第一篇:七年级数学上册 1.3《有理数的加减法》教案 (新版)新人教版
有理数的加减法(一)
[本节课内容]
1.有理数的加法
2.有理数的加法的运算律
[本节课学习目标]
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
[知识讲解]
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作− 5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是(−5)+(−3)= −8
如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3)= 2
探究
这三种情况运动结果的算式如下:
3+(—5)=—2;
5+(—5)= 0;
(—5)+5= 0.
如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.
你能从以上7个算式中发现有理数加法的运算法则吗?
有理数加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
例题
例
1、计算
(-3)+(-9);(2)(-4.7)+3.9.
分析:解此题要利用有理数的加法法则.
解:(1)(-3)+(-9)=-(3+9)=-12
(2)(-4.7)+3·9=-(4.7-3.9)=-0.8.
例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.
解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.
三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2)= +(4—2)=2;
黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)=();
蓝队共进()球,失()球,净胜球数为()=().
二、有理数加法的运算律
通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:
再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].
通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变 . 用式子表示为:
上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.
例题
例1 计算:16 +(-25)+ 24 +(-35).
若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.
解: 16 +(-25)+ 24 +(-35)
=(16 + 24)+ [(-25)+(-35)]
= 40 +(-60)
=-20.
例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:
91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
解: 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 = 905.4.
再计算总计超过多少千克
905.4-90×10 = 5.4.
答:总计超过 5千克,10袋水泥的总质量是 505千克.
三、小结:
有理数加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
有理数加法运算律:
①加法交换律:a+ b = b + a
②加法结合律:(a+ b)+ c = a+(b +c)
有理数的加减法(二)
学习目标
1、会将有理数的减法运算转化为有理数的加法运算.
2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点
会进行有理数的减法运算,会进行有理数的加减混合运算.
教学过程
一、有理数的减法法则
实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4ºC,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:ºC).显然,这天的温差是4―(―3).这里就用到了有理数的减法.
我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即
4―(―3)= 7.(1)
另一方面,我们知道
4+(+3)= 7(2)
由(1),(2)有
4―(―3)= 4+(+3)(3)
从(3)式能看出减―3相当于加哪个数吗?
用上面的方法考虑:
0―(―3)=___,0+(+3)=___;
1―(―3)=___,1+(+3)=____;
―5―(―3)=___,―5+(+3)=___.
这些数减−3的结果与它们加+3的结果相同吗?
计算: 9-8=___,9+(- 8)=____;
15-7=___,15+(-7)=____.
上述式子表明:减去一个数,等于加上这个数的相反数.
于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.
用式子可以表示成a−b = a+(−b)
例题
计算:
(1)(-3)―(―5);(2)0-7;
(3)7.2―(―4.8);(4)-
3解:(1)(-3)―(―5)=(-3)+5=2;
(2))0-7 = 0+(-7)=-7;
(3)7.2―(―4.8)= 7.2+4.8 = 12;
.
(4)-3=-3+(-5)=-8.
二、有理数加减混合运算
有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式.
例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)
将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5)= 2+3-4-5
对于这个式子,有两种读法:①读作“2加3减4减 5”;②读作“
2、3、-
4、-5的和”
例1.计算(-20)+(+3)-(-5)-(+7)
解:(-20)+(+3)-(-5)-(+7)
=(-20)+(+3)+(+5)+(-7)
=-20+3+5-7
=-20-7+3+5
=-27+8
=-19
说明:计算时,可以按照运算顺序,从左到右逐一加以计算
三、加法运算律在加减混合运算中的作用与方法
加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等
例2.用两种方法计算:-4.4-(-4)-(+2)+(-2)+12.4
解法1:-4.4-(-4)-(+2)+(-2)+12.4
=-4.4+4+(-2)+(-2)+12.4
=(-4.4+12.4)+4+[(-2)+(-2)]
= 8+[4+(-5)]
= 8+(-1)= 7
此解法是将和为整数、便于通分的加数在一起
解法2:-4.4-(-4)-(+2)+(-2)+12.4
=-4.4+4-2-2+12.4
=(8+4-2-2)+(= 8+(-1)= 7 --)
此种方法是将整数部分与小数部分分别相加使计算简化
四、小结:
①有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)
②有理数加减混合运算可以统一为加法运算,即:a+b−c = a+b+(−c)
第二篇:人教版七年级上册1.3有理数的加减法教案
2012人教版九年制义务教育七年级数学上册
《有理数的减法》教学设计
教学目标:
知识与技能:
1、掌握有理数的减法法则。
2、熟练地进行有理数的减法运算。思想与方法:
1、经历探索有理数减法法则的过程,理解有理数减法法则.2、培养学生探究思维能力和分析解决问题的能力
情感态度与价值观:
1、使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法。
2、通过与学生的交流、探索,逐步培养学生的抽象概括能力及口头表达的能力.3、渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。教学重难点:
重点:有理数的减法法则及应用;
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算 教学过程:
一、.创设情景问题,引入课题
展示:一幅全国某个主要城市的某天的气温情况。
问题:根据该气温图,你能得到哪些信息或可以提出哪些问题? 预设情形:
1、某天的最高或最低气温是多少?或什么时间的气温最后或最低?
2、某天的最高气温比最低气温高多少?或某天的温差是多少? 结合预设情形2,引入新课
1.3.2有理数的减法(1).二、复习铺垫:
1、减法的意义,在什么情况下运用减法运算呢?
2、教师明确:有了负有理数后,减法的意义同样是“已知两个加数的和与其中的一个加数,求另一个加数的运算”.由减法的意义可知减法与加法是互为逆运算。
三、探索有理数减法法则: 讨论交流:如何计算9-(-2)=? 小组讨论、交流方法: 展示:
方法一 根据加法与减法运算的互逆关系,要计算9-(-2)=?,可先思考_____+(-2)=9.根据有理数的加法法则知:11+(-2)=9,所以9-(-2)=11.方法二 利用温度计.因为温度是由温度计测出的.所以可以在温度计上找到9 ℃与-2℃所表示的点,然后看这两个点之间有多少小格,数数一共有11个小格,因而9-(-2)=11.教师:这位同学想得办法很好.他利用了温度计从零上9℃数到零下2℃间相隔11个小格(出示温度计及小黑板以帮助其他学生理解)得出上面9个小格加下面2个小格等于11个小格,即9+2=11。
追问:根据以上交流的结果,说一说你的想法? 预设: 9-(-2)=9+2,更进一步,可能得出
减去一个数,等于加上这个数的相反数。
分组训练,验证结论
计算比较,强调结论(板书):
有理数的减法法则 减去一个数,等于加上这个数的相反数.思考:
1、用字母如何表示?
a-b=a+(-b)
2、根据有理数的减法法则,说一说有理数减法的运算步骤?运算时应注意什么?
把减法都可以转化为加法运算.在进行有理数减法时要注意:(1)首先应弄清减数的符号(是“+”号,还是“-”号)(2)将有理数减法转化为加法时,要同时改变两个符号,一个是运算符号由“-”变为“+”;另一个是减数的性质符号.四、初步展示,巩固新知
1、解决上面的探索交流问题 9-(-2)= ;
2、口答各题————六道题目
(投影展示,意图是在口答中巩固法则)
3、板演强化————四道题目
(四位同学板演,意图是训练学生的运算步骤)
五、开动脑筋 拓展思维
1、如果|a|=3,|b|=1,求a-b的值。
2、已知|a-3|+|b+1|=0,求a-b的值。
六、知识总结
学生口述的形式展现
1、有理数的减法法则:减去一个数,等于加上这个数的相反数.2、在进行有理数减法运算时,首先把减法转化为加法。转化时要注意符号的变化。其次要利用有理数加法法则运算,最后得出结果。
七、后置作业
回放情境引入,请同学们谈一下自己的感想。
板书设计:
1.3.2有理数的减法(1)
减法法则 减去一个数,等于加上这个数的相反数。
注意问题:将有理数减法转化为加法时,要同时改变两个符号: 一个是运算符号由“-”变为“+”;另一个是减数的性质符号。
第三篇:七年级数学有理数的加减法教案
株洲大学生家教舒新 http://www.xiexiebang.com电话***
初一同步辅导材料(第9讲)
第一章有理数加减及其混合运算
【知识梳理】
1、有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);
绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数.
加法的法则指出,两个有理数相加的结果由两部分构成:
先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值.
在加法运算中,最容易错的就是符号问题,运算时要特别注意符号问题.
【重点难点】
重点:有理数的加法法则和相关的运算律。
难点:运用有理数加法法则和运算律进行简化运算。
【典例解析】
例
1、数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次
共向左移动了几个单位?
解:(-2)+(-4)=-6。
答:这个点共向左移动6个单位。
例
2、计算:
(1)(3)(2
4334134)(2)1.21 527571(3)()(4)(3
4)(31
423
4)(2); 解 :(1)(3)(241)6;
(2)1.21(1.2)(1.2)0;
5
41334151(3)
31225254(4)3(2)(32)。77777()();
说明 严格按法则去做,对异号两数相加,关键是判断出两数的绝对值哪一个大,从而确定和的符号以及哪个数的绝对值减去哪个数的绝对值.
株洲大学生家教舒新 http://www.xiexiebang.com 电话***
例
3、计算(1)(15)(20)(8)(6)(2)
(27)(
52)(
127)(2.5)(0.125)(
198)
(2)
解:(1)(15)(20)(8)(6)(2)
(15)(8)(2)(20)(6)(25)(26)1
(2727)(
52)(
12752)(2.5)(0.125)(
198
198)
(2)
(()(
127)(5)(2.5)(20)(
35)(
55)
141414 72
说明:把同分母的分数,互为相反数的数分别结合相加,计算起来就比较方便)0()()
【牛刀小试】
1、计算:(1)
11; 23
(2)(—2.2)+3.8;
(3)4(5)(+2
(7)(—6)+8+(—4)+12;
(9)0.36+(—7.4)+0.3+(—0.6)+0.64;
(10)9+(—7)+10+(—3)+(—9);
+(—5
16);(4)(—5
16)+0;
15)+(—2.2);(6)(—
215)+(+0.8);
(8)1
131
2 73732、用简便方法计算下列各题:
(10)(
57)()()4612
(1)3
919
(0.5)()()9.75
22(2)
185
395
(3)
()()()()()
(4)(8)(1.2)(0.6)(2.4)
(3.5)(
43)(
34)(
72)0.75(
7)
(5)
3、用算式表示:温度由—5℃上升8℃后所达到的温度.
.
4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下: +3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?
5.已知
2a15b40,计算下题:
(1)a的相反数与b的倒数的相反数的和;(2)a的绝对值与b的绝对值的和。
答案:
1、(1)5;(2)1.6;(3)
56
;(4)
5
;(5)0;(6)2 ;
(7)10;(8)0;(9)—6.7;(10)0;
2、(1)6(2)4.25(3)12(4)-12.2(5)
3、-5+8=-3(°C)
4、不足6克;244克
113
第四篇:七年级数学有理数的加减法教案
初一同步辅导材料(第9讲)
第一章
有理数加减及其混合运算
【知识梳理】
1、有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);
绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数.
加法的法则指出,两个有理数相加的结果由两部分构成:
先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值. 在加法运算中,最容易错的就是符号问题,运算时要特别注意符号问题.
【重点难点】
重点:有理数的加法法则和相关的运算律。
难点:运用有理数加法法则和运算律进行简化运算。
【典例解析】
例
1、数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次共向左移动了几个单位?
解:(-2)+(-4)=-6。答:这个点共向左移动6个单位。例
2、计算:
(1)(3)(2)1434(2)1.21
151325()
(4)(3)(2); 34771313解 :(1)(3)(2)(32)6;
4444(3)
(2)1.21(1.2)(1.2)0;
1513315()();
34431225254(4)3(2)(32)。
77777
(3)说明 严格按法则去做,对异号两数相加,关键是判断出两数的绝对值哪一个大,从而确定和的符号以及哪个数的绝对值减去哪个数的绝对值.
例
3、计算(1)(15)(20)(8)(6)(2)
251219()()()(2.5)(0.125)()278(2)7
解:(1)(15)(20)(8)(6)(2)
(15)(8)(2)(20)(6)(25)(26)1
251219()()()(2.5)(0.125)()278(2)72125119()()()(2.5)()()77288
105203555()0()()()7214141
4说明:把同分母的分数,互为相反数的数分别结合相加,计算起来就比较方便
【牛刀小试】
1、计算:(1)
(3)4+(—
5(5)(+2
(7)(—6)+8+(—4)+12;
(9)0.36+(—7.4)+0.3+(—0.6)+0.64;
(10)9+(—7)+10+(—3)+(—9);
11;
23
(2)(—2.2)+3.8;
131); 6
(4)(—5
1)+0; 61)+(—2.2);
5(6)(—
2)+(+0.8); 15
(8)141312 7373
2、用简便方法计算下列各题:
101157()()()()4612(1)3919(0.5)()()9.7522(2)1231839()()()()()5255(3)2(4)(8)(1.2)(0.6)(2.4)
4377(3.5)()()()0.75()3423(5)
3、用算式表示:温度由—5℃上升8℃后所达到的温度.
.
4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下: +3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?
5.已知2a15b40,计算下题:
(1)a的相反数与b的倒数的相反数的和;(2)a的绝对值与b的绝对值的和。
答案:
1、(1);(2)1.6;(3);(4)5;(5)0;(6);(7)10;(8)0;(9)—6.7;(10)0;
511
2、(1)6
(2)4.25
(3)12
(4)-12.2(5)3 565616233、-5+8=-3(°C)
4、不足6克;244克
第五篇:七年级上数学有理数的加减法教案
第一章 有理数加减及其混合运算
2011级1、2班 2011年9月15日 备课人:周小玲
【知识梳理】
1、有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0); 绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
加法的法则指出,两个有理数相加的结果由两部分构成:
先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值. 在加法运算中,最容易错的就是符号问题,运算时要特别注意符号问题. 【重点难点】
重点:有理数的加法法则和相关的运算律。
难点:运用有理数加法法则和运算律进行简化运算。【典例解析】
例
1、数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次共向左移动了几个单位?
解:(-2)+(-4)=-6。答:这个点共向左移动6个单位。例
2、计算:(1)(3)(2)
441(2)1.21
51325(3)()
(4)(3)(2);
34771313解 :(1)(3)(2)(32)6;
4444
1
(2)1.21(1.2)(1.2)0;
51331
5(3)()();
34431225254(4)3(2)(32)。
77777说明 严格按法则去做,对异号两数相加,关键是判断出两数的绝对值哪一个大,从而确定和的符号以及哪个数的绝对值减去哪个数的绝对值.
例
3、计算(1)(15)(20)(8)(6)(2)
251219()()()(2.5)(0.125)()278(27
说明:把同分母的分数,互为相反数的数分别结合相加,计算起来就比较方便
【牛刀小试】
1、计算:
11(1);
23
(2)(—2.2)+3.8;
1)+0; 611(3)4+(—5);
361(5)(+2)+(—2.2);
5(4)(—
5(6)(—
2)+(+0.8); 15(7)(—6)+8+(—4)+12;
4131(8)12
73732、用简便方法计算下列各题(1)0.36+(—7.4)+0.3+(—0.6)+0.64;(2)9+(—7)+10+(—3)+(—9);
4377(3.5)()()()0.75()3423
3、用算式表示:温度由—5℃上升8℃后所达到的温度.
4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:
+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克? 答案:
5512;(2)1.6;(3);(4)5;(5)0;(6); 6663(7)10;(8)0;(9)—6.7;(10)0;
1、(1)511
2、(1)6
(2)4.25
(3)12
(4)-12.2(5)3
3、-5+8=-3(°C)
4、不足6克;244克