在(0,1)内,求m的范围。
11.若函数f(x)=x+(m-2)x+5的两个相异零点都大于0,则m的取值范围是
12.设f(x)=lg(ax-2x+a)(1)若f(x)的定义域为R,求实数a的取值范围;(2)若f(x)的值域为R,求实数a的取值范围。222222
第四篇:高中数学函数知识点总结
高中数学函数知识点总结
(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称 是的一次函数。②当=0时,称是的正比例函数。
(3)高中函数的一次函数的图象及性质
①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数=的图象是经过原点的一条直线。
③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。
④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。
(4)高中函数的二次函数:
①一般式:(),对称轴是
顶点是;
②顶点式:(),对称轴是顶点是;
③交点式:(),其中(),()是抛物线与x轴的交点
(5)高中函数的二次函数的性质
①函数的图象关于直线对称。
②
随
③
随时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值值的增大而增大。当时,取得最小值时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值值的增大而减少。当时,取得最大值高中函数的图形的对称
(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。
(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
2012高中数学知识点总结:函数公式大全
9高中函数的图形的对称
(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。
(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分
第五篇:高中数学函数对称性和周期性小结
高中数学函数对称性和周期性小结
一、函数对称性:
1.2.3.4.5.6.7.8.f(a+x)= f(a-x)==> f(x)关于x=a对称
f(a+x)= f(b-x)==> f(x)关于 x=(a+b)/2 对称 f(a+x)=-f(a-x)==> f(x)关于点(a,0)对称 f(a+x)=-f(a-x)+ 2b ==> f(x)关于点(a,b)对称
f(a+x)=-f(b-x)+ c ==> f(x)关于点 [(a+b)/2,c/2] 对称 y = f(x)与 y = f(-x)关于 x=0 对称 y = f(x)与 y =-f(x)关于 y=0 对称 y =f(x)与 y=-f(-x)关于点(0,0)对称
例1:证明函数 y = f(a+x)与 y = f(b-x)关于 x=(b-a)/2 对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y = f(a+x)上,令关于 x=t 的对称点Q(2t – m,n),那么n =f(a+m)= f[ b –(2t – m)] ∴ b – 2t =a,==> t =(b-a)/2,即证得对称轴为 x=(b-a)/2.例2:证明函数 y = f(ax)上,令关于 x=t 的对称点Q(2t – m,n),那么n =f(a-m)= f[(2t – m)– b] ∴ 2ta)= 1 – 2/[f(x)+1],等式右边通分得f(xa)= [1 + f(x)]/[f(x)– 1],即
/[f(xf(x)] ∴
/[f(x1/f(x)= f(x2a)==> f(x)= f(x + 4a)∴
函数最小正周期 T=|4a|