千古第一定理——勾股定理[优秀范文五篇]

时间:2019-05-12 23:01:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《千古第一定理——勾股定理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《千古第一定理——勾股定理》。

第一篇:千古第一定理——勾股定理

千古第一定理——勾股定理

我们已学过勾股定理,即若直角三角形的三条边长分别为a,b,c,则a2+b2=c2.反过来,若三角形的三条边a,b,c满足a2十b2=c2,则它是个直角三角形.

在古代,许多民族都发现了这个事实.我国的算书《周髀算经》中,就有关于勾股定理的记载,为了纪念我国古人的伟大成就,就把这个定理定名为“勾股定理”.在西方,这个定理被称为毕达哥拉斯定理.之所以被称为毕达哥拉斯定理,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,就落在毕达哥拉斯的头上.

不管怎么说,勾股定理是数学中一个伟大的定理,它的重要性怎么说也不为过:

(1)勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理;

(2)勾股定理导致无理数的发现,这就是所谓第一次数学危机;

(3)勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学;

(4)勾股定理中的公式是第一个不定方程,有许许多多组数满足这个方程,也是最早得出完整解答的不定方程,它一方面引导出各式各样的不定方程,包括著名的费马大定理,另一方面也为不定方程的解题程序树立了一个范式.

第二篇:勾股定理说课稿优秀

勾股定理说课稿

一、教材分析

本节课是九年制义务教育课程标准实验教科书(苏科版)八年级上册第三章第一节“勾股定理”的第一课时.在本节课以前,学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,三角形全等的判定等。也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质——勾股定理。让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展。

在探求勾股定理的过程中,蕴涵了丰富的数学思想。把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,是数形结合的典范;把探求边的关系转化为探求面积的关系,将边不在格线上的图形转化为可计算的格点图形,是转化思想的体现;先探求特殊的直角三角形的三边关系,再猜测一般直角三角形的三边关系,再解决一些特殊直角三角形的问题,这是特殊——一般——特殊的思想。在本节课,要创设问题串,提供学生活动的方案,让学生在活动中思考,在思考中创新,认识和理解勾股定理,并能利用勾股定理解决一些简单的有关直角三角形的计算问题.

二、教学目标

1、让学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

2、让学生经历拼图实验、计算面积的过程,在过程中养成独立思考、合作交流的学习习惯;让各类型的学生在这些过程中发挥自己特长,通过解决问题增强自信心,激发学习数学的兴趣;通过老师的介绍,感受勾股定理的文化价值.

3、能说出勾股定理,并能用勾股定理解决简单问题.

三、教学重点

勾股定理的探索过程.

四、教学难点

将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

五、教学方法与教学手段

采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.

六、教学过程

(一)创设情境 提出问题

1.同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你知道第三边的长吗?你知道第三边长的范围吗?

2.如果又已知这两边的夹角,那么第三边的长是多少?

3.已知直角三角形的两边的长,如何求第三边的长呢?这节课就让我们一起来探讨这个问题.板书:直角三角形三边数量关系.

(这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生从原有的认知水平出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标.让学生体会到当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究.)

(二)实践探索 猜想归纳

1、用什么方法来探求板书:直角三角形三边数量关系呢?

(展示课件)让我们试一试通过计算图形的面积能不能得到直角三角形三边数量关系.(从学生已有的学习经验出发,将探求边长之间的关系转化为探求面积之间的关系,让学生觉得解决今天问题的方法并不陌生,增强探索问题的信心.)

2、如图,若将小方格的面积看作1,则以BC为边的正方形的面积方形的面积SAC ,你能计算出以AB边的正方形的面积(比一比,看看哪一组的方法多)

SBC,以AC为边的正

SAB吗?

教师引导:如何求出以AB为边长的正方形面积?

哪一组还有其他方法?(投影配合)学生分组汇报结论

教师引导总结

(割补的求法是这节课的难点,这时可让学生先在书上独立分析,再通过小组交流,最后由小组代表到台前展示.学生可能提出割、补等方法,旋转这种方法,配合课件展示。(培养学生独立思考以及合作探究的能力)(把图形进行“割”和“补”,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形,让学生体会将较难的问题转化为简单问题的思想)通过计算,你发现这三个正方形面积间有什么关系吗?(让学生回答)

5、交流归纳:

结合前面操作,观察右图,直角三角形直角边a、b与斜边c有怎样的数量关系?

(面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于下边的平方.)

(这一问题的结论是本节课的点睛之笔,应充分让学生总结,交流,表达.)

追问:在直角三角形ABC中,若∠A=900呢? 则有

6.投影出示:勾股定理发展史(增加学生的学习兴趣,提高对勾股定理的认识)

(三)巩固练习

1.出示第一题(见课件做一做),请三位学生板演后,老师做出方法小结。

(结合具体的图形,让学生学会根据勾股定理,求解三角形中未知边的边长)2.课件展示例一,学生思考完以后,教师在黑板上书写解题过程。

(继续巩固勾股定理在数学中的应用,并强调书写格式的规范)3.最后展示例二(见课件),这是一个勾股定理在生活中的应用题,目的是让学生能学以致用,灵活的运用勾股定理解决生活中的问题。

(四)、课终小结:

你本课有何收获?

小结提示:

(1)勾股定理的使用条件是什么? 直角三角形三边有什么样的数量关系?

(2)勾股定理的探索和应用过程中你用到了哪些数学方法?领悟到了什么样的数学思想?

(五)、作业布置:

1.习题3.1第1题。

补充习题3.1

2.自学下一课,思考如何利用证明的方法,去验证勾股定理。

(六)、板书设计:

3.1勾股定理(1)

在直角三角形ABC中,∠C=900,有a2

+b2

=c2。

直角三角形两直角边的平方和等于斜边的平方。

b

c a

第三篇:勾股定理优秀说课稿

一、教材分析

勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一。它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一。在实际生活中用途很大,教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,让学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:

1、理解并掌握勾股定理及其证明。

2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

二、教法和学法

教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

1、以自学辅导为主,充分发挥教师的主导作用;运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理。提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序

本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境 以古引新

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

(二)初步感知 理解教材

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难 讨论归纳

1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

2、教师引导学生按照要求进行拼图,观察并分析;

(1)这两个图形有什么特点?

(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习强化提高

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结 练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

第四篇:勾股定理说课稿优秀

勾股定理说课稿

一、教材分析

本节课是九年制义务教育课程标准实验教科书(苏科版)八年级上册第二章第一节“勾股定理”的第一课时.在本节课以前,学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,三角形全等的判定等。也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质——勾股定理。让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展。

在探求勾股定理的过程中,蕴涵了丰富的数学思想。把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,是数形结合的典范;把探求边的关系转化为探求面积的关系,将边不在格线上的图形转化为可计算的格点图形,是转化思想的体现;先探求特殊的直角三角形的三边关系,再猜测一般直角三角形的三边关系,再解决一些特殊直角三角形的问题,这是特殊——一般——特殊的思想。在本节课,要创设问题串,提供学生活动的方案,让学生在活动中思考,在思考中创新,认识和理解勾股定理,并能利用勾股定理解决一些简单的有关直角三角形的计算问题.

二、教学目标

1、让学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

2、让学生经历拼图实验、计算面积的过程,在过程中养成独立思考、合作交流的学习习惯;让各类型的学生在这些过程中发挥自己特长,通过解决问题增强自信心,激发学习数学的兴趣;通过老师的介绍,感受勾股定理的文化价值.

3、能说出勾股定理,并能用勾股定理解决简单问题.

三、教学重点

勾股定理的探索过程.

四、教学难点

将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

五、教学方法与教学手段

采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间,引导学生有目的地探索.

六、教学过程

(一)创设情境 提出问题

1.同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你知道第三边的长吗?你知道第三边长的范围吗?

2.如果又已知这两边的夹角,那么第三边的长是多少?

3.已知直角三角形的两边的长,如何求第三边的长呢?这节课就让我们一起来探讨这个问题.板书:直角三角形三边数量关系.

(这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生从原有的认知水平出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标.让学生体会到当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究.)

(二)实践探索 猜想归纳

1、用什么方法来探求板书:直角三角形三边数量关系呢?

回忆我们曾经利用图形面积探索过数学公式,大家还记得在哪用过吗?(学生讨论)课件展示:平方差公式、完全平方公式、单项式乘多项式、多项式乘多项式.

今天,让我们试一试通过计算图形的面积能不能得到直角三角形三边数量关系.(从学生已有的学习经验出发,将探求边长之间的关系转化为探求面积之间的关系,让学生觉得解决今天问题的方法并不陌生,增强探索问题的信心.)

2、(课件展示图2)观察图形,我们分别以直角三角形ABC的三边为边向形外作三个正方形.若将图形①、②、③、④、⑤剪下,用它们可以拼一个与正方形ABDE大小一样的正方形吗?

(同位利用教师提供的学案,合作拼图。)通过拼图,你有什么发现?

(如图3,以BC为边的正方形面积与以AC为边的正方形面积的和等于以AB为边的正方形面积.拼图活动,引发了学生的猜想,增加了研究的趣味性,锻炼了学生的空间思维能力和动手能力.体现了活动——数学的思想.)

3、拼图活动引发我们的灵感;运算推演

证实我们的猜想.为了计算面积方便,我们可

将这幅图形放在方格纸中.如果每一个小方格的边长记作“1”,请你求出图中三个正方形的面积(图4).

(学生容易回答SP=9,SQ=16。)你是如何得到的?

(可以数图形中的小方格的个数,也可以通 过正方形面积公式计算得到。)如何计算 ?

(的求法是这节课的难点,这时可让学生先在学案上独立分析,再通过小组交流,最后由小组代表到台前展示.学生可能提出割(图5)、补(图6)、平移(图7)、旋转(图8)等方法,旋转这种方法只适用于斜边为整数的情况,没有一般性,若有学生提出,应提醒学生.)

4、肯定学生的研究成果,进而让学生打开书回顾课本上的提示.从小明、小丽的方法中你能得到什么启发?

(把图形进行“割”和“补”,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形,让学生体会将较难的问题转化为简单问题的思想)

5、再给出直角边为5和3的直角三角形(图9),让学生计算分别以三边作为边所作的正方形面积.

(这是转化思想,也是“割补”方法的再一次应用.在 前面的探求过程中有的学生没能自己做出来,提供再一次的机会,可让全体学生再次感受转化思想,体验成功的乐趣.)

通过计算,你发现这三个正方形面积间有什么关系吗?(SP+SQ=SR,要给学生留有思考时间.)

6、通过以上的实验、操作、计算,我们发现以直角三角形的各边为边所作的正方形的面积之间有什么关系呢?同学们还有什么疑问吗?

(以直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积。如果学生提出我们讨论的都是边长为整数的直角三角形情况,那么边长是小数时,结论是否成立?教师就演示以下实验。)

利用方格纸,我们方便计算直角边为整数的情况,若直角边为小数时,所得到的正方形面积之间也有如上关系吗?

将网格线去掉,利用《几何画板》的度量工具可以看到SP+SQ=SR.

(利用几何画板的高效性、动态性反映这一过程,让学生体会到更多的特殊情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻.)

7、我们这节课是探索直角三角形三边数量关系.至此,你对直角三角形三边的数量关系有什么发现?

(面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于下边的平方.)

(这一问题的结论是本节课的点睛之笔,应充分让学生总结,交流,表达.)

8、用弯曲的手臂

第五篇:正弦定理(第一课时)

课题: §1.1.1正弦定理(第1课时)

●教学目标

知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点

正弦定理的探索和证明及其基本应用。

●教学难点

已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程

1.课题导入

在直角三角形中:sinA=a

c,sinB=b

c,sinC=

1即 c=a

sinA,c=bc

sinB,c=sinC.

∴a

sinA=bc

sinB=sinC

2.学生探究

思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)

证明一:(等积法)在任意斜△ABC当中

S

12absinC1

2acsinB1△ABC=2bcsinA

两边同除以1ab

2abc即得:c

sinA=sinB=sinC

证明二:(外接圆法)

如图所示,∠A=∠D∴a

sinAa

sinDCD2R

同理 b

sinB=2R,c

sinC=2R

证明三:(向量法)

过A作单位向量垂直于

由 +=两边同乘以单位向量 得 •(+)=• 则•+•=•

∴||•||cos90+||•||cos(90C)=||•|AB|cos(90A)

∴asinCcsinA∴ac= sinAsinC

cb=sinCsinB同理,若过C作垂直于得:

abc==。sinAsinBsinC∴

(板书)

1、正弦定理:abc===2R(R是ABC外接圆的半径)sinAsinBsinC

变形:a:b:csinA:sinB:sinC。

注:每个等式可视为一个方程:知三求一

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

3.例题讲解

例1.(1)在ABC中,b,B600,c1,求a和A,C.

(2)在ABC中,c6,A450,a2,求b和B,C.

bccsinB1sin6001解:(1)∵,sinC,sinBsinCb2bc,B600,CB,C为锐角,C300,B900∴ab2c2

2(C30或C150,而CB210180)0000

accsinA6sin4503,sinC(2)sinAsinCa22

csinAac,C600或1200

csinBsin750

当C60时,B75,b1,sinCsin60000

csinB6sin150

当C120时,B15,b1 0sinCsin6000

b1,B750,C600或b31,B150,C1200

利用正弦定理可以解决下列两类解斜三角形的问题: ①已知三角形的任意两角及其一边可以求其他边,如absinA; sinB

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinAsinB。a

b

思考:由例1条件,已知两边及其中一边的对角解三角形时,为什么三角形的形状不能唯一确定,会出现两解、一解?。(学生讨论,老师引导:从代数和几何两方面)

4.三角形解的判断方法:(板书)

已知两边及其中一边的对角解三角形时,由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况。

已知边a,b和A

a

无解a=CH=bsinA仅有一个解

CH=bsinA

⑴若A为锐角时:(板书)⑵若A为直角或钝角时:(学生自己完成)

无解absinAab无解一解(直角)absinA: ab一解(锐角)bsinAab二解(一锐, 一钝)

ab一解(锐角)

5.课堂练习

1.在ABC中,三个内角之比A:B:C1:2:3,那么a:b:c等于.2.在ABC中,B1350,C150,A5,则此三角形的最大边长为3.在ABC中,已知b2csinB,求C的度数.6.课堂小结(学生发言,互相补充,老师评价)

1.用三种方法证明了正弦定理:

(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.(3)外接圆法

2.理论上正弦定理可解决两类问题:

(1)两角和任意一边,求其它两边和一角;

(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.

教学反思:本课通过引导学生发现直角三角形中的正弦定理,进而探究在任意三角形中是否还成立?将学生带入探索新知的氛围,学生从已有的知识经验出发,探索得出新结论,体验了成功的乐趣,对如何运用定理解决问题也是跃跃欲试,在课堂小结教学中,给学生一个畅所欲言的机会,互相评价,最终得到完善的答案.这样做,可以锻炼学生的语言表达能力,这也体现了一个人成长、发展所必须经历的过程,对于培养意志品质起到了重要作用.

下载千古第一定理——勾股定理[优秀范文五篇]word格式文档
下载千古第一定理——勾股定理[优秀范文五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    版勾股定理第一课时5篇

    中哀:月日时分出。风险低投高。婉约的月,的大部分,者王:曲好子:答案点之前。文章:释他俩的,的风:及兹晨树,牌琵:和冰剑; 丰胸是一个坚持的过程,在期间我用过很多东西,结果都不理想,在用了......

    勾股定理(第一课时)教学设计

    1.1探索勾股定理(1) 备课人:闫治春【教学目标】 1.知识与技能目标:经历探索勾股定理及验证勾股定理的过程;运用勾股定理解决实际问题;了解有关勾股定理的历史。 2.过程与方法目标:......

    勾股定理第一课时教学设计

    教学目标 一)知识与技能 1、了解勾股定理的文化背景,体验勾股定理的探索过程。 2、理解利用拼图和面积法验证勾股定理的方法。 3、利用勾股定理,已知直角三角形的两边求第三边......

    自制说课稿:勾股定理(第一课时)

    关于《勾股定理》(第一课时)的说课稿 教师: 韩滨隆 各位评委、各位老师:大家好! 今天我说课的课题是《勾股定理》(第一课时)。下面我将从教材内容分析、教法学法分析、教学过程分......

    《探索勾股定理》第一课时说课稿

    课题:“勾股定理”第一课时 内容:教材分析、教学过程设计、设计说明 一、 教材分析 (一)教材所处的地位 这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股......

    17.1勾股定理第一课时教学设计

    17.1《勾股定理》教学设计 【教学内容解析】本节课是人教版八年级下册第十八章第一节勾股定理第一课时.本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三......

    千古神奇秘方之一[优秀范文五篇]

    1、根治银屑病的特效秘方—— 牛皮癣即银屑病的俗称。祖国医学称银屑病为“白疕”,是常见的慢性,复发性、炎症性的皮肤病。其特征是出现大小不等的丘疹,红斑,表面覆盖着银白色鳞......

    大江淘千古优秀读书笔记

    高二选修课阅读专题二“大江淘千古” 年级优秀读书笔记岁月过后 化身为神 高二(1)班胡琳琳那些我们从不曾见证却耳熟能详的故事,那些一直被我们认为活在传说里面的人,她们并没有......