必修2 立体几何证明题 详解(五篇)

时间:2019-05-12 06:30:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《必修2 立体几何证明题 详解》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《必修2 立体几何证明题 详解》。

第一篇:必修2 立体几何证明题 详解

迎接新的挑战!

必修2 证明题

一.解答题(共3小题)

1.(2006•北京)如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.

(1)求证:PB∥平面AEC;

(2)求二面角E﹣AC﹣B的大小.

考点:三垂线定理;直线与平面平行的判定。

分析:(1)欲证PB∥平面AEC,根据直线与平面平行的判定

定理可知只需证PB与平面AEC内一直线平行即可,连BD

交AC于点O,连EO,则EO是△PDB的中位线则EO∥PB,满足条件;

(2)取AD的中点F,连EF,FO,根据定义可知∠EOF是

二面角E﹣AC﹣D的平面角,在△EOF中求出此角,而二面

角E﹣AC﹣B与二面角E﹣AC﹣D互补.

解答:解:(1)由PA⊥平面ABCD可得PAAC

又AB⊥AC,所以AC⊥平面PAB,所以AC⊥PB

连BD交AC于点O,连EO,则EO是△PDB的中位线,∴EO∥PB

∴PB∥平面AEC

(2)取AD的中点F,连EF,FO,则EF是△PAD的中位线,∴EF∥PA又PA⊥平面ABCD,∴EF⊥平面ABCD

同理FO是△ADC的中位线,∴FO∥AB,FO⊥AC由三垂线定理可知∠EOF是二面角E﹣AC﹣D的平面角.

FO=AB=PA=EF

∴∠EOF=45°而二面角E﹣AC﹣B与二面角E﹣AC﹣D互补,故所求二面角E﹣AC﹣B的大小为135°.

点评:本题主要考查了直线与平面平行的判定,以及二面角等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.

2.如图,已知∠BAC在平面α内,P∉α,∠PAB=∠PAC,求证:点P在平面α上的射影在∠BAC的平分线上.

考点:三垂线定理。

专题:作图题;证明题。

分析:作PO⊥α,PE⊥AB,PF⊥AC,垂足分别为O,E,F,连接OE,OF,OA,证明Rt△AOE≌Rt△AOF,然后得到点P在平面α上的射影在∠BAC的平分线上.

解答:证明:作PO⊥α,PE⊥AB,PF⊥AC,垂足分别为O,E,F,连接OE,OF,OA,∵⇒Rt△PAE≌Rt△PAF⇒AE=AF,∵,又∵AB⊥PE,∴AB⊥平面PEO,∴AB⊥OE,同理AC⊥OF.

欢迎加入高一数学组联系电话

:***

迎接新的挑战!

必修2 证明题

在Rt△AOE和Rt△AOF,AE=AF,OA=OA,∴Rt△AOE≌Rt△AOF,∴∠EAO=∠FAO,即点P在平面α上的射影在∠BAC的平分线上.

点评:本题考查三垂线定理,考查学生逻辑思维能力,是基础题.

3.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=3.

(I)求证:A1C⊥BD;

(II)求直线A1C与侧面BB1C1C所成的角的正切值;

(III)求二面角B1﹣CD﹣B的正切值.

考点:三垂线定理;直线与平面所成的角;与二面角有关的立体几何综合题。

专题:计算题;证明题;综合题。

分析:(I)连AC,要证A1C⊥BD,只需证明AC⊥BD,说明AC是A1C在平面ABCD

上的射影即可;

(II)说明∠A1CB1就是直线A1C与侧面BB1C1C所成的角,解三角形A1CB1,求

直线A1C与侧面BB1C1C所成的角的正切值;

(III)找出∠B1CB为二面角B1﹣CD﹣B的平面角,通过角三角形求二面角B1﹣CD

﹣B的正切值.

解答:解:(I)连AC,在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,所以AC⊥BD

又侧棱AA1⊥平面ABCD

∴AC是A1C在平面ABCD上的射影

∴A1C⊥BD(三垂线定理);(4分)

(II)在正四棱柱ABCD﹣A1B1C1D1中,A1B1⊥平面BB1C1C,所以B1C是A1C在平面BB1C1C上的射影

∴∠A1CB1就是直线A1C与侧面BB1C1C所成的角,(6分)

在直角三角形A1CB1,A1B1⊥B1C,A1B1=2,∴;(9分)

(III)在正四棱柱ABCD﹣A1B1C1D1中,CD⊥平面BB1C1C

∴CD⊥B1C,CD⊥BC

∴∠B1CB为二面角B1﹣CD﹣B的平面角,(11分)

二面角B1﹣CD﹣B的正切值为.

点评:本题考查三垂线定理,直线与平面所成的角,二面角及其度量,考查学生空间想象能力,逻辑思维能力,是中档题.

欢迎加入高一数学组联系电话

:***

第二篇:立体几何证明题[范文]

11.如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=1,D是棱

2AA1的中点

(I)证明:平面BDC1⊥平面BDC

(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.2.如图5所示,在四棱锥PABCD中,AB平面PAD,AB//CD,PDAD,E是C A1 1D B

PB的中点,F是CD上的点且DF

PH为△PAD中AD边上的高.(1)证明:PH平面ABCD;

(2)若PH

1,AD1AB,2FC1,求三棱锥EBCF的体积;

(3)证明:EF平面PAB.3.如图,在直三棱柱ABCA1B1C1中,ABE分11AC11,D,别是棱BC,(点D 不同于点C),且ACC1上的点DDEF,为B1C1的中点.

求证:(1)平面ADE平面BCC1B1;

(2)直线A1F//平面ADE.

4.如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.

(1)证明:EF∥面PAD;(2)证明:面PDC⊥面PAD;(3)求四棱锥P—ABCD的体积.

5.在如图所示的几何体中,四边形ABCD是正方形,MA平面ABCD,PD//MA,E、G、F分别为MB、PB、PC的中点,且ADPD2MA.(I)求证:平面EFG平面PDC;

(II)求三棱锥PMAB与四棱锥PABCD的体积之比.6.如图,正方形ABCD和四边形ACEF所在的平面互相垂直。EF//AC,,CE=EF=1(Ⅰ)求证:AF//平面BDE;(Ⅱ)求证:CF⊥平面BDF;

7.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB;(Ⅲ)求四面体B—DEF的体积;

8.如图,在直三棱柱ABCA1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1DB1C

。求证:(1)EF∥平面ABC;(2)平面A1FD平面BB1C1C.9.如图4,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,ADAE,F

是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图5所示的三棱锥

ABCF,其中BC

(1)证明:DE//平面BCF;(2)证明:CF平面ABF;(3)当AD

图4

时,求三棱锥FDEG的体积VFDEG.3

10.如图,在四棱锥PABCD

中,AB//CD,ABAD,CD2AB,平面PAD底面

ABCD,PAAD,E和F分别是CD和PC的中点,求

证:

(1)PA底面ABCD;(2)BE//平

面PAD;(3)平面BEF平面PCD

(2013年山东卷)如图,四棱锥PABCD中,ABAC,ABPA,AB∥CD,AB2CD,E,F,G,M,N分别为

PB,AB,BC,PD,PC的中点

(Ⅰ)求证:CE∥平面PAD;(Ⅱ)求证:平面EFG平面EMN

11.

第三篇:立体几何证明题举例

立体几何证明题举例

(2012·江苏)如图,在直三棱柱ABCA1B1C1中,A1B1=A1C1,D、E分别是棱BC、CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点. 求证:(1)平面ADE⊥平面BCC1B1;

(2)直线A1F∥平面ADE.证明(1)因为ABC A1B1C1是直三棱柱,所以C C1⊥平面ABC.又AD⊂平面ABC,所以C C1⊥AD.又因为AD⊥DE,C C1,DE⊂平面BC C1 B1,C C1∩DE=E,所以AD⊥平面BC C1 B1.又AD⊂平面ADE,所以平面ADE⊥平面BC C1 B1.(2)因为A1 B1=A1 C1,F为B1 C1的中点,所以A1F⊥B1 C1.因为C C1⊥平面A1 B1 C1,且A1F⊂平面A1 B1 C1,所以C C1⊥A1F.又因为C C1,B1 C1⊂平面BC C1 B1,C C1∩B1 C1=C1,所以A1F⊥平面BC C1 B1.由(1)知AD⊥平面BC C1 B1,所以A1F∥AD

.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE

【例1】如图,在平行四边形ABCD中,CD=1,∠BCD=60°,且BD⊥CD,正方形ADEF所在平面与平面ABCD垂直,G、H分别是DF、BE的中点.

(1)求证:BD⊥平面CDE;

(2)求证:GH∥平面CDE;

(3)求三棱锥D-CEF的体积.

[审题导引](1)先证BD⊥ED,BD⊥CD,可证BD⊥平面CDE;

(2)由GH∥CD可证GH∥平面CDE;

(3)变换顶点,求VC-DEF.[规范解答](1)证明 ∵四边形ADEF是正方形,∴ED⊥AD,又平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD.∴ED⊥平面ABCD,∴ED⊥BD.又BD⊥CD,且ED∩DC=D,∴BD⊥平面CDE.(2)证明 ∵G是DF的中点,又易知H是FC的中点,∴在△FCD中,GH∥CD,又∵CD⊂平面CDE,GH⊄平面CDE,∴GH∥平面CDE.(3)设Rt△BCD中,BC边上的高为h,∵CD=1,∠BCD=60°,BD⊥CD,11∴BC=2,BD3,∴2×2×h=2×3,33∴h=2C到平面DEF2,1133∴VD-CEF=VC-DEF=2×=.3223

【例2】如图所示,已知在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.

(1)求证:DM∥平面APC;

(2)求证:平面ABC⊥平面APC;

(3)若BC=4,AB=20,求三棱锥D-

BCM的体积.

[审题导引](1)只要证明MD∥AP即可,根据三角形中位线定理可证;

(2)证明AP⊥BC;

(3)根据锥体体积公式进行计算.

[规范解答](1)证明 由已知,得MD是△ABP的中位线,所以MD∥AP.又MD⊄平面APC,AP⊂平面APC,故MD∥平面APC.(2)证明 因为△PMB为正三角形,D为PB的中点,所以MD⊥PB.所以AP⊥PB.又AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.因为BC⊂平面PBC,所以AP⊥BC.又BC⊥AC,AC∩AP=A,所以BC⊥平面APC.因为BC⊂平面ABC,所以平面ABC⊥平面APC.(3)由题意,可知MD⊥平面PBC,所以MD是三棱锥D-BCM的一条高,11所以VM-DBC=S△BCD×MD=221×53=107.33

第四篇:高三立体几何证明题训练

高三数学 立体几何证明题训练

班级姓名

1、如图,在长方体

ABCDA1B1C1D1中,AA1ADa,AB2a,E、F分别为C1D1、A1D1的中点.(Ⅰ)求证:DE平面BCE;(Ⅱ)求证:AF//平面BDE.

D

1F

E

C1

A1

C

B

A

ABCDA1B1C1D1的底面是菱形,且AA1面ABCD

ADAA1,F为棱AA1的中点,1的中点,M为线段BD

(1)求证:MF//面ABCD;(2)求证:MF面BDD1B1;

2、如图,已知棱柱,DAB60,

DC

1B1

M

AF

C

A3、如图,四棱锥P—ABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中点,F为ED的中点。(I)求证:平面PAC⊥平面PCD;(II)求证:CF//平面BAE。

4、如图,ABCDA1B1C1D1是正四棱柱侧棱长为1,底面边长为2,E是棱BC的中点。

(2)求三棱锥D

D1BC//平面C1DE;

(1)求证:BD15、如图所示,四棱锥P-ABCD底面是直角梯形,BAABCD,E为PC的中点。PA=AD=AB=1。

AD,CDAD,CD2AB,PA 底面

(1)证明:EB//平面PAD;(2)证明:BE平面PDC;(3)求三棱锥B-PDC的体积V。

6、如图,四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45,底面ABCD为直角梯形,∠

1ABC = ∠BAD = 90,PA = BC =AD.(Ⅰ)求证:平面PAC⊥平面PCD;

2(Ⅱ)在棱PD上是否存在一点E,使CE∥平面PAB ?若存在,请确定E点的位置;若不存在,请说明理由.

PB

C

D7、已知ABCD是矩形,AD4,AB2,E、F分别是线段AB、BC的中点,PA面ABCD.P

(1)证明:PF⊥FD;(2)在PA上找一点G,使得EG∥平面PFD.A E

B

F

D

ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M的中点。(Ⅰ)求三棱锥ABDF的体积;(Ⅱ)求证:AM//平面BDE;

8、如图,已知正方形

9、如图,矩形

是线段EF

为CE上的点,且

ABCD

中,AD平面ABE,AEEBBC2,F的体积.BF平面ACE。Ⅰ)求证:AE平面BCE;

(Ⅱ)求证;

AE//平面BFD;(Ⅲ)求三棱锥CBGF

C

B10、如图,四棱锥P—ABCD中,PA平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD,CD=2AB,E为PC中点.

(I)求证:平面PDC平面PAD;(II)求证:BE//平面PAD.

11、如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱EF∥BC且EF=BC.(1)证明FO//平面CDE;(2)设BC=CD,证明EO⊥平面CDF.

P

E

D

C

A

B

A

D

C12、如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.(Ⅰ)求证:AF∥平面PCE;

(Ⅱ)求证:平面PCE⊥平面PCD;(Ⅲ)求三棱锥C-BEP的体积.

13、如图,在矩形ABCD中,沿对角线BD把△BCD折起,使C移到C′,且BC′⊥AC′

(Ⅰ)求证:平面AC′D

⊥平面ABC′;

(Ⅱ)若AB=2,BC=1,求三棱锥C′—ABD的体积。

14、如图,在四棱锥P

ABCD中,底面ABCD是边长为a的正方形,侧面PAD底面ABCD,且

PAPD

(Ⅰ)

AD,若E、F分别为PC、BD的中点。2

EF //平面PAD;(Ⅱ)求证:平面PDC平面PAD;

第五篇:高中数学立体几何常考证明题汇总

新课标立体几何常考证明题

1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点

(1)求证:EFGH是平行四边形

(2)若

BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。

C D H证明:在ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH同理,FG//BD,FG

(2)90°30 °

考点:证平行(利用三角形中位线),异面直线所成的角 1BD 21BD∴EH//FG,EHFG∴四边形EFGH是平行四边形。

22、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。求证:(1)AB平面CDE;

(2)平面CDE平面ABC。E BCAC证明:(1)CEAB AEBE

同理,ADBDDEAB AEBEB C 又∵CEDEE∴AB平面CDE

(2)由(1)有AB平面CDE

又∵AB平面ABC,∴平面CDE平面ABC

考点:线面垂直,面面垂直的判定

D3、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,求证: AC1//平面BDE。

证明:连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点 ∴EO为三角形A1AC的中位线 ∴EO//AC1 又EO在平面BDE内,A1C在平面BDE外

∴AC1//平面BDE。考点:线面平行的判定

4、已知ABC中ACB90,SA面ABC,ADSC,求证:AD面SBC. 证明:∵ACB90°BCAC

又SA面ABCSABC

BC面SACBCAD

A

D

1B

C

D

C

S

A

C

B

又SCAD,SCBCCAD面SBC考点:线面垂直的判定

9、如图P是ABC所在平面外一点,PAPB,CB平面PAB,M是PC的中点,N是AB上的点,AN3NB(1)求证:MNAB;(2)当APB90,AB2BC4时,求MN的长。证明:(1)取PA的中点Q,连结MQ,NQ,∵M是PB的中点,M

P

∴MQ//BC,∵ CB平面PAB,∴MQ平面PAB∴QN是MN在平面PAB内的射影,取 AB的中点D,连结 PD,∵PAPB,∴C

A

PDAB,又AN3NB,∴BNND

N ∴QN//PD,∴QNAB,由三垂线定理得MNAB B

1

(2)∵APB90,PAPB,∴PDAB2,∴QN1,∵MQ平面PAB.∴MQNQ,且

MQBC

1,∴MN

2考点:三垂线定理

12、已知ABCD是矩形,PA平面ABCD,AB2,PAAD4,E为BC的中点.

(1)求证:DE平面PAE;(2)求直线DP与平面PAE所成的角. 证明:在ADE中,ADAEDE,AEDE ∵PA平面ABCD,DE平面ABCD,PADE

又PAAEA,DE平面PAE(2)DPE为DP与平面PAE所成的角

在Rt

PAD,PDRt

DCE中,DE在RtDEP中,PD2DE,DPE300 考点:线面垂直的判定,构造直角三角形

15、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB的中点F,连结CF,DF.∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.∵CD平面CDF,∴CDAB.又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD. 考点:线面垂直的判定

下载必修2 立体几何证明题 详解(五篇)word格式文档
下载必修2 立体几何证明题 详解(五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学立体几何常考证明题汇总 - 副本

    立体几何常考证明题汇总答案1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD......

    2011届高考数学立体几何证明题

    空间直线、平面的平行与垂直问题一、“线线平行”与“线面平行”的转化问题,“线面平行”与“面面平行”的转化问题知识点:一)位置关系:平行:没有公共点.相交:至少有一个公共点,必有......

    高中数学立体几何常考证明题汇总1

    2、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。 求证:(1)AB平面CDE;(2)平面CDE平面ABC。证明:(1)EBCACCEABAEBEBADBD同理,DEABAEBE又∵CEDEE∴AB平面CDE (2)由(1)有AB平面CDECD又∵A......

    立体几何平行证明题常见模型及方法[定稿]

    立体几何平行证明题常见模型及方法 证明空间线面平行需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。②立体几何论证题的解答中,利用题设条......

    学生版 高中数学立体几何常考证明题汇总

    立体几何常考证明题汇总1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的......

    0709 高中数学立体几何常考证明题汇总 题目

    立体几何常考证明题 0709考点:证平行(利用三角形中位线),异面直线所成的角1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形(2) 若BD=AC=2......

    分析立体几何证明题思路的方法[五篇模版]

    应用分析法分析立体几何证明题思路 立体几何是高中数学中很重要的一部分知识,对培养学生空间想象能力有很重要的意义,虽然近些年高考中立体几何的难度有所降低,但一直是高考的......

    (学生用)高中数学立体几何常考证明题汇总.

    新课标立体几何常考证明题汇总 1、已知四边形 ABCD 是空间四边形, , , , E F G H 分别是边 , , , AB BC CD DA 的中点 (1 求证:EFGH 是平行四边形 (2 若 BD=AC=2, EG=2。求......