第一篇:必修1数学复习题(最终版)
周测数学(6.21)
一、选择题。
1、已知集合Axlogx
21
,Bx0xc,c0。若
ABB,则c的取
值范围是()A、0,1B、1,C、0,2D、2,
2、设p:b24ac0,q:关于x的方程ax2bxc0有实根。则p是q的()A、充要条件 B、充分不必要条件 C、必要不充分条件D、即不充分也不必要条件
3、已知函数yfx,xR的值域为
1,,4,则函数yf22x13的值域是()A、4
19B、RC、6
12D、不确定
4、设函数Dx1,x是有理数,x是无理数
则下列结论错误的是()
0A、D(x)是最小正周期为1的周期函数B、D(x)是偶函数C、D(2x+1)的值域是0,1D、函数y=D(x)与函数y=D(x+1)重合5、已知函数yfx是奇函数,则y=f(x-1)关于()
A、x=1对称B、x=-1对称C、(1,0)对称D、(-1,0)对称
6、已知函数y=f(x)是R上的奇函数,函数y=g(x)是R上的偶函数,且
fxgxx22x1则f(4)=()
A、8B、23C、15D、7
二、填空题
7、函数y4x的值域是
8、函数ylg(x22x8)的单调增区间。
9、函数
ylogx3
a
1a0且a1的反函数过定点()
1log5
310、计算7
42
(sin
)07。
三、解答题、已知函数y=f(x)是R上的偶函数,当x0时fx2x
112x1
求函数y=f(x)在R上解析式。
12、⑴画出yx1
2x1的简图⑵画出
ylg(x2)1的简图
13(1到6班做)已知二次函数y=f(x)的最小值是4,且关于x的不等式fx0的解集是x1x3⑴求函数y=f(x)的解析式。⑵求函数g(x)fxx
4lnx的零点个数。
14、(选做题不计入总分)当x
sinx
0,2时。若axb则求a的最大值,b的最小值
第二篇:数学文化复习题1
二、简答(共16分)1.什么是可数集?为什么说全体奇数与自然数一样多?
如果一个集合能与正整数集建立一一对应的映射,则称集合A是可数集。之所以说全体奇数与自然数一样多,是因为全体奇数能与自然数建立一一对应的关系(1→0,3→1,5→2。。),用康托集合论的观点来看,这两个集合的势是相等的。2..举例说明黄金分割与斐波拉契数列在现实生活中的运用 还有一个类似对称的词匀称。“匀称性”的概念可以看成“对称性”的概念的自然发展。线段的黄金分割就是一个典型的例子,主要是因为由此构成的长方形给人以“匀称美”的感觉。黄金分割比„也被誉为“人间最巧的比例”。世界上许多著名的建筑广泛采用黄金分割的比例。一些名画的主题,电影画面的主题大多放在画面的0.618处,给人以舒适的美感。乐曲中较长一段一般是总长度的0.618,弦乐器的声码放在琴弦的0.618处会使声音更甜美。另外,黄金分割比在优选法中有着重要的作用。
1)大多数植物的花,其花瓣数都恰是斐波那契数.2)树杈的数目 3)向日葵花盘内葵花子排列的螺线数3.哥德尔不完全性定理的内容是什么?它对人类的认识有哪些影响?
哥德尔定理是一阶逻辑的定理,在形式逻辑中,数学命题及其证明都是用一种符号语言描述的,在这里我们可以机械地检查每个证明的合法性,于是便可以从一组公理开始无可辩驳地证明一条定理
该定理的另一个主要应用领域,是数学的一个应用分枝——计算机和人工智能
三、求解与证明(14分)1.抓三堆,2.孙子定理,3.勾股定理4.根号2是无理数
四、论述题(20分)1.数学美在哪些方面?试举例说明.我国著名数学家华罗庚说过:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”数学家徐利治说:“作为科学语言的数学,具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。”数学美与其它美的区别还在于它是蕴涵在其中的美。打个比方来说,大家一定都有这种感觉,绝大部分同学对音体美容易产生兴趣,而对数学感兴趣的不多。我认为,这主要有两个方面的原因:一是音体美中所表现出来的美是外显的,这种美同学们比较容易感受、认识和理解;而数学中的美虽然也有一些表现在数学对象的外表,如精美的图形、优美的公式、巧妙的解法等等,但总的来说数学中的美还是深深地蕴藏在它的基本结构之中,这种内在的理性美学生往往难以感受、认识和理解,这也是数学区别于其它学科的主要特征之一。二是长期以来,我们的数学教材过分强调逻辑体系和逻辑推演,忽视数学美感、数学直觉的作用,长此以往,学生将数学与逻辑等同起来。一味注重数学的逻辑性而忽视了数学本身的美,学习的过程中就会感到枯燥无味缺乏兴趣。所谓对称性,既指组成某一事物或对象的两个部分的对等性,从古希腊的时代起,对称性就被认为是数学美的一个基本内容。毕达哥拉斯就曾说过:“一切平面图形中最美的是圆,在一切立体图形中最美的是球形。”这正是基于这两种形体在各个方向上都是对称的。
中国的建筑就很好的应用了数学的对称美,有许多的园林建筑都应用了这一点。2.为什么说数学文化是众文化中最重要的一种文化。
世界上的语言、文字、宗教、党派都有地域之分,但世上只有一种数学,数学定理又能万世流传, 数学确实是最具有文化特征的了 数学是一种文化,文化就是要被继承的东西.看看伟大的数学家庞加莱是怎么说的,庞加莱说:
科学家研究自然并不是因为它有用他研究它是因为他喜爱它,他喜爱它是因为它美。如果它不美,它就不值得被人知道,而如果自然不值得知道,人也就不值得活下去。当然,我这里说的并不是那种激感官的美---那种品质上和外观上的美;并不是我低估那种美,远远不是如此,但那种美跟科学不相干;我说的是各部分之间和谐有序的更深刻的美,是一个纯洁的心灵所能掌握的美。显然,庞加莱指的“科学”主要是理论科学,包括数学。他似乎也支持科学(包括数学)是一种精英文化。数学界近年有一个新名词,叫核心数学。也就是说,衡量一个数学家的水平,主要并不是看他解题水平有多高。数学家的主要工作,就是一些必要的前提出发,尽可能多地建立结构或关联,这种结构的选择并不具有任意性,因为数学的结构有重要和不重要分。数学所具有的客观性,是任何智慧生命所不可避免的“命运”。作为一门科学,数学必须强调普遍性;在某种意义上说,只有核心数学(强调重要结构的那部分数学)才是不可避免的。一个数学问题或理论,如果只有一人或少数几个人研究过,无法继承下去,最终只能成为后人从陈年故纸堆中翻出来的思维调料,这样的数学就算不上是好的数学,也就称不上是核心数学。其次,要把数学看作是一种高级趣味,能够帮助人们提高自身的修养。在西方文明中,数学一直是一种主要的文化力量。几乎每个人都知道,数学在工程设计中具有极其重要的实用价值。但是却很少有人懂得数学在科学推理中的重要性,以及它在重要的物理科学理论中所起的核心作用。至于数学决定了大部分哲学思想的内容和研究方法,摧毁和构建了诸多宗教教义,为政治学说和经济理论提供了依据,塑造了众多流派的绘画、音乐、建筑和文学风格,创立了逻辑学,而且为我们必须回答的人和宇宙的基本问题提供了最好的答案,这些就更加鲜为人知了。作为理性精神的化身,数学已经渗透到以前由权威、习惯、风俗所统治的领域,而且取代它们成为思想和行动的指南。最为重要的是,作为一种宝贵的、无可比拟的人类成就,数学在使人赏心悦目和提供审美价值方面,至少可与其他任何一种文化门类媲美。尽管这些绝不是对人类思想和生活无足轻重的贡献,但有教养的人也几乎普遍拒绝将数学作为一项智力爱好。从某种意义上来说,对待数学的这种态度有其深刻的原因。在教科书和学校的课程中,都将“数学”看作是一系列毫无意义的、充满技巧性的程序。把这样的东西作为数学的特征,就如同把人体结构中每一块骨骼的名称、位置和功能当作活生生的、有思想的、富于激情的人一样。如同一个单词,如果脱离了上下文,不是失去了原来的意义,就是有了新的含义一样,在人类文明中,数学如果脱离了其丰富的文化基础,就会被简化成一系列的技巧,它的形象也就被完全歪曲了。由于外行人很少使用数学技巧及其知识,因此他们对这些通常显得枯燥无味的东西很反感。这样一来产生的结果是,对于数学这样一门基础性的、富有生命力的、崇高的学科,就连一些受过良好教育的人也持无视甚至轻蔑的态度。的确,对数学的无知已经成了一种社会风尚。
简洁美
汉语的语言要求言简意赅,同样数学作为逻辑性很强的学科它的语言表达也是简洁的。
简单性(或称简洁性)也是数学美的一个基本内容。数学的简洁性是人类思想表达经济化要求的反映,它同样给人以美感。爱因斯坦说过:“美在本质上终究是简单性。”
数学语言本身就是最简洁的文字,同时反映客观规律极其深刻,许多复杂的客观现象,总结为一定的规律时,往往呈现为十分简单的公式。
五、通过这门课的学习,你有什么心得体会?(本题30分。要求字数不少于500.有真实感受,有一定深度,重点突出)
第三篇:高一数学必修1知识点
进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。下面给大家分享一些关于高一数学必修1知识点,希望对大家有所帮助。
高一数学必修1知识1
集合的分类
(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集
关于集合的概念:
(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;
在自然数集内排除0的集合叫做正整数集,记作N+或N-;
整数全体构成的集合,叫做整数集,记作Z;
有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)
实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)
1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”
而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为
{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}
它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。
例如:集合A={x∈R│x2-1=0}的特征是X2-1=0
高一数学必修1知识2
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N-或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{---3>2}
4、集合的分类:
1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{--2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={--2-1=0}B={-1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集
高一数学必修1知识3
一、高中数学函数的有关概念
1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.注意:
函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
2.高中数学函数值域:先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3.函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法
A、描点法:
B、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4.高中数学函数区间的概念
(1)函数区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5.映射
一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:
(1)函数A中的每一个元素,在函数B中都有象,并且象是的;
(2)函数A中不同的元素,在函数B中对应的象可以是同一个;
(3)不要求函数B中的每一个元素在函数A中都有原象。
6.高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
第四篇:人教版数学必修1函数教案
第二章 函数
§2.1 函数 一 函数的有关概念 1.函数的概念:
设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数(function). 记作: y=f(x),x∈A.
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:
○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x.
2. 构成函数的二要素: 定义域、对应法则
值域被定义域和对应法则完全确定 3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 二 典型例题 求解函数定义域值域及对应法则 课本P32 例1,2,3 求下列函数的定义域
14x2 F(x)= F(x)=
x/x/x1 F(x)=111x F(x)=x24x5
巩固练习P33 练习A中4,5 说明:○1 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○2 函数的定义域、值域要写成集合或区间的形式. 2.判断两个函数是否为同一函数
○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:
○1 判断下列函数f(x)与g(x)是否表示同一个函数
(1)f(x)=(x1);g(x)= 1
(2)f(x)= x; g(x)=x2
2(3)f(x)= x;f(x)=(x1)
(4)f(x)= | x | ;g(x)= 20x2
三 映射与函数
映射 定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B 为从集合A 到集合B 的一个映射(mapping).记作“f:A→B”。象与原象的定义与区分
一一对应关系: 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,就称这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。(结合P35的例7解释说明)
说明:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
例题分析:下列哪些对应是从集合A 到集合B 的映射?
(1)A={P | P 是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P 是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x 是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x | x 是新华中学的班级},B={x | x 是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:将(3)中的对应关系f 改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A 是从集合B 到集合A 的映射吗? 四 函数的表示法 复习:函数的概念;
常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.
(一)典型例题
例 1.某种笔记本的单价是5 元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x).
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略)注意:
○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2 解析法:必须注明函数的定义域; ○3 图象法:是否连线; ○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 例 3.画出函数y = | x | . 解:(略)
巩固练习: P41练习A 3,6 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系.
五 分段函数 定义: 例5讲解
练习P43练习A 1(2),2(2)
注意:分段函数的解析式不能写成几个不同的方程,而写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
第五篇:高一数学必修1函数教案
第二章 函数
§2.1 函数
教学目的:(1)学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 一 函数的有关概念 1.函数的概念:
设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数(function). 记作: y=f(x),x∈A.
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:
○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x. 2. 构成函数的二要素: 定义域、对应法则
值域被定义域和对应法则完全确定 3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 二 典型例题 求解函数定义域值域及对应法则 课本P32 例1,2,3 求下列函数的定义域
14x2 F(x)= F(x)=
x/x/x1 F(x)=111x F(x)=x24x5
巩固练习P33 练习A中4,5 说明:○1 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○2 函数的定义域、值域要写成集合或区间的形式. 2.判断两个函数是否为同一函数
○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:
○1 判断下列函数f(x)与g(x)是否表示同一个函数
(1)f(x)=(x1)0 ;g(x)= 1
(2)f(x)= x; g(x)=x2
(3)f(x)= x;f(x)=(x1)(4)f(x)= | x | ;g(x)= 2x2
三 映射与函数
教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;(2)结合简单的对应图示,了解一一映射的概念. 教学重点难点:映射的概念及一一映射的概念. 复习初中已经遇到过的对应:
1. 对于任何一个实数a,数轴上都有唯一的点P 和它对应; 2. 对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;
3. 对于任意一个三角形,都有唯一确定的面积和它对应; 4. 某影院的某场电影的每一张电影票有唯一确定的座位与它对应; 5. 函数的概念.
映射 定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B 为从集合A 到集合B 的一个映射(mapping).记作“f:A→B”。象与原象的定义与区分
一一对应关系: 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,就称这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。(结合P35的例7解释说明)
说明:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
例题分析:下列哪些对应是从集合A 到集合B 的映射?
(1)A={P | P 是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P 是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x 是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)A={x | x 是新华中学的班级},B={x | x 是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:将(3)中的对应关系f 改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A 是从集合B 到集合A 的映射吗? 四 函数的表示法
教学目的:(1)明确函数的三种表示方法;
(2)通过具体实例,了解简单的分段函数,并能简单应用; 教学重点难点:函数的三种表示方法,分段函数的概念及分段函 数的表示及其图象.
复习:函数的概念;
常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.
(一)典型例题
例 1.某种笔记本的单价是5 元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x).
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略)注意:
○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2 解析法:必须注明函数的定义域; ○3 图象法:是否连线;
○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 例 3.画出函数y = | x | . 解:(略)
巩固练习: P41练习A 3,6 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系.
五 分段函数 定义: 例5讲解
练习P43练习A 1(2),2(2)
注意:分段函数的解析式不能写成几个不同的方程,而写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.