七年级数学上册 1.5《有理数的乘方》教案 (新版)新人教版

时间:2019-05-12 03:52:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学上册 1.5《有理数的乘方》教案 (新版)新人教版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学上册 1.5《有理数的乘方》教案 (新版)新人教版》。

第一篇:七年级数学上册 1.5《有理数的乘方》教案 (新版)新人教版

有理数的乘方

教学目标

知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则.数学思考:培养观察.类比.归纳.知识迁移的能力.通过乘方运算,培养运算能力;

解决问题:了解乘方的意义并能正确的读.写;掌握幂的性质并能进行乘方的运算.情感态度:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.

教学重点:有理数乘方的意义,幂,底数,指数的概念及其表示.理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.教学难点:有理数乘方的意义的理解与运用

教学过程设计

活动一.创设情境,引入新课.1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果.2.结合学生熟悉的边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容.在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的实例,引出课题.活动二.合作交流,得出结论.1.分小组学习课本41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果.2.定义:n个相同因数a相乘,即a·a·…·a(个),记作a,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在a中,a叫做底数,n叫做指数.读作a的n次方或a的n次幂.3(1)补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?

①(-2.3)×(-2.3)×(-2.3)×(-2.3).②(-nn1111)×(-)×(-)×(-).4444

③x·x·x·......·x(2010个x的积).(2)课本例题,教师指导学生阅读分析例题,并规范书写解题过程.3.此例可由学生口述,教师板述完成.44.小组讨论: 2与2的区别?

教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-

42)×(-2)×(-2)记作(-2).通过补充例题和小组讨论:2与2的区别的学习,对有理44

数的乘方有更进一步的理解.活动三.应用新知,课堂练习.1.做一做:课本第42页练习第1题.2.用计算器算,以及课本42页练习第2题.3.小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结.4.总结规律:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.把问题再次交给学生,充分发挥学生的主观能动性,鼓励学生尽可能地发现规律.活动四.知识梳理,课堂小结.1.由学生小结本堂课所学的内容.2.总结五种已学的运算及其结果.活动五.知识反馈,作业布置.1.课本47页第1,2题.2.课外拓展

(1)用乘方的意义计算下列各式:

222①(2);②2;③;④.33443

(2)观察下列各等式:1=1; 1+3=2 ; 1+3+5=3;1+3+5+7=4……

①通过上述观察,你能猜想出反映这种规律的一般结论吗?

②你能运用上述规律求1+3+5+7+...+2011的值吗? 2222

第二篇:1.5有理数的乘方教案

1有理数的乘方教案

教学目标1的运算;2力,以及学生的探索精神;3问题在小学我们已经学习过a·a,记作a2,读作a的平方;a·a·a作a3,读作a的立方;那么,a·a·a·a可以记作什么?读作什么?a·a·a·a·a呢?在小学对于字母a我们只

a还可以取哪些数呢?

2an中,a取任意有理数,n

an看作a的n次方的结果时,也可以读作a的n次幂。3.我们知道,乘方和加、减、乘、除一样,也是一种运算,就是表示n个a相乘,所以可以利用

计算:2,2,2,24;

二讲授新1n个相同因数的-2,2,3,4;0,02,03,04指数

12就是21,比较、分析这三组计算题中,底数、指数和幂之间有什么关系?模向观察正数的任何次幂都是正数;负数的奇次幂是负

?当a>0时,an>0;

当a<0时,;当a=0时,an=0a2n≥02

a2n=2n;=-2n-1;

计算:2,3,[-];-32,-33,-板上计算结果,让学生自己体会到,n的底数是-a,表示n个相乘,-an是an的相反数,这是n与-an向观察第题的形式和计算结果,让学生自己体会到,写分数算:,,-,;XX,3×22,-42×2,-23÷3;n-1让学生回忆,做出小结:1

31222;3;4;;-012;-3;3·3;-6·3;-·32;2表:3a=-3,b=-,=4时,求下列各代数式的值:2;

a2-b2+2;

2;

a2+2ab+b2a2=2;

a3=3;

a2=;

a3=*有理数?为什么?6*学设计说明

19的数有几个?是什么?有没有平方得-9的2+|b-2|=0,求aXX·b3

4a是负数时,判断下列各式是否成中,既要注重罗辑推理能力的培养,又重注重观察、归纳等

容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学2方面前进的:第一是不断的推广;第二是不断的精确化;第与数池家的研究方式类似,不断进行推广a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a,…,an一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项

an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯3须通过自己的探索才能学会数学和会学数学,与其说学习数会,让学生自己在学习中扮演主动角色,教师不代替学生思

4的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次让学生完成问题n-1,进一步巩固了分类讨论思想,使这种

第三篇:1.5有理数的乘方教案

1.5有理数的乘方教案

以下是查字典数学网为您推荐的1.5有理数的乘方教案,希望本篇文章对您学习有所帮助。

1.5有理数的乘方教案

教学目标

1?理解有理数乘方的概念,掌握有理数乘方的运算;

2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;

3?渗透分类讨论思想?

教学重点和难点

重点:有理数乘方的运算?

难点:有理数乘方运算的符号法则? 课堂教学过程设计

一、从学生原有认知结构提出问题

在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?

在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?

二讲授新课

1?求n个相同因数的积的运算叫做乘方?

2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

一般地,在an中,a取任意有理数,n取正整数?

应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

3.我们知道,乘方和加、减、乘、除一样,也是一种运算,就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?

例1 计算:

(1)2,2,2,24;(2)-2,2,3,(-2)4;

(3)0,02,03,04?

教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)模向观察

正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?(2)纵向观察

互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

(3)任何一个数的偶次幂都是什么数?

任何一个数的偶次幂都是非负数?

你能把上述的结论用数学符号语言表示吗?

当a0时,an0(n是正整数);当a

当a=0时,an=0(n是正整数)?

(以上为有理数乘方运算的符号法则)

a2n=(-a)2n(n是正整数);

=-(-a)2n-1(n是正整数);a2n0(a是有理数,n是正整数)?

例2 计算:

(1)(-3)2,(-3)3,[-(-3)]5;

(2)-32,-33,-(-3)5;

(3),?

让三个学生在黑板上计算?

教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?

教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?

课堂练习 计算:

(1),,-,;

(2)(-1)2018,322,-42(-4)2,-23(-2)3;

(3)(-1)n-1?

三、小结

让学生回忆,做出小结:

1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?

四、作业

1?计算下列各式:

(-3)2;(-2)3;(-4)4;;-0.12;

-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5? 2?填表:

3?a=-3,b=-5,c=4时,求下列各代数式的值:

(1)(a+b)2;(2)a2-b2+c2;(3)(-a+b-c)2;(4)a2+2ab+b2?

4?当a是负数时,判断下列各式是否成立?

(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=.5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

6*?若(a+1)2+|b-2|=0,求a2000b3的值?

课堂教学设计说明

1?数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?

2?数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,an是学生通过类推得到的?

推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?

3?把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?

我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?

4?有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?

第四篇:人教版七年级上册《有理数乘方》说课稿

【小编寄语】查字典数学网小编给大家整理了人教版七年级上册《有理数乘方》说课稿,希望能给大家带来帮助!

有理数乘方说课稿

各位领导、各位老师:

上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。

今天我说课的内容是人教版七年级数学上册有理数乘方第一课时的内容。根据新课程标准提出的让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展的理念。我在设计中力求自主探索、动手实践、合作交流成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。

一、教材分析

1、教材的地位与作用:

有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

2、教学目标:

根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:

⑴、知识与技能:

让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。

⑵、过程与方法:

在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。

⑶、情感、态度和价值观:

让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

3、教学重点与难点:

有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。

二、教法学法

1、学情分析:

在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。

在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。

在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。

2、教学策略:

根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。

三、教学过程

1、设置游戏,引入新课:

首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。

游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式:;

游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:22222;

最后引导学生思考这两个算式的特点,引入新课。

这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。

2、合作交流,探索新知:

先让学生分组讨论下面算式特点:①,②22222,③(-3)(-3)(-3)(-3),④(-0.3)(-0.3)(-0.3)

接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:aa=a ,aaa=a。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:aaa的结果,总结出幂、底数与指数的概念。

n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。

3、迁移训练,总结规律:

在这个环节中,我首先要求学生把算式①﹙-4﹚﹙-4﹚﹙-4﹚,②﹙-2﹚﹙-2﹚﹙-2﹚﹙-2﹚,③﹙-﹚﹙-﹚﹙-﹚,④﹙-﹚﹙-﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。

本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。

4、应用新知,尝试练习:

本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚、-2、﹙ ﹚,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚ 与-2,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。

第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。

5、归纳小结,形成体系:

首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。

四、设计说明

本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。

第五篇:教案新人教版七上第1章1.5有理数的乘方

§1.5有理数的乘方(3)

目标预设

一、知识能力

掌握有理数混合运算的法则,并能在运算过程中合理使用运算律简化运算。

二、过程与方法

运用运算律简化计算,使运算简捷、迅速、准确

三、情感、态度、价值观

在培养独立运算能力的基础上,巩固所学过的知识,养成在计算时一丝不苟,在计算前认真审题,计算中按步骤审慎进行,最后要验算的习惯。★

教学重难点

一、重点:能熟练掌握各种运算律

二、难点:在正确运算的基础上,适当地应用运算律简化运算 ★

教学准备

一、预习建议

有理数相互交换律,加法结合律,乘法交换律,乘法结合律和分配律的有关法则。★

预习导学 计算:

1111125(1)3+2+-(2)36×(+-)

23236912211(3)-11÷0.5-(-21)÷0.5-(+10)÷0.5 323(4)-10+8÷(-2)3-(-4)×(-3)

教学过程

一、创设情景、谈话导入 我们在前面几节内容中,学习了几种运算律,这些运算律在有理数混合运算中也有很大的应用,能够使有些复杂、运算量比较大的题目运算简捷、迅速、准确。

二、精讲点拨、质疑问难

3157如在解15×(-+)-24×(-)中,我们可以根据有理数运算法则得

531215952528原式=15×(-+)-24×(-)15156060

43=15×(-)-24×(-)15606

=2.8 也可根据乘法分配律来求解,得

3157原式=15×(-)+15×-24×-24×(-)53121556

=2.8 以上两者的答案一样,但解法二利用了乘法分配律后比解法一计算速度快,且计算更简便。因此,在有理数的混合运算时,有时可以利用运算律简化运算。如:

3×(-1)10+(-22)×|(-2)3|÷4÷2-|(-3)2|÷(-3)2×(-1)1

1注:运算顺序

三、课堂活动,强化训练

515例1 计算:(-5)×(-36)+71×(-8)

(教师分析、讲解)

1816

1331215例2 计算:5+1+3+2+6+4+

2586538(独立完成,教师巡视,适当指导,得出结论)

17例3 计算:(-0.125)×(-3)+(-0.125)×(-4)

(一学生上黑板,其余学生独立完成,教师讲解)引导学生观摩,算式特点,尽可能进行简便运算

(1)10(1)101(2)2(3)3例4 计算: 132(1)2(5)(3)

例5(-1)21×(-3)×

2341()3()2()32(3)2 3232

四、延伸拓展、巩固分化 例5 观察下面三行数:

-2,4,-8,16,-32,64,……,①

0,6,-6,18,-30,66,……,②

-1,2,-4,8,-16,32,……,③(1)第 ①行数按什么规律排列?

(2)第②,③行数与第 ①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和。

(教师分析,寻找特点,独立完成,个别回答)

五、当堂反馈

38819547①计算:(1)(1)

②计算:97×+ 47×

592784896

34③计算:7-23+4 +(-5.9)-(-13)-4.1 55

757④计算:(-+)×18-1.45×6+3.95×6 9618

3211⑤(3)23()2148()2()31

5322

布置作业

13411①计算

1427285632②计算(-0.125)×(-)×(-8)×1

53③计算9+99+999+9999+99999+6 111111111)④计算1()()()(223344599100⑤比较下面算式结果的大小

4232>2×4×3

(2)212>2×(-2)×1

2222>2×2×2 通过观察,用字母归纳写出反映这种规律的一般结论。

下载七年级数学上册 1.5《有理数的乘方》教案 (新版)新人教版word格式文档
下载七年级数学上册 1.5《有理数的乘方》教案 (新版)新人教版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐