第一篇:word版2014北京中考数学试卷及答案
2014北京中考数学
2014年北京中考数学试卷
一、选择题
下面各题均有四个选项,其中只有一个是符合题意的.1.2的相反数是
A.2B.-2C.-D.2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水 300 000吨,将300 000用科学计数法表示应为
6564A.0.3×10B.3×10C.3×10D.30×10
3.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是
A.B.C.D.4.右图是某几何体的三视图,该几何体是
A.圆锥B.圆柱
C.正三棱柱D.正三棱锥
5.某篮球队12名队员的年龄如下表所示:
则这12名队员年龄的众数和平均数分别是
A.18,19B.19,19C.18,19.5D.19,19.56.园林队在某公园进行绿化,中间休息了一端时间.已知绿
化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化
面积为
A.40平方米B.50平方米
C.80平方米D.100平方米
7.如图,O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为
A.2B.4C.4D.8
8.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿
其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如右图所示,则该封
闭图形可能是
二、填空题
429.分解因式:ax-9ay=____________.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为______________m.11.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公
共点,这个函数的表达式为______________.12.在平面直角坐标系xOy,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随
点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(3,1),则点A3的坐标为______,点A2014的坐标为__________;若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上
方,则a,b应满足的条件为____________.三、解答题
13.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.0-114.计算:(6-π)+(-)-3tan30°+||.15.解不等式x-1≤x-,并把它的解集在数轴上表示出来
.216.已知x-y=,求代数式(x+1)-2x+y(y-2x)的值.217.已知关于x的方程mx-(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.18.列方程或方程组解应用题:
小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯 电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动 汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题
19.中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连
接EF,PD.(1)求证:四边形ABEF菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.根据某研究院公布的2009-2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)直接写出扇形统计图中m的值:
(2)从2009到2013年,成年国民年人均阅读鄹书的数量每年增长的幅度近似相等,估算
2014年成年国民年人均阅读图书的数量约为______本;
(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区201 4年与201 3年成年
国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为______本.21.如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中
点,CE的延长线交切线DB于点F,AF交⊙0于点H,连接BH.(1)求证:AC=CD;
(2)若OB=2,求BH的长.22.阅读下面材料:
小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2)
请回答:∠ACE的度数为______,AC的长为______
参考小腾思考问题的方法,解决问题:
如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD变于点E,AE=2,BE=2ED.求BC的长.五、解答题(本题共22分,第 23题7分,第24题7分.第25题8分)
223在平面直角坐标系xOy中,抛物线y=2x+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;
(2)设点B关于原点的对称点为C,点D是
抛物线对称轴上一动点,记抛物线在A,B
之间的部分为图象G(包含A,B两点).若直线CD与圉象G有公共点,结合函数
图象,求点D纵坐标t的取值范围.24在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BF,DE,其中DE
交直线AP于点F.(1)依题意补全图1;
(2)若∠PAB=20°.求∠ADF的度数;
(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图巾的函数是有界函数,其边界值是1.(1)分别判断函数y(x>0)和y=x+1(-4<x≤2)是不是有界函数?若是有界函散,求其边界
值;
(2)若函数y=-x+l(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取
值范围;
2(3)将函数y=x(-l≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?
第二篇:2016年江西中考数学试卷答案
2016年江西中考数学试卷答案
参考答案与试卷解析
说明:
1、本卷共有六个大题,23个小题,全卷满分120分。
2、本卷分为试题卷和答题卡,答案要求写在答题卡上,不得在试卷上作答,否则不给分。
---
一、选择题
1、A
2、D
3、B
4、C
5、D
6、C
二、填空题 7、8、9、10、11、12、-1 a(x+y)(x-y)17° 50 ° 4
第三篇:2010年安徽中考数学试卷及答案
初中数学辅导网 www.xiexiebang.com
一.选择题:(本大题10小题,每小题4分,满分40分)
1.在1,0,1,2这四个数中,既不是正数也不是负数的是…………………………()A)B)0
C)1
D)2
2.计算(2x3)x的结果正确的是…………………………()A)8xB)6x2
C)8x
3D)6x3
3.如图,直线l1∥l2,∠1=55,∠2=65,则∠3为…………………………()A)500.B)550
C)600
D)650
4.2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是
…………………………()
A)2.89×107.B)2.89×106.C)2.89×105.D)2.89×104.5.如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是
6.某企业1~5月分利润的变化情况图所示,以下说法与图中反映的信息相符的是………………()A)1~2月分利润的增长快于2~3月分利润的增长 B)1~4月分利润的极差于1~5月分利润的极差不同 C)1~5月分利润的的众数是130万元 D)1~5月分利润的的中位数为120万元
7.若二次函数yxbx5配方后为y(x2)k则b、k的值分别为 2200………………()
A)0.5
B)0.1
C)—4.5
D)—4.1
8.如图,⊙O过点B、C。圆心O在等腰直角△ABC的内部,∠BAC=900,OA=1,BC=6,则⊙O的半径为………………()
A)10B)23C)32D)13
初中数学辅导网 www.xiexiebang.com 9.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…………………………………………()
A)495
B)497
C)501
D)503 10.甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是 ……………………………………………………………………………()
填空题(本大题4小题,每小题5分,满分20分)11.计算:312.不等式组62_______________.x42,3x48的解集是_______________.13.如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=500,点D是BAC上一点,则∠D=_______________
14.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是__________________。(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD
②∠BAD=∠CAD,③AB+BD=AC+CD ④AB-BD=AC-CD
三,(本大题共2小题,每小题8分,共16分)15.先化简,再求值:(11a1)a4a4aa22,其中a1
初中数学辅导网 www.xiexiebang.com 16.若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60,船的速度为5米/秒,求船从A到B处约需时间几分。(参考数据:31.7)
四.(本大题共2小题,每小题8分,共16分)17.点P(1,a)在反比例函数ykx0的图象上,它关于y轴的对称点在一次函数y2x4的图象上,求此反比例函数的解析式。
18.在小正方形组成的15×15的网络中,四边形ABCD和四边形ABCD的位置如图所示。⑴现把四边形ABCD绕D点按顺时针方向旋转900,画出相应的图形A1B1C1D1,⑵若四边形ABCD平移后,与四边形ABCD成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D
2初中数学辅导网 www.xiexiebang.com 五.(本大题共2小题,每小题10分,共20分)
19.在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/m2下降到5月分的12600元/m2
⑴问4、5两月平均每月降价的百分率是多少?(参考数据:0.90.95)
⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/m2?请说明理由。
20.如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC ⑴求证:四边形BCEF是菱形
⑵若AB=BC=CD,求证:△ACF≌△BDE
21.上海世博会门票价格如下表所示:
某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张。⑴有多少种购票方案?列举所有可能结果;
⑵如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率。
初中数学辅导网 www.xiexiebang.com 22.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售。
九(1)班数学建模兴趣小组根据调查,整理出第x天(1x20且x为整数)的捕捞与销售的相关信息如下:
⑴在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的? ⑵假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额—日捕捞成本)
试说明⑵中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?
23.如图,已知△ABC∽△A1B1C1,相似比为k(k1),且△ABC的三边长分别为a、b、c(abc),△A1B1C1的三边长分别为a1、b1、c1。
⑴若ca1,求证:akc;
⑵若ca1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1进都是正整数,并加以说明;
⑶若ba1,cb1,是否存在△ABC和△A1B1C1使得k2?请说明理由。
初中数学辅导网 www.xiexiebang.com
初中数学辅导网 www.xiexiebang.com
初中数学辅导网 www.xiexiebang.com
第四篇:2017中考数学试卷分析(范文模版)
2017年数学中考试卷分析今年的题目与去年相比,在延续以往成功做法的基础上有所创新:选择题由8个题改为10个,填空题由7个调整为5个。概率计算在选择题中考查,第18题对圆的考察由动态型题目改为常规的几何证明与计算,同时第21题不再是考查函数学习过程的探究题,替换为第20题考察反比例函数与一次函数的综合应用;使得整套试题梯度更为合理,有助于学生发挥出自己的数学学习水平!
整套试卷在继续对初中数学的重点知识进行重点考查的同时,着重突出对数学思想和方法的考查。
今年的试卷中着重考查了转化,数形结合(20题),分类讨论,运动思想(第15、22、23等题)。此外,21题应用题以海报的形式呈现,题型新颖有趣,体现了数学来源于生活实际,又服务于于生活实际!但21题的描述“所需费用相同”容易产生歧义,估计会造成学生丢分。整套试卷进一步加强对开放性、探索性试题的考查,如22题的类比探究,23题的“和谐点”等内容,为学生提供自主探索与创新的空间;符合课程标准的要求,体现了对学生数学核心素养的考查要求。2017年的中招数学试卷通过试题的设计,既可给学生更广阔的思维空间,使其创造性的发挥,为他们提供展示自己聪明才智的机会,又有助于引导师教师在平时的教学中以学生发展为本,尽量发挥学生思维活跃的优势,培养学生的创新精神和实践能力。为学生的可持续发展打好基础!
今后复习方向:
一、切实抓好“双基”的训练。
初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。一是要紧扣教材,依据教材的要求,不断提高,注重基础。二是要突出复习的特点上出新意,以调动学生的积极性,提高复习效率。从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在每一个章节复习中,为了有效地使学生弄清知识的结构,让学生按照自己的实际查漏补缺,有目的地自由复习。要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握,方法的运用和能力的提高。
二、抓好教材中例题、习题的归类、变式的教学。
在数学复习课教学中,挖掘教材中的例题、习题等的功能,既是大面积提高教学质量的需要,又是对付考试的一种手段。因此在复习中根据教学的目的、教学的重点和学生实际,对相关例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的典例题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。
三、落实各种数学思想与数学方法的训练,提高学生的数学素质。
理解掌握各种数学思想和方法是形成数学技能技巧,提高数学的能力的前提。通过不同形式的训练,使学生熟练掌握重要数学思想方法。推荐参考书的建议:
在今后的复习中,用哪些参考书较好,我个人认为,只要是重基础,灵活性较强,难易程度适中,有梯度,紧扣大纲的,都是好书。像今年用的《试题研究》就不错,如果针对每个知识点有对应的习题,我想会更好一点。
第五篇:中考数学试卷分析
中考数学试卷分析
**年的荆门市数学中考试题在继承我市近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、以人为本”的命题原则,贯彻《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)和《荆门市**年初中毕业生学业考试数学科大纲》(以下简称《数学科》)所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识。
一、总体评价
试题命制严格按照《课程标准》和《学科说明》的相关要求,充分体现
和落实新课程改革的理念和精神、整套试题覆盖面广,题量适当,难度与《数学科大纲》的要求基本一致、在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、应用性、综合性。
1、整体稳定,局部调整
今年中考,荆门市实行网上阅卷,为此,今年的数学试卷在保证整体格局稳定的基础上,作出了一些调整:填空题由原来的10个小题减至8个;解答题由原来的8个小题减至
7、部分试题的分值和考查重点,也作了相应的调整。
2、全面考查,突出重点
整套试题所关注的内容,是支撑学科的基本知识、基本技能和基本思想、强调考查学生在这一学段所必须掌握的通法通则,淡化繁杂的运算和技巧性很强的方法,回避了大阅读量的题目。
试题重点考查了代数式、方程(组)与不等式(组)、函数、统计与概率、三角形与四边形等学科的核心内容,同时关注了函数与方程思想、数形结合思想、分类讨论思想等数学思想,以及特殊与一般、运动与变化、矛盾与转化等数学观念、试题突出了对学生研究问题的策略和运用数学知识解决实际问题能力的考查。
3、层次分明,确保试题合理的难度和区分度
同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度。
4、科学严谨,确保试题的信度、效度
试卷题目陈述简明,图形、图象规范美观、凡是联系实际题目,情景不仅不会干扰学生对其内容的分析与理解,而且有助于学生对其中数量关系的把握,这就确保了考试具有较高的信度。
试题的设置,在提问方式、分值和位置等方面,充分考虑了学生不同的
解答习惯、学习水平和承受能力、除压轴题以外的几道解答题,设2~3问,形成问题串,起点很低,循序渐进,层层铺垫;压轴题思维含量较高,具有一定的挑战性,要解答完整、准确,则需要具备较强的数学能力、这样的布局,能确保考试具有较高的信度和效度。
具体情况见下表:(略)
二、试题的主要特点
1、注重“三基”核心内容的考查,恰当渗透人文性、教育性。
2、贴近生活实际,考查学生数学应用意识。
应用数学解决问题的能力既是《课程标准》中的一个重要的课程目标,也是学生对相关教学内容理解水平的一个标志。数学课程标准明确指出:中学阶段的数学教学应结合具体的教学内容采用“问题情境——建立模型——解释、应用与拓展”的模式展开,教学中要创造这种模式的教学情境,让学生经历数学知识的发生、形成与应用过程,新课程
标准特别强调数学背景的“现实性”和“数学化”。如第21题,以学生日常生活中的常见事例为题材,设置的一道背景公平的实际问题,主要考查考生的商品意识和建模意识,考查的知识有方程与不等式、方程,通过这类试题的考查,使学生更加关注身边的数学,生活中的数学,用数学的眼光去观察、分析社会,用所学的数学知识去解决实际问题,培养学生的数学应用意识。
3、设置开放探究问题,关注学生的数学思考。
承认差异,尊重个性,给每一位学生充分的发展空间是《课标》提倡的一个基本理念,而给学生以更多的自主性,让不同类型,不同水平的学生尽可能地展示自己的数学才能是近年来提倡的一个命题原则。试卷在这方面作了一些努力,通过设计开放探究性问题,打破单一的思维模式,形成灵活多样的思维结构,使学生对问题的思考更自由、更发散、更创新,从而进一步发展学生 的思维个性。如第18题属规律探究归纳题,要求考生具备有从特殊到一般的数学思考方法和有较强的归纳探究能力,才能正确地作出解答。
4、设置图形变换,考察学生实践操作能力。
《课标》一再强调学生学习方式的变革,认为:“有效的数学学习活动不能以单纯的模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”。对学生动手操作和探究能力的培养和考查,是素质教育所要求的重要内容之一,让学生亲自参与活动,进行探索与发现,以自己的体验获取知识与技能是新课标的目标,为了体现新课标精神,试卷设计了计算量小、思维空间大的操作探索题目。如第3题旨在考查三角形中角之间的关系,但打破过去单一的问题呈现方式,而是与折叠操作相结合,有机的融入了轴对称变换的相关知识。
5、设置字母参数,考查综合能力
对于初中毕业生来说,不仅要掌握必要的数学基础知识和基本技能,还应具备有一定的分析问题和解决问题的能力及数学综合素质,对这种要求的考查,一般都是放在压轴题来实现。而这类压轴题都以所学的重点知识为载体,融数形结合为一体,以探究性试题形式呈现。在设计方法上注重创新,都善于放在主干知识的交汇点上;在考查意图上,极力让学生探索研究问题的实质,突出对学生发展思维能力、探索能力、创新能力、操作能力的考查。
第25题压轴题,融方程、函数、数形结合,分类讨论等重要数学思想于其中的综合题,考查的知识主要有:抛物线的对称性、抛物线的平移、一元二次方程等重点知识,此题对学生的能力要求较高,只要把抛物线的解析式用含m的式子表示出来,所有问题便迎刃而解,但如果考生的思维走入了“求出m的具体值”这一误区,此题的失分就在所难免了,这就要求考生仔细分析题目,正
确把握“m为常数”这一信息,才能作出正确的解答。
三、教学建议
(一)命题建议:
2、表述上应更加严密些。压轴题的第(1)小问中“求抛物线的解析式”若用括号说明“用含m的式子表示”,那么第(1)小问的难度将会大大降低。
(二)教学建议:
1、加强研究,转变观念
想要提高学生的数学能力,适应当前中考的变化,最有效的途径就是加强对《课程标准》、《数学科大纲》和教材自身的学习与研究,不断转变我们的教学观念、《课程标准》、《数学科大纲》和教材既是中考命题的依据,也是衡量日常教学效果的重要标尺、我市近几年中考数学的试题,均严格遵循《课程标准》、《数学科大纲》的要求,紧扣教科书、也就是说,《课程标准》、《数学科大纲》和教材才是编拟中考数学试题的真正
“题源”、所以,我们的教学要紧扣课标,吃透考试要求,回归教材,发挥其示范作用、唯有这样,教学和复习才会起到事半功倍的作用、2、正确认识数学基础知识、基本技能和常用的数学方法中蕴涵的数学思想
当前中考试题考查的重点,仍是数学的基础知识和基本技能和常用的数学方法中蕴涵的数学思想、加强“三基”的训练是提高数学成绩的一个重要环节,但我们首先要对加强“三基”有一个正确的认识。
中考中要求的基础知识、基本技能和常用的数学方法中蕴涵的数学思想,是解决常规数学问题的“通法通则”,而并非特殊的方法和技巧,因此抓好“三基”,绝不是片面追求解偏题、难题和怪题,更不是刻意去补充课标和教材要求之外的知识与方法。
加强“三基”,很重要的一个方面是对学生解题规范性的培养、只有做到
答题规范、表述准确、推理严谨,才能保证学生考试时会做的题不丢分、建议教师在日常的教学中,充分重视对学生解题步骤和解题格式的规范要求。
加强“三基”,不能通过要求学生机械记忆概念、公式、定理、法则来实现,而是要将这些核心知识的理解与掌握,置于解决具体数学问题的过程中,所以适当的解题训练是必要的、但加强“双基”,又不能仅靠大量的不加选择的解题来完成,更不能把数学课变成习题课,搞题海战术。
要认识到,“三基”的提升不是一蹴而就的,需要一个循序渐进的过程、在日常教学中,学生对数学知识的初次认知尤为重要,因此一定要留给学生充分的探究发现、归纳概括的时间,扎扎实实地掌握好每一个数学概念、任何匆忙追求教学进度、最后依靠机械性的强化训练的做法,都不可能取得真正良好的效果。
3、关注数学方法和数学思想的渗
透
要想在中考取得理想的成绩,除了理解基础知识,掌握基本技能外,还必须关注数学方法和数学思想,而这正是目前教学中较为薄弱的环节之一。
值得注意的是,对数学方法和数学思想的教学不能孤立进行,它应以具体的数学知识为载体,所以我们要注意在日常教学中对数学方法和数学思想的渗透、如在“分式”教学中渗透类比思想(与分数的类比),在方程组的教学中渗透转化思想(与方程的转化)等等、只要我们平时注重这一点,数学思想方法就会自然的“内化”在学生的思维方式之中。
4、注重过程教学,培养思维品质
“重结论、轻过程”,仍是当前教学中的一个重要误区、这种忽视知识形成过程的教学,会导致学生只重视结论本身,甚至死记硬背结论,“只知其然而不知其所以然”,也就更谈不上在考场上灵活运用与迁移转化了。
因此在教学过程中,一定要从重视知识结论转向重视知识的形成过程、要真正改变现有的教学方式,关注学生的学习方式,使教学的过程变成一个学生思维方式不断发展的过程。
培养思维能力,还应在提高学生的思维品质上下功夫、如培养学生思维的灵活性、全面性、严密性,以及思维的广度和深度等等。
中考数学试卷分析
(二)为了解我县初中数学教学的现状,及时掌握初中数学教学中存在的问题,探索提高初中数学教学水平的方法,并以此推动初中数学教育教学改革,提高初中数学教育教学质量。下面从以下几个方面对河南省**中考数学试卷作以分析:
一、试卷总体评价
**年的中考数学试题,与去年相比,试卷考查的内容有改变,但试卷的体例结构、考题的数量均较稳定,试题注重通性通法、淡化特殊技巧,解答题
设置了多个问题,形成入口宽、层次分明、梯度递进的特点,有较好的区分度。有利于高中阶段学校综合、有效地评价学生的数学学习状况。所有试题的考查内容及试题编排由易及难,坡度平缓,一部分试题情景来源于教材,对考生具有相当的亲和度,有利于考生获得较为理想的成绩。
1、试题题型稳中有变
2、试题贴近生活,时代感强
3、试卷积极创设探索思考空间
4、试卷突出对数学思想方法与数学活动过程的考查
二、学生答题得分统计
基本情况(抽样分析不计零分和缺考人数)
三、试题错因分析
1、选择题失分情况分析
2、填空题失分情况分析
填空题涉及的知识面较广注重对学生双基能力的考查。其中7、8、9、10、11答题较好,出现的错误集中反应在第 14、15两题。这两题也可称作为填选题的压轴题,属于拉开学生成绩档次的题目。其中14题求点A’可移动的最大距离,我们可以用折叠的方式找出起点和终点,这样就迎刃而解了。大部分学生看到这样的题就怕了。也不动手去折一下,而在给出的图形上思考,而给出的图形既不是起点也不是终点。