排列组合典型问题-分球入盒

时间:2019-05-12 12:20:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《排列组合典型问题-分球入盒》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《排列组合典型问题-分球入盒》。

第一篇:排列组合典型问题-分球入盒

分 球 入 盒 问 题

高二数学组 朱育璋

分球入盒问题(球在盒子的分布情况)是概率中常见的一类题型,如:

(1)生日问题:n个人的生日的可能情况(每个人生日是365天之一),相当于n个球放入N=365个盒子中的可能情况(设一年365天);

(2)书籍分堆问题:6本画册分给3份,每份至少一本

(3)名额分配问题:7个参赛名额分给不同班级

(4)有n封信随机的投放在N个信筒中(筒内信数不限);

此类问题具有背景丰富,应用广泛等特点。本文旨在总结解此类题的规律,理清思路,以便更好的更快的求解问题。

例题分析

【例1】 按下列要求分配6个不同的小球,各有多少种不同的分配方式?

(1)分成三份,1份1个,1份2个,1份3个;

(2)甲、乙、丙三人中,一人得1个,一人得2个,一人得3个;

分析:(1)为典型无序分组问题,可分三步完成,即拿出一个做第一份,拿出2个做第二份,拿出3个做第三份,完成分组,对于(2)为有序分组问题,可采取先按(1)分组,再进行分配,即排列。

归纳:从1,2问区分分组要求与分配要求,并掌握基本方法。另外,举出类似问题,一起归结为:不同小球投入相同的盒子,不同小球投入不同的盒子

(3)分成三份,1份4个,另外两份每份1个;

(4)甲、乙、丙三人中,一人得4个,另外两人每人得1个;

分析:(3)与(1)问题类型相同,同为分组要求,不同的地方:出现两份小球数目一样,即有均分组,此时按原方法计算会导致重复计算,举例:不妨记6个球为A、B、C、D、E、F,若第一步取了ABCD,第二步取了E,第三步取了F,记该种分法为(ABCD,E,F),则同样分法中还有(ABCD,F,E),共2种情况,而这2种情况仅是E,F的顺序

22不同,从排列角度易算出不同的分法为A2,需在原基础上除以A2,消去顺序。

归纳:在分组中出现均分组情况,需要消序,即除以均分组的组数全排列数

【例2】 按下列要求分配6个相同的小球,各有多少种不同的分配方式?

(1)分成三份,1份1个,1份2个,1份3个;

(2)甲、乙、丙三人中,一人得1个,一人得2个,一人得3个;

一.(1)通过穷举的办法算出结果,认识到分法差异在于各组小球数量的相对性

二.(2)分法差异在于不同的小组小球的数量,方法:先定数量分配,再分配入盒。归纳:

1.球不同,盒子同(分组问题)

方法:典型组合问题,首先明确各组小球的数量,然后逐步算出每一组的组合方式,再相乘。注意:平均分组时,需消序,即除以均分组的个数的全排列数

2.球不同,盒子不同(分配问题)

方法:先组合后排列,首先按1类型算出分组方法,然后将各组整体视为单个元素,再进行排列。

特别地:当每个盒子不限小球的个数时,可让每一个小球依

次选择盒子,各小球的选择方法有b种,总数 ba〃

3.球同,盒子不同(分法的差异:不同盒子所装小球的数量)

穷举法:

隔板法:将a个小球排成一列,小球间形成a-1个空位,从中选择b-1个空位插入隔板,等价于将元素分成b份。

注意;该法要求每个盒子至少有一个小球,不允许空盒

4.球同,盒子同(分法的差异:各盒子所装小球数量的相对性)

穷举法:即把每一个分法详细写出来。

分球入盒问题思考方式

1.如何辨认何种考题属于此题型?

特征:考察对象有两个,一个是待分配的,另一个对象具有容纳功能,常见问题:信件投信箱,多人人选房子住宿,赠书给人

2.辨别哪个是小球,哪个是盒子。

盒子:具有容纳的功能

3.辨别小球(盒子)同还是不同,确定问题的具体类型,准确选择方法。

4.计算概率时,为典型的等可能实验

第二篇:排列组合典型例题

典型例题一

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?

分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:

如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.

如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.

如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.

解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有A9个;

当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4A8A8(个).

∴ 没有重复数字的四位偶数有

11232296

A9A4A8A85041792个.

解法2:当个位数上排“0”时,同解一有A9个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:13A4(A9A82)个

3311

2∴

没有重复数字的四位偶数有

A9A4(A9A8)50417922296个.

解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有

A5A5A8个

干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有

11A4A4A82个 11231

32∴ 没有重复数字的四位偶数有

A5A5A8A4A4A82296个.

解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.

没有重复数字的四位数有A10A9个.

其中四位奇数有A5(A9A8)个

/ 13

***∴ 没有重复数字的四位偶数有

4313333A10A9A5(A9A82)10A9A95A95A82

34A95A82

36A825A82

41A82

2296个

说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.

典型例题二

例2 三个女生和五个男生排成一排

(1)如果女生必须全排在一起,可有多少种不同的排法?

(2)如果女生必须全分开,可有多少种不同的排法?

(3)如果两端都不能排女生,可有多少种不同的排法?

(4)如果两端不能都排女生,可有多少种不同的排法?

解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有A6种不同排法.对于其中的每一种排法,三个女生之间又都有A3对种不同的排法,因此共有A6A34320种不同的排法.

(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有A6种方法,因此共有A5A614400种不同的排法.

(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有A5种不同的排法,对于其中的任意一种排法,其余六位都有A6种排法,所以共有6A52A614400种不同的排法. 2635353636

解法2:(间接法)3个女生和5个男生排成一排共有A8种不同的排法,从中扣除女生排在首位的A3A7种排法和女生排在末位的A3A7种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有A3A6种不同的排法,所以共有

2617178 2 / 1 8176A82A3A7A32A614400种不同的排法.

解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有A6种不同的排法,对于其中的任意一种排活,其余5个位置又都有A5种不同的排法,所以共有35A6A514400种不同的排法,53(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有A5A7种不同的排法;如果首位排女生,有A3种排法,这时末位就只能排男生,有A5种排法,首末两端任意排定一种情况后,其余6位都有A6种不同的排法,这样可有A3A5A6种不同排法.因此共有A5A7A3A5A636000种不同的排法.

解法2:3个女生和5个男生排成一排有A8种排法,从中扣去两端都是女生排法A3A6种,就能得到两端不都是女生的排法种数.

因此共有A8A3A636000种不同的排法.

说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.

若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.

若以元素为主,需先满足特殊元素要求再处理其它的元素.

间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.

捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用. ***6171典型例题三

例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种?

(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?

解:(1)先排歌唱节目有A5种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有A6中方法,所以任两个舞蹈节目不相邻排法有:A5A6=43200.(2)先排舞蹈节目有A4中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。所以歌唱节目与舞蹈节目间隔排列的排法有:A4A5=2880种方法。

说明:对于“间隔”排列问题,我们往往先排个数较少的元素,再让其余元素插空排列。否则,若先排个数较多的元素,再让其余元素插空排时,往往个数较多的元素有相邻情况。

4545454 3 / 1 如本题(2)中,若先排歌唱节目有A5,再排舞蹈节目有A6,这样排完之后,其中含有歌唱节目相邻的情况,不符合间隔排列的要求。

54典型例题四

例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.

分析与解法1:6六门课总的排法是A6,其中不符合要求的可分为:体育排在第一书有A5种排法,如图中Ⅰ;数学排在最后一节有A5556种排法,如图中Ⅱ;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中Ⅲ,这种情况有A4种排法,因此符合条件的排法应是:

A62A5A4504(种).

分析与解法2:根据要求,课程表安排可分为4种情况:

(1)体育、数学既不排在第一节也不排在最后一节,这种排法有A4A4种;

(2)数学排在第一节但体育不排在最后一节,有排法A4A4种;

(3)体育排在最后一节但数学不排在第一节,有排法A4A4种;

(4)数学排在第一节,体育排在最后一节,有排法A这四类排法并列,不重复也不遗漏,故总的排法有:

A4A4A4A4A4A4504(种).

分析与解法3:根据要求,课表安排还可分下述4种情况:

(1)体育,数学既不在最后也不在开头一节,有A412种排法;

(2)数学排在第一节,体育不排在最后一节,有4种排法;

(3)体育在最后一书,数学木在第一节有4种排法;

(4)数学在第一节,体育在最后一节有1种排法.

上述 21种排法确定以后,仅剩余下四门课程排法是种A4,故总排法数为21A4504(种).

下面再提出一个问题,请予解答.

问题:有6个人排队,甲不在排头,乙不在排尾,问并肩多少种不同的排法.

请读者完成此题.

说明:解答排列、组合问题要注意一题多解的练习,不仅能提高解题能力,而且是检验所解答问题正确与否的行之有效的方法.

***46544 4 / 1

3典型例题五

例5 现有3辆公交车、每辆车上需配1位司机和1位售票员.问3位司机和3位售票员,车辆、司机、售票员搭配方案一共有多少种?

分析:可以把3辆车看成排了顺序的三个空:,然后把3名司机和3名售票员分别填入.因此可认为事件分两步完成,每一步都是一个排列问题.

解:分两步完成.第一步,把3名司机安排到3辆车中,有A36种安排方法;第二步把3名售票员安排到3辆车中,有A36种安排方法.故搭配方案共有

33A3A336种.

33说明:许多复杂的排列问题,不可能一步就能完成.而应分解开来考虑:即经适当地分类成分或分步之后,应用分类计数原理、分步计数原理原理去解决.在分类或分步时,要尽量把整个事件的安排过程考虑清楚,防止分类或分步的混乱.

典型例题六

例6 下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?

学 校 1 2 3 1 1 1 专 业 2 2 2

分析:填写学校时是有顺序的,因为这涉及到第一志愿、第二志愿、第三志愿的问题;同一学校的两个专业也有顺序,要区分出第一专业和第二专业.因此这是一个排列问题.

解:填表过程可分两步.第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有A4种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其顺序,其中又包含三小步,因此总的排列数有A3A3A3种.综合以上两步,由分步计数原理得不同的填表方法有:A4A3A3A35184种.

说明:要完成的事件与元素的排列顺序是否有关,有时题中并未直接点明,需要根据实际情景自己判断,特别是学习了后面的“组合”之后这一点尤其重要.“选而且排”(元素之间有顺序要求)的是排列,“选而不排”(元素之间无顺序要求)的是组合.另外,较复杂的事件应分解开考虑.

32222223典型例题七

/ 1

3例5 7名同学排队照相.

(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?

(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,女生不能相邻,有多少种不面的排法? 3名女生,分析:(1)可分两步完成:第一步,从7人中选出3人排在前排,有A7种排法;第二步,剩下的4人排在后排,有A4种排法,故一共有A7A4A7种排法.事实上排两排与排成一排一样,只不过把第4~7个位子看成第二排而已,排法总数都是A7,相当于7个人的全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”. 解:(1)A7A4A75040种.

(2)第一步安排甲,有A3种排法;第二步安排乙,有A4种排法;第三步余下的5人排在剩下的5个位置上,有A5种排法,由分步计数原理得,符合要求的排法共有115A3A4A51440种.

5***(3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的全排列问题,有A5种排法;第二步,甲、乙、丙三人内部全排列,有A3种排法.由分步计数原理得,共有A5A3720种排法.

(4)第一步,4名男生全排列,有A4种排法;第二步,女生插空,即将3名女生插入4名男生之间的5个空位,这样可保证女生不相邻,易知有A5种插入方法.由分步计数原理得,符合条件的排法共有:A4A51440种.

说明:(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.

43353534典型例题八

例8 从2、3、4、5、6五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.

分析:可以从每个数字出现的次数来分析,例如“2”,当它位于个位时,即形如

/ 1 的数共有A4个(从

3、,当这些数相加时,由“2”4、5、6四个数中选两个填入前面的两个空)所产生的和是A42.当2位于十位时,即形如

222的数也有A4,那么当这些数相加时,2由“2”产生的和应是A4210.当2位于面位时,可同理分析.然后再依次分析3、4、5、6的情况.

解:形如2的数共有A4个,当这些数相加时,由“2”产生的和是A42;形如

222的数也有A4个,当这些数相加时,由“2”产生的和是A4210;形如

2的数也有A42个,当这些数相加时,由“2”产生的和应是A42100.这样在所有三位数的和中,由“2”产生的和是A42111.同理由3、4、5、6产生的和分别是A43111,A44111,222111(23456)26640. A45111,A46111,因此所有三位数的和是A4222说明:类似于这种求“数字之和”的问题都可以用分析数字出现次数的办法来解决.如“由1,4,5,x四个数字组成没有重复数字的四位数,若所有这些四位数的各数位上的数字之和为288,求数x”.本题的特殊性在于,由于是全排列,每个数字都要选用,故每个数字均出现了A424次,故有24(145x)288,得x2. 4典型例题九

例9 计算下列各题:

m1nmAnA1nm(1)A;

(2)A;

(3); n1An121566(4)1!22!33!nn!

(5)

123n1 2!3!4!n!解:(1)A151514210;(2)A66!654321720;(3)原式62(n1)!1(nm)!

[n1(m1)!](n1)!(n1)!1(nm)!1;

(nm)!(n1)!(4)原式(2!1)(3!2!)(4!3!)[(n1)!n!]

/ 1 (n1)!1;

(5)∵n111,n!(n1)!n!123n1 2!3!4!n!1111111111. 1!2!2!3!3!4!(n1)!n!n!∴说明:准确掌握好排列公式是顺利进行计算的关键.

本题计算中灵活地用到下列各式:

n!n(n1)!;nn!(n1)!n!;

n111;使问题解得简单、快捷. n!(n1)!n!典型例题十

例10 a,b,c,d,e,f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法.对这个题目,A、B、C、D四位同学各自给出了一种算式:A的算式是161111144A2A3A4A5)A4;C的算式是A6; A6;B的算式是(A124.上面四个算式是否正确,正确的加以解释,不正确的说明理由. D的算式是C62A4解:A中很显然,“a在b前的六人纵队”的排队数目与“b在a前的六人纵队”排队数目相等,而“六人纵队”的排法数目应是这二者数目之和.这表明:A的算式正确.

B中把六人排队这件事划分为a占位,b占位,其他四人占位这样三个阶段,然后用乘法求出总数,注意到a占位的状况决定了b占位的方法数,第一阶段,当a占据第一个位置时,b占位方法数是A5;当a占据第2个位置时,b占位的方法数是A4;„„;当a占据第5个位置时,b占位的方法数是A1,当a,b占位后,再排其他四人,他们有A4种排法,可见B的算式是正确的.

1411C中A64可理解为从6个位置中选4个位置让c,d,e,f占据,这时,剩下的两个位置依前后顺序应是a,b的.因此C的算式也正确.

这两个位置让a,b占据,显然,a,b占D中把6个位置先圈定两个位置的方法数C62,据这两个圈定的位置的方法只有一种(a要在b的前面),这时,再排其余四人,又有A4种排法,可见D的算式是对的. 8 / 1 说明:下一节组合学完后,可回过头来学习D的解法.

典型例题十一

例11 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?

解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:

215215A4A2A5A4A4A58640(种).

解法2:采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八人坐法数”看成“总方法数”,这个数目是A4A7.在这种前提下,不合题意的方法是“甲坐第一排,且乙、丙坐两排的八人坐法.”这个数目是A4C2A3A4A5.其中第一个因数

111A4表示甲坐在第一排的方法数,C2表示从乙、丙中任选出一人的办法数,A3表示把选出

1111517的这个人安排在第一排的方法数,下一个A4则表示乙、丙中沿未安排的那个人坐在第二排的方法数,A5就是其他五人的坐法数,于是总的方法数为

1711115A4A7A4C2A3A4A58640(种). 51说明:解法2可在学完组合后回过头来学习.

典型例题十二

例12 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有().

A.A4A

5B.A3A4A5

C.C3A4A5

D.A2A4A5

解:将同一品种的画“捆”在一起,注意到水彩画不放在两端,共有A2种排列.但4幅油画、5幅国画本身还有排列顺序要求.所以共有A2A4A5种陈列方式.

∴应选D.

说明:关于“若干个元素相邻”的排列问题,一般使用“捆绑”法,也就是将相邻的若干个元素“捆绑”在一起,看作一个大元素,与其他的元素进行全排列;然后,再“松绑”,将被“捆绑”的若干元素,内部进行全排列.本例题就是一个典型的用“捆绑”法来解答的问题.

***典型例题十三

/ 1

3例13 由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的个数共有().

A.210

B.300

C.46

4D.600 解法1:(直接法):分别用1,2,3,4,5作十万位的排列数,共有5A5种,所以其中个位数字小于十位数字的这样的六位数有

5155A5300个. 265解法2:(间接法):取0,1,,5个数字排列有A6,而0作为十万位的排列有A5,所以其中个位数字小于十位数字的这样的六位数有

165(A6A5)300(个). 2∴应选B.

说明:(1)直接法、间接法是解决有关排列应用题的两种基本方法,何时使用直接法或间接法要视问题而定,有的问题如果使用直接法解决比较困难或者比较麻烦,这时应考虑能否用间接法来解.

(2)“个位数字小于十位数字”与“个位数字大于十位数字”具有对称性,这两类的六位数个数一样多,即各占全部六位数的一半,同类问题还有6个人排队照像时,甲必须站在乙的左侧,共有多少种排法.

典型例题十四

例14 用1,2,3,4,5,这五个数字,组成没有重复数字的三位数,其中偶数共有(). A.24个

B.30个

C.40个

D.60个

分析:本题是带有附加条件的排列问题,可以有多种思考方法,可分类,可分步,可利用概率,也可利用本题所提供的选择项分析判断.

解法1:分类计算.

将符合条件的偶数分为两类.一类是2作个位数,共有A4个,另一类是4作个位数,也有A4个.因此符合条件的偶数共有A4A424个.

解法2:分步计算.

先排个位数字,有A2种排法,再排十位和百位数字,有A4种排法,根据分步计数原理,三位偶数应有A2A424个.

解法3:按概率算.

用15这5个数字可以组成没有重复数字的三位数共有A560个,其中偶点其中的32222121222.因此三位偶数共有6024个. 55解法4:利用选择项判断.

/ 1 用15这5个数字可以组成没有重复数字的三位数共有A560个.其中偶数少于奇数,因此偶数的个数应少于30个,四个选择项所提供的答案中,只有A符合条件. ∴应选A.

3典型例题十五

例15(1)计算A12A23A38A8.

(2)求Sn1!2!3!n!(n10)的个位数字.

分析:本题如果直接用排列数公式计算,在运算上比较困难,现在我们可以从和式中项的特点以及排列数公式的特点两方面考虑.在(1)中,项可抽象为nnnnn1nnAn(n11)An(n1)AnnAnAn1An1238,(2)中,项为n!n(n1)(n2)321,当n5时,乘积中出现5和2,积的个位数为0,在加法运算中可不考虑.

解:(1)由nAn(n1)!n!

∴原式2!1!3!2!9!8!9!1!362879.(2)当n5时,n!n(n1)(n2)321的个位数为0,∴Sn1!2!3!n!(n10)的个位数字与1!2!3!4!的个位数字相同. 而1!2!3!4!33,∴Sn的个位数字为3.

说明:对排列数公式特点的分析是我们解决此类问题的关键,比如:求证: n123n11,我们首先可抓等式右边的 2!3!4!(n1)!(n1)!nn11n1111,(n1)!(n1)!(n1)!(n1)!n!(n1)!∴左边11111111右边. 2!2!3!n!(n1)!(n1)!典型例题十六

例16 用0、组成无重复数字的自然数,(1)可以组成多少个1、2、3、4、5共六个数字,无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

/ 1 分析:3位偶数要求个位是偶数且首位数字不能是0,由于个位用或者不用数字0,对确定首位数字有影响,所以需要就个位数字用0或者用

2、一个自然数能被3整4进行分类.除的条件是所有数字之和是3的倍数,本题可以先确定用哪三个数字,然后进行排列,但要注意就用与不用数字0进行分类.

解:(1)就个位用0还是用2、2、3、4中任取两4分成两类,个位用0,其它两位从

1、数排列,共有A412(个),个位用2或4,再确定首位,最后确定十位,共有224432(个),所有3位偶数的总数为:123244(个).

(2)从0、1、2、3、4、5中取出和为3的倍数的三个数,分别有下列取法:(012)、(015)、(024)、(045)、(123)、(135)、(234)、(345),前四组中有0,后四组中没有0,用它们排成三位数,如果用前4组,共有42A216(个),如果用后四组,共有4A324(个),所有被3整除的三位数的总数为162440(个). 32典型例题十七

例17 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?

分析:对于空位,我们可以当成特殊元素对待,设空座梯形依次编号为1、2、3、4、5、6、7.先选定两个空位,可以在1、2号位,也可以在2、3号位„共有六种可能,再安排另一空位,此时需看到,如果空位在1、2号,则另一空位可以在4、5、6、7号位,有4种可能,相邻空位在6、7号位,亦如此.如果相邻空位在2、3号位,另一空位可以在5、6、7号位,只有3种可能,相邻空位在3、4号,4、5号,5、6号亦如此,所以必须就两相邻空位的位置进行分类.本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻.

解答一:就两相邻空位的位置分类:

若两相邻空位在1、2或6、7,共有24A4192(种)坐法.

若两相邻空位在2、3,3、4,4、5或5、6,共有43A4288(种)不同坐法,所以所有坐法总数为192288480(种).

解答二:先排好4个人,然后把两空位与另一空位插入坐好的4人之间,共有4A4A52480(种)不同坐法.

44解答三:本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相

/ 13

邻的情况,4个人任意坐到7个座位上,共有A7种坐法,三个空位全相邻可以用合并法,直接将三个空位看成一个元素与其它座位一起排列,共有A5种不同方法.三个空位全不相邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隔中,有A410种不同方法,所以,所有满足条件的不同坐法种数为A7A510A4480(种).

454544 13 / 13

第三篇:排列组合典型例题+详解

典型例题一

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?

典型例题二

例2 三个女生和五个男生排成一排

(1)如果女生必须全排在一起,可有多少种不同的排法?

(2)如果女生必须全分开,可有多少种不同的排法?

(3)如果两端都不能排女生,可有多少种不同的排法?

(4)如果两端不能都排女生,可有多少种不同的排法?

典型例题三

例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种?

(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?

典型例题四

例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.

典型例题五

3位司机和3位售票员,例5 现有3辆公交车、每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?

典型例题六

例6 下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?

学 校 1 2 3 1 1 1 专 业 2 2 2

/ 1jiangshan整理

典型例题七

例5 7名同学排队照相.

(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?

(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?

3名女生,7人中有4名男生,(4)若排成一排照,女生不能相邻,有多少种不面的排法?

典型例题八

例8 从2、3、4、5、6五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.

典型例题九

例9 计算下列各题:(1)A;

(2)A;

(3)21566An1AnmAn1n1m1nm;

(4)1!22!33!nn!

(5)

12!23!34!n1n!

典型例题十

例10 a,b,c,d,e,f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法.对这个题目,A、B、C、D四位同学各自给出了一种算式:A的算式是2412A6;B的算式是(A1A2A3A4A5)A4;C的算式是A6;

61111144D的算式是C6A4.上面四个算式是否正确,正确的加以解释,不正确的说明理由.

典型例题十一

例11 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?

典型例题十二

/ 1jiangshan整理 例12 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有().

145245A.A44A5

5B.A33A44A55

C.C3A4A5

D.A2A4A5

典型例题十三

例13 由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的个数共有().

A.210

B.300

C.46

4D.600

典型例题十四

例14 用1,2,3,4,5,这五个数字,组成没有重复数字的三位数,其中偶数共有(). A.24个

B.30个

C.40个

D.60个

典型例题十五

1238例15(1)计算A12A23A38A8.

(2)求Sn1!2!3!n!(n10)的个位数字.

典型例题十六

例16 用0、组成无重复数字的自然数,(1)可以组成多少个1、2、3、4、5共六个数字,无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

典型例题十七

例17 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?

/ 1jiangshan整理 典型例题分析

1、分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:

如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.

如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.

如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.

解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有A93个;

当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一

112A8A8(个)个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4.

∴ 没有重复数字的四位偶数有

311

2A9A4A8A850417922296个.

解法2:当个位数上排“0”时,同解一有A9个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:A4(A9A8)个 132

3∴

没有重复数字的四位偶数有

313

2A9A4(A9A8)50417922296个.

解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有

2A5A5A8个

干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有

A4A4A8个 11

2∴ 没有重复数字的四位偶数有

112112

A5A5A8A4A4A82296个.

解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.

43没有重复数字的四位数有A10A9个.

132其中四位奇数有A5(A9A8)个

/ 14

jiangshan整理 ∴ 没有重复数字的四位偶数有

A10A9A5(A9A8)10A9A95A95A8 4313233324A95A8 36A85A8

223241A8

22296个

说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.

2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有A66种不同排法.对于其中的每一种排法,三个女生之间又都有A33对种不同的排法,因此共有A66A334320种不同的排法.

(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位

353置中选出三个来让三个女生插入都有A6种方法,因此共有A5A614400种不同的排法.

5(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的226个,有A5种不同的排法,对于其中的任意一种排法,其余六位都有A6种排法,所以共有A5A614400种不同的排法. 26

解法2:(间接法)3个女生和5个男生排成一排共有A8种不同的排法,从中扣除女生1717排在首位的A3A7种排法和女生排在末位的A3A7种排法,但这样两端都是女生的排法在8扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以

26还需加一次回来,由于两端都是女生有A3A6种不同的排法,所以共有A82A3A7A3A61440种不同的排法.0 81726解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有A6种不同的排法,对于其中的任意一种排活,其余5个位置又都有A5种不同的排法,所以共有A6A514400种不同的排法,5 / 1jiangshan整理 3553(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受

171条件限制了,这样可有A5A7种不同的排法;如果首位排女生,有A3种排法,这时末位就1只能排男生,有A5种排法,首末两端任意排定一种情况后,其余6位都有A66种不同的排法,11617116这样可有A3 A5A6种不同排法.因此共有A5A7A3A5A636000种不同的排法.解法2:3个女生和5个男生排成一排有A88种排法,从中扣去两端都是女生排法A32A66种,就能得到两端不都是女生的排法种数.

因此共有A88A32A6636000种不同的排法.

说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.

若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.

若以元素为主,需先满足特殊元素要求再处理其它的元素.

间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.

捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.

3、解:(1)先排歌唱节目有A55种,歌唱节目之间以及两端共有6个位子,从中选4个454放入舞蹈节目,共有A6中方法,所以任两个舞蹈节目不相邻排法有:A5A6=43200.(2)先排舞蹈节目有A44中方法,在舞蹈节目之间以及两端共有5个空位,恰好供

55个歌唱节目放入。所以歌唱节目与舞蹈节目间隔排列的排法有:A44A5=2880种方法。

说明:对于“间隔”排列问题,我们往往先排个数较少的元素,再让其余元素插空排列。否则,若先排个数较多的元素,再让其余元素插空排时,往往个数较多的元素有相邻情况。如本题(2)中,若先排歌唱节目有A5,再排舞蹈节目有A6,这样排完之后,其中含有歌唱节目相邻的情况,不符合间隔排列的要求。

544、分析与解法1:6六门课总的排法是A566,其中不符合要求的可分为:体育排在5第一书有A5种排法,如图中Ⅰ;数学排在最后一节有A5种排法,如图中Ⅱ;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中Ⅲ,这种情况有A4种排法,因此符合条件的排法应是:

54A62A5A4504(种). 6 / 14

jiangshan整理

分析与解法2:根据要求,课程表安排可分为4种情况:

(1)体育、数学既不排在第一节也不排在最后一节,这种排法有A42A44种;

4(2)数学排在第一节但体育不排在最后一节,有排法A4A4种;

(3)体育排在最后一节但数学不排在第一节,有排法A4A4种;

(4)数学排在第一节,体育排在最后一节,有排法A44

这四类排法并列,不重复也不遗漏,故总的排法有:

1414

A42A44A4. A4A4A4504(种)

分析与解法3:根据要求,课表安排还可分下述4种情况:

(1)体育,数学既不在最后也不在开头一节,有A4212种排法;

(2)数学排在第一节,体育不排在最后一节,有4种排法;

(3)体育在最后一书,数学木在第一节有4种排法;

(4)数学在第一节,体育在最后一节有1种排法.

上述 21种排法确定以后,仅剩余下四门课程排法是种A44,故总排法数为21A44504(种).

下面再提出一个问题,请予解答.

问题:有6个人排队,甲不在排头,乙不在排尾,问并肩多少种不同的排法.

请读者完成此题.

说明:解答排列、组合问题要注意一题多解的练习,不仅能提高解题能力,而且是检验所解答问题正确与否的行之有效的方法.

5、分析:可以把3辆车看成排了顺序的三个空:,然后把3名司机和3名售票员分别填入.因此可认为事件分两步完成,每一步都是一个排列问题.

3解:分两步完成.第一步,把3名司机安排到3辆车中,有A36种安排方法;第二步

3把3名售票员安排到3辆车中,有A36种安排方法.故搭配方案共有

A3A336种. 33说明:许多复杂的排列问题,不可能一步就能完成.而应分解开来考虑:即经适当地分类成分或分步之后,应用分类计数原理、分步计数原理原理去解决.在分类或分步时,要尽量把整个事件的安排过程考虑清楚,防止分类或分步的混乱.

6、分析:填写学校时是有顺序的,因为这涉及到第一志愿、第二志愿、第三志愿的问题;同一学校的两个专业也有顺序,要区分出第一专业和第二专业.因此这是一个排列问题.

/ 1jiangshan整理 解:填表过程可分两步.第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有A43种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其顺序,其中又包含三小步,因此总的排列数有A32A32A32种.综合以上两步,由分步计数

3222原理得不同的填表方法有:A4A3A3A35184种.

说明:要完成的事件与元素的排列顺序是否有关,有时题中并未直接点明,需要根据实际情景自己判断,特别是学习了后面的“组合”之后这一点尤其重要.“选而且排”(元素之间有顺序要求)的是排列,“选而不排”(元素之间无顺序要求)的是组合.另外,较复杂的事件应分解开考虑.

7、分析:(1)可分两步完成:第一步,从7人中选出3人排在前排,有A37种排法;第二步,剩下的4人排在后排,有A44种排法,故一共有A73A44A77种排法.事实上排两排与排成一排一样,只不过把第4~7个位子看成第二排而已,排法总数都是A77,相当于7个人的全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”.

347解:(1)A7A4A75040种.

1(2)第一步安排甲,有A3种排法;第二步安排乙,有A4种排法;第三步余下的5人排在15剩下的5个位置上,有A5种排法,由分步计数原理得,符合要求的排法共有A3A4A51440种. 115(3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的全排列问题,有A5种排法;第二步,甲、乙、丙三人内部全排列,有A3种排法.由分步计53数原理得,共有A5A3720种排法. 53(4)第一步,4名男生全排列,有A4种排法;第二步,女生插空,即将3名女生插入4名

3男生之间的5个空位,这样可保证女生不相邻,易知有A5种插入方法.由分步计数原理得,443符合条件的排法共有:A4A51440种.

说明:(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.

/ 1jiangshan整理

8、分析:可以从每个数字出现的次数来分析,例如“2”,当它位于个位时,即形如的数共有A42个(从

3、,当这些数相加时,4、5、6四个数中选两个填入前面的两个空)的数也有A42,那么当这些数由“2”所产生的和是A422.当2位于十位时,即形如相加时,由“2”产生的和应是A42210.当2位于面位时,可同理分析.然后再依次分析3、4、5、6的情况.

解:形如的数共有A42个,当这些数相加时,由“2”产生的和是A422;形如的数也有A42的数也有A42个,当这些数相加时,由“2”产生的和是A42210;形如个,当这些数相加时,由“2”产生的和应是A422100.这样在所有三位数的和中,由“2”

22产生的和是A422111.同理由3、4、5、6产生的和分别是A43111,A44111,A45111,A46111,因此所有三位数的和是A4111(23456)26640. 222说明:类似于这种求“数字之和”的问题都可以用分析数字出现次数的办法来解决.如“由1,4,5,x四个数字组成没有重复数字的四位数,若所有这些四位数的各数位上的数字之和为288,求数x”.本题的特殊性在于,由于是全排列,每个数字都要选用,故每个数字均出现了A4424次,故有24(145x)288,得x2.

9、解:(1)A(3)原式2151514210;

6(2)A66!654321720;(n1)![n1(m1)!](n1)!(nm)!(nm)!1(n1)!

(nm)!1(n1)!1;

(4)原式(2!1)(3!2!)(4!3!)[(n1)!n!]

(n1)!1; n1n!1(n1)!1n!(5)∵,9 / 1jiangshan整理 ∴12!23!34!n1n!13!

11!12!12!13!14!1(n1)!1n!11n!.

说明:准确掌握好排列公式是顺利进行计算的关键. 本题计算中灵活地用到下列各式:

n!n(n1)!;nn!(n1)!n!;

n1n!1(n1)!1n!;使问题解得简单、快捷.

10、解:A中很显然,“a在b前的六人纵队”的排队数目与“b在a前的六人纵队”排队数目相等,而“六人纵队”的排法数目应是这二者数目之和.这表明:A的算式正确.

B中把六人排队这件事划分为a占位,b占位,其他四人占位这样三个阶段,然后用乘法求出总数,注意到a占位的状况决定了b占位的方法数,第一阶段,当a占据第一个位置

1时,b占位方法数是A5;当a占据第2个位置时,b占位的方法数是A4;„„;当a占据1第5个位置时,b占位的方法数是A11,当a,b占位后,再排其他四人,他们有A44种排法,可见B的算式是正确的.

C中A6可理解为从6个位置中选4个位置让c,d,e,f占据,这时,剩下的两个位置4依前后顺序应是a,b的.因此C的算式也正确.

这两个位置让a,b占据,显然,a,b占D中把6个位置先圈定两个位置的方法数C6,据这两个圈定的位置的方法只有一种(a要在b的前面),这时,再排其余四人,又有A4种排法,可见D的算式是对的.

说明:下一节组合学完后,可回过头来学习D的解法.

4211、解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:

A4A2A5A4A4A58640(种). 215215解法2:采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八

17人坐法数”看成“总方法数”,这个数目是A4A7.在这种前提下,不合题意的方法是“甲

11115坐第一排,且乙、丙坐两排的八人坐法.”这个数目是A4C2A3A4A5.其中第一个因数

/ 1jiangshan整理 11A4表示甲坐在第一排的方法数,C2表示从乙、丙中任选出一人的办法数,A3表示把选出

11的这个人安排在第一排的方法数,下一个A4则表示乙、丙中沿未安排的那个人坐在第二排的方法数,A55就是其他五人的坐法数,于是总的方法数为

A4A7A4C2A3A4A58640(种). 1711115说明:解法2可在学完组合后回过头来学习.

12、解:将同一品种的画“捆”在一起,注意到水彩画不放在两端,共有A22种排列.但4幅油画、5幅国画本身还有排列顺序要求.所以共有A22A44A55种陈列方式. ∴应选D.

说明:关于“若干个元素相邻”的排列问题,一般使用“捆绑”法,也就是将相邻的若干个元素“捆绑”在一起,看作一个大元素,与其他的元素进行全排列;然后,再“松绑”,将被“捆绑”的若干元素,内部进行全排列.本例题就是一个典型的用“捆绑”法来解答的问题.

13、解法1:(直接法):分别用1,2,3,4,5作十万位的排列数,共有5A所以其中个位数字小于十位数字的这样的六位数有

125A5300个.

655种,5解法2:(间接法):取0,1,,5个数字排列有A6,而0作为十万位的排列有A5,所以其中个位数字小于十位数字的这样的六位数有

12(A6A5)300(个).

655∴应选B.

说明:(1)直接法、间接法是解决有关排列应用题的两种基本方法,何时使用直接法或间接法要视问题而定,有的问题如果使用直接法解决比较困难或者比较麻烦,这时应考虑能否用间接法来解.

(2)“个位数字小于十位数字”与“个位数字大于十位数字”具有对称性,这两类的六位数个数一样多,即各占全部六位数的一半,同类问题还有6个人排队照像时,甲必须站在乙的左侧,共有多少种排法.

14、分析:本题是带有附加条件的排列问题,可以有多种思考方法,可分类,可分步,可利用概率,也可利用本题所提供的选择项分析判断.

解法1:分类计算.

将符合条件的偶数分为两类.一类是2作个位数,共有A4个,另一类是4作个位数,也有A4个.因此符合条件的偶数共有A4A424个. 2222 11 / 1jiangshan整理 解法2:分步计算.

1先排个位数字,有A2种排法,再排十位和百位数字,有A42种排法,根据分步计数原理,12三位偶数应有A2A424个.

解法3:按概率算.

用15这5个数字可以组成没有重复数字的三位数共有A5360个,其中偶点其中的25.因此三位偶数共有602524个.

解法4:利用选择项判断.

用15这5个数字可以组成没有重复数字的三位数共有A5360个.其中偶数少于奇数,因此偶数的个数应少于30个,四个选择项所提供的答案中,只有A符合条件. ∴应选A.

15、分析:本题如果直接用排列数公式计算,在运算上比较困难,现在我们可以从和式中项的特点以及排列数公式的特点两方面考虑.在(1)中,项可抽象为nAn(n11)An(n1)AnnAnAn1Annnnnn1n,(2)中,项为n!n(n1)(n2)321,当n5时,乘积中出现5和2,积的个位数为0,在加法运算中可不考虑.

n解:(1)由nAn(n1)!n!

∴原式2!1!3!2!9!8!9!1!362879.(2)当n5时,n!n(n1)(n2)321的个位数为0,∴Sn1!2!3!n!(n10)的个位数字与1!2!3!4!的个位数字相同. 而1!2!3!4!33,∴Sn的个位数字为3.

说明:对排列数公式特点的分析是我们解决此类问题的关键,比如:求证:

12!23!34!n(n1)!n1(n1)!13!11(n1)!1(n1)!1n!,我们首先可抓等式右边的

n(n1)!n11(n1)!12!11n!1(n1)!1,∴左边12!1(n1)!1(n1)!右边.

/ 1jiangshan整理

16、分析:3位偶数要求个位是偶数且首位数字不能是0,由于个位用或者不用数字0,对确定首位数字有影响,所以需要就个位数字用0或者用2、4进行分类.一个自然数能被3整除的条件是所有数字之和是3的倍数,本题可以先确定用哪三个数字,然后进行排列,但要注意就用与不用数字0进行分类.

解:(1)就个位用0还是用2、2、3、4中任取两4分成两类,个位用0,其它两位从

1、数排列,共有A4212(个),个位用2或4,再确定首位,最后确定十位,共有24432(个),所有3位偶数的总数为:123244(个).

(2)从0、1、2、3、4、5中取出和为3的倍数的三个数,分别有下列取法:(012)、(015)、(024)、(045)、(123)、(135)、(234)、(345),前四组中有0,后四组中没有0,用它们排成三位数,如果用前4组,共有42A2216(个),如果用后3四组,共有4A324(个),所有被3整除的三位数的总数为162440(个).

17、分析:对于空位,我们可以当成特殊元素对待,设空座梯形依次编号为1、2、3、4、5、6、7.先选定两个空位,可以在1、2号位,也可以在2、3号位„共有六种可能,再安排另一空位,此时需看到,如果空位在1、2号,则另一空位可以在4、5、6、7号位,有4种可能,相邻空位在6、7号位,亦如此.如果相邻空位在2、3号位,另一空位可以在5、6、7号位,只有3种可能,相邻空位在3、4号,4、5号,5、6号亦如此,所以必须就两相邻空位的位置进行分类.本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻.

解答一:就两相邻空位的位置分类:

若两相邻空位在1、2或6、7,共有24A4192(种)坐法.

若两相邻空位在2、3,3、4,4、5或5、6,共有43A4288(种)不同坐法,所以所有坐法总数为192288480(种).

解答二:先排好4个人,然后把两空位与另一空位插入坐好的4人之间,共有A4A5480(种)不同坐法. 4244解答三:本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相邻的情况,4个人任意坐到7个座位上,共有A7种坐法,三个空位全相邻可以用合并法,13 / 14

jiangshan整理

4直接将三个空位看成一个元素与其它座位一起排列,共有A55种不同方法.三个空位全不相邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隔中,有A4410种不同方法,所以,所有满足条件的不同坐法种数为A74A5510A44480(种).

/ 14

jiangshan整理

第四篇:均衡档案目录分盒(77盒)

目 录

1、学校简介和学校荣誉录

2、学校十二五发展规划

3、办学章程

4、学校学年工作计划

5、自评报告

目 录

1、市镇党委、政府关于教育和学校工作的相关文件

(一)目 录 1、2012年市、镇、党委、政府、教育主管部门文件

(二)目 录 1、2013年市、镇、党委、政府、教育主管部门文件

(三)目 录

1、市镇领导联系学校文件

目 录

1、市镇领导到校研究学校工作的会议记录、会议纪要

目 录

1、警校联系的相关文件

目 录

1、市镇关于校园周边环境治理的文件及资料

目 录

1、松滋市初中教育教学工作会材料汇编

目 录

1、校安工程文件

2、教学楼加固改造项目批复文件

3、建设工程竣工结算审计报告

4、教学楼加固改造工程竣工验收备案证

5、学校教学楼加固工程实施情况汇报

6、建设工程项目档案报送责任书

7、新建建筑物防雷装置检测报告书

8、中标通知书、招标备案通知书

9、建设工程规划许可证

10、建设工程档案合格证

11、学生食堂修建有关档案资料11盒(后勤存档)

12、学校标准化建设2本(后勤存档)

目 录

1、省、市关于教师周转房建设项目的文件

2、教师周转房招标公告

3、教师周转房工程预算书

4、教师周转房施工合同

5、建设节能工程登记表、环境影响登记表

6、教师周转房修建档案资料12盒(后勤存档)

目 录

1、“四创”综合达标工作资料汇编

目 录

1、学校2009-2012年自筹资金情况统计

2、南海中学教育技术装备统计册

3、改造计划计算机教室、电子备课室验收表

4、改造计划“班班通”设备验收表

5、南海中学生物实验室建设项目验收表

6、南海中学音乐建设项目验收表

7、南海中学美术建设项目验收表

8、南海中学体育建设项目验收表

9、南海中学卫生器材验收表

10、义教学校标准化建设一览表

11、义教学校生活用房情况一览表

12、义教学校校舍建筑面积统计表

13、教学装备统计表

14、设施设备情况统计表、设施设备添置情况登记表

目 录

1、办学基本标准达标情况统计表

2、南海中学土地使用证

3、南海中学信息技术设备统计表

4、现代远程教育工程设备验收表

5、卫生教学收视点设备设施登记卡

6、教学仪器设备登记册

7、图书室建设领导小组成员

8、图书目录 9、2011订阅报刊杂志目录 10、2012报刊签收

目 录

1、学校“班班通”使用管理制度

2、电子备课室管理制度

3、物理实验室管理制度

4、生物实验室管理制度

5、化学实验室安全守则

6、物理、化学、生物实验教学计划

7、危险药品使用规则

8、实验室一般性伤害的应急措施

9、教学仪器损坏、丢失赔偿的规定

10、体育器材场地管理制度

11、微机室管理制度

12、图书借阅制度

13、实验教师岗位职责、教师实验教学守则

14、学生实验守则

15、阅览守则

16、图书室工作人员岗位职责

17、现代远程教育领导小组

18、农远课绩效考核方案

19、班产管理协议书 20、部分教辅人员管理办法

目 录

1、图书阅览室活动日志

2、历年来借阅图书未归还名单

3、计算机上机情况记载

4、光盘播放点设备使用记录表

5、农远课上课记载表

6、“班班通”设备使用情况

7、实验教学日志

目 录

1、实验教学情况记载册

2、危险药品领用登记册

3、教学仪器损坏、赔偿记载册

4、教学仪器借还登记册

5、实验通知单

目 录 1、2009秋-2013春入学情况统计表

2、南海中学学籍管理制度 3、2011年秋季七年级新生招生公告

4、南海中学防流控流制度 5、2009年秋“普及程度”档案 6、2010年春“普及程度”档案 7、2010年秋“普及程度”档案 8、2011年春“普及程度”档案 9、2011年秋“普及程度”档案 10、2012年春“普及程度”档案

目 录 1、2012年秋“普及程度”档案 2、2013年春“普及程度”档案

目 录 1、2010年秋季学期南海中学学生花名册

目 录 1、2011年秋季学期南海中学学生花名册

目 录 1、2012年秋季学期南海中学学生花名册

目 录

1、南海中学德育工作领导小组名单

2、南海中学德育工作计划

3、南海中学德育教育基地基本情况

4、南海中学养成教育实施方案

5、南海中学“万名教师访万家、家校共筑育人桥”教育实践活动实施方案、安排表及活动小结

6、学校干部“访教师、转作风、铸和谐”主题教育实施方案

7、南海中学师德师风主题教育方案

8、南海中学教师师德承诺书

9、南海中学德育工作小结

10、南海中学师德主题教育方案

11、在师德师风建设大会上的讲话 12、2011年师德考评汇总表

13、交通安全管理责任书

14、安全、法纪教育讲话资料

目 录

1、省、市关于德育活动文件资料

2、南海中学校园文化建设方案

3、南海中学校园文化建设三年规划方案

4、南海中学班主任一句话座右铭

5、“十二五”教育科学规划课程立项批准书

6、中国教育学会团体会员入会申请表

7、南海中学《学生行为习惯手册》

8、廉洁文化读本《敬廉尚洁》

9、德育“五项专题”研究与实验申请表

10、校园文化建设评比方案

目 录

1、关于开展主题阅读活动方案

2、关于大课间活动的通知

3、家庭拒绝邪教承诺卡

4、德育基地活动记录

5、十三届、十四届艺术节组织方案及相关资料

6、“大家唱、大家跳”展演活动资料

7、学生自我教育评议情况

8、七年级“学规范、学守则”知识竞赛资料

9、关于开展“星级”学生评选的通知

10、关于违纪学生的处理情况

目 录

1、关于开展学雷锋主题教育的通知

2、开展“学雷锋精神、做文明标兵”主题教育方案、倡议书

3、“学雷锋标兵”评选方案及评选结果

4、学雷锋系列活动资料(1)

5、学雷锋系列活动资料(2)

6、学雷锋合唱、武术操和校园集体舞比赛方案

7、学雷锋系列活动总结

8、开展“文明在我心、安全伴我行”教育活动资料

9、七年级开展“走进大自然、感恩敬老活动”的申请

目 录

1、市、镇关于德育工作的通知、文件

2、国旗下讲话资料

3、学生仪表整改登记表及检查情况通报

4、严重违纪学生家校协议书 5、2011年秋维稳工作总结

6、安全教育开学第一课 主题教育资料

目 录

1、普法讲稿

2、开展治庸问责行动实施方案 3、2011年秋季期末星级学生表彰花名册 4、2011年秋七、八年级学生不文明行为调查统计

目 录

1、市局关于评选优秀学生的通知

2、班团活动安排

3、“佳视杯”迎春作文大赛评比结果

4、政教、德育工作汇报材料

5、主题班团会教案及励志勤学材料

6、心理健康教育讲义

目 录

1、班级管理量化统计表

2、班级管理积分汇总表

目 录

1、关于召开学生家长会的通知

2、家长会组织方案

3、家长理事会资料

4、家长会签到表

5、学校领导及班主任家长会发言稿

6、南海中学家长理事会章程 7、2012年秋家长会资料

目 录

1、学生会规章制度

2、学生会干部名单及干部推荐表

3、团总支干部名单及纳新工作通知、新团员名单4、2012年国旗下讲话资料

5、团课学习资料

6、学生心理健康教育资料

目 录

1、团总支值日日志

2、团总支就寝管理评分表

3、团员信息采集表

4、学生会班级量化管理评分表

目 录

1、教学管理工作方案

2、课表、作息时间表、课外活动安排及教师任课一览表

目 录

1、校本课程资料:学生行为习惯手册

2、廉洁文化读本:敬廉尚洁

3、物理、化学导学练资料

目 录

1、综合实践活动课近远期发展规划

2、综合实践活动课程教学计划

3、校本培训方案

4、校本培训教材

5、校本研修培训活动记载

6、课题设计与总结

7、综合实践活动课制度

8、课程设置标准

9、“远足春游、感恩敬老”主题活动设计审批表

10、“远足春游、感恩敬老”主题活动成果汇报表

11、“远足春游、感恩敬老”主题活动评价表

12、综合实践活动课题审批表

13、综合实践活动记载表

14、综合实践活动展示情况统计表

15、综合实践活动成果证书

目 录

1、市局关于开展“大家唱、大家跳”展演活动的通知

2、市卫生局关于学生预防接种的通知

3、南海中学艺术教育工作规划

4、艺术教育工作领导小组及管理制度

5、第十三届艺术节活动资料

6、艺术教育获奖证书及美术、音乐成绩册

目 录

1、体育卫生工作领导小组和职责

2、体育管理制度

3、卫生保健工作制度

4、卫生室规章制度

5、体育卫生工作发展规划

6、综合组教研计划

7、公共卫生责任区域安排表

8、寝室公约、环境规范口诀

9、食品卫生管理制度

10、卫生健康知识宣传讲座

目 录

1、课程表

2、南海中学每天一小时阳光体育运动实施方案

3、关于大课间活动的通知

4、三操评价标准及得分情况

5、参加市第八届排球运动会工作方案

6、校排球队训练记载表

目 录

1、拔河比赛活动方案与结果

2、校田径运动队训练参赛工作方案

3、田径运动队员名单

4、田径队训练记载表 5、2012年、2013年田径运动会秩序册及比赛结果

目 录

1、体育教师花名册及课程安排表

2、教师任课一览表

3、校医资料

4、体育器材登记表

5、体育器材管理制度

6、学生体质健康测试工作方案

7、学生体质健康监测和上报制度

8、学生体质健康测试工作的通知及项目表

目 录

1、学生体质健康测试成绩

目 录

1、学生体检表

目 录

1、关于开展“培养学生自主学习能力、减轻学生课业负担”活动的方案

2、“治庸问责”问卷调查报告及情况小结

3、学校关于解决大班额问题的方案

4、教师廉洁从教承诺书

5、市纪委来校明察暗访中发现问题的整改情况

6、每周学生双休日作业检查表

7、学生问卷调查

8、南海中学教师常规工作标准

9、教学常规工作检查情况公示表 10、2009秋-2013春入学情况统计册

目 录

1、学校留守学生管理领导小组及职责

2、留守学生进城务工子女入学管理制度

3、留守学生学习、生活、谈心制度

4、“师生结对帮扶”实施方案

5、“师生结对帮扶”记录表

6、南海中学“五特”学生登记册

7、南海中学2011-2012学年留守生统计表

8、南海中学2013年春“爱心伴我成长”资助贫困学生材料

目 录 1、2009年贫困寄宿生生活补助名单及发放表 2、2010年贫困寄宿生生活补助名单及发放表 3、2011年贫困寄宿生生活补助名单及发放表 4、2012年贫困寄宿生生活补助名单及发放表

目 录 1、2009年春免费教科书学生名单 2、2009年秋免费教科书学生名单

目 录 1、2010年春免费教科书学生名单 2、2010年秋免费教科书学生名单

目 录 1、2011年春免费教科书学生名单 2、2011年秋免费教科书学生名单

目 录 1、2012年春免费教科书学生名单 2、2012年秋免费教科书学生名单

第五篇:2011高中数学排列组合典型例题精讲

高中数学排列组合典型例题精讲

概念形成1、元素:我们把问题中被取的对象叫做元素

2、排列:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺....序排成一列,叫做从n个不同元素中取出m个元素的一个排列。.....

说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)

(2合作探究二排列数的定义及公式

3、排列数:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号Anm议一议:“排列”和“排列数”有什么区别和联系?

4、排列数公式推导

探究:从n个不同元素中取出2个元素的排列数An是多少?An呢?An呢? mnn(n1)(n2)(nm1)(m,nN,mn)23m

说明:公式特征:(1)第一个因数是n,后面每一个因数比它前面一个少1,最后一个

因数是nm1,共有m个因数;

(2)m,nN,mn

即学即练:

1.计算(1)A10;(2)A5 ;(3)A5A3

2.已知A101095,那么mm4253

3.kN,且k40,则(50k)(51k)(52k)(79k)用排列数符号表示为()

50k293030A.A79kB.A79kC.A79kD.A50k

例1. 计算从a,b,c这三个元素中,取出3个元素的排列数,并写出所有的排列。、全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的全排列。

此时在排列数公式中,m = n

全排列数:Ann(n1)(n2)21n!(叫做n的阶乘).即学即练:口答(用阶乘表示):(1)4A3(2)A4(3)n(n1)!

排列数公式的另一种形式:

mAn3n4(nm)!

另外,我们规定 0!=1.例2.求证:AnmAnmm1mAn1.

解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。

解:

左边=

n!mn!(n-m1)n!mn!(n1)!Am

n1右边(nm)!(nm1)!(nm1)!(nm1)!

点评:(1)熟记两个公式;(2)掌握两个公式的用途;(3)注意公式的逆用。

75AnAn89,求n的值。变式训练:已知(n=15)5An

1.若xn!,则x()3!

3n3n3(B)An(C)A3(D)An3(A)An

2.若Am2Am,则m的值为()53

(A)5(B)3(C)6(D)7

3. 已知An56,那么n

4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1

列火车)?

1.计算(1)A10;(2)A5 ;(3)A5A3

2.已知A101095,那么mm24253

3.kN,且k40,则(50k)(51k)(52k)(79k)用排列数符号表示为()

50k293030A.A79kB.A79kC.A79kD.A50k

例1. 计算从a,b,c这三个元素中,取出3个元素的排列数,并写出所有的排列。

1.若xn!,则x()3!

3n3n3(B)An(C)A3(D)An3(A)An

2.若Am2Am,则m的值为()53

(A)5(B)3(C)6(D)7

3. 已知An56,那么n;

4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1

列火车)?

1.下列各式中与排列数An相等的是()m

mnAnn!1m11(A)(B)n(n-1)(n-2)„„(n-m)(C)(D)AnAn1 nm1(nm1)!

2.若 n∈N且 n<20,则(27-n)(28-n)„„(34-n)等于()

(A)A27n(B)A34n(C)A34n(D)A34n

3.若S=A1A2A3A100,则S的个位数字是()

(A)0(B)3(C)5(D)8

4.已知An6An-5,则。

542A87A8 5.计算5A8A89

1An

n16.解不等式:2<n142 An122123100827n78

1.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()

(A)24个(B)30个(C)40个(D)60个

2.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方

法共有()

(A)12种(B)18种(C)24种(D)96种

3.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不

同排法共有()

(A)6种(B)9种(C)18种(D)24种

4.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有种.

1、(1)某足球联赛共有12支队伍参加,每队都要与其他队在主、客场分别比赛一场,共要进行多

少场比赛?

解:

(1)放假了,某宿舍的四名同学相约互发一封电子邮件,则他们共发了多少封电子邮件?

(2)放假了,某宿舍的四名同学相约互通一次电话,共打了多少次电话?

2、(1)从5本不同的书中选3本送给3名同学,每人1本,共有多少种不同的送法?

(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?

3、用0到9这10个数字,可以组成多少个没有重复数字的三位数?

变式训练: 有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方

案共有()

(A)A8种(B)A8种(C)A4·A4种(D)A4种

4、三个女生和五个男生排成一排.

(1)如果女生必须全排在一起,有多少种不同的排法?

(2)如果女生必须全分开,有多少种不同的排法?

(3)如果两端都不能排女生,有多少种不同的排法?

8444

4(4)如果两端不能都排女生,有多少种不同的排法?

(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?

点评:

1)若要求某n个元素相邻,可采用“捆绑法”,所谓“捆绑法”就是首先将要求排在相邻位置上的元素看成一个整体同其它元素一同排列,然后再考虑这个整体内部元素的排列。

2)若要求某n个元素间隔,常采用“插空法”。所谓插空法就是首先安排一般元素,然后再将受限

制元素插人到允许的位置上.

变式训练:

1、6个人站一排,甲不在排头,共有

2.6个人站一排,甲不在排头,乙不在排尾,共有

1.由0,l,2,3,4,5这六个数字组成的无重复数字的三位数中,奇数个数与偶数个数之比为()

(A)l:l(B)2:3(C)12:13(D)21:23

2.由0,l,2,3,4这五个数字组成无重复数字的五位数中,从小到大排列第86个数是()(A)

42031(B)42103(C)42130(D)43021

3.若直线方程AX十By=0的系数A、B可以从o,1,2,3,6,7六个数中取不同的数值,则这些方程所表

示的直线条数是()

(A)A5一2B)A5(C)A5+2(D)A5-2A522221

4.从a,b,c,d,e这五个元素中任取四个排成一列,b不排在第二的不同排法有()

A A4A5B A3A3CA5DA4A4

5.从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有种不

同的种植方法。

6.9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有种。

7、某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有多少种排列加工顺序的方法?

(2)如果其中某两工序不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

1.四支足球队争夺冠、亚军,不同的结果有()

A.8种B.10种C.12种D.16种

2.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有

()

A.3种B.6种C.1种D.27种

3.kN,且k40,则(50k)(51k)(52k)(79k)用排列数符号表示为

()

50k293030A.A79kB.A79kC.A79kD.A50k 1312413

4.5人站成一排照相,甲不站在排头的排法有()

A.24种B.72种C.96种D.120种

5.4·5·6·7·„·(n-1)·n等于()

A.An

2n4B.Ann3C.n!-4!D.n!4!6.An1与An的大小关系是()

A.An1AnB.An1AnC.An1An

7.给出下列问题:

2323233D.大小关系不定

①有10个车站,共需要准备多少种车票?

②有10个车站,共有多少中不同的票价?

③平面内有10个点,共可作出多少条不同的有向线段?

④有10个同学,假期约定每两人通电话一次,共需通话多少次?

⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少种选派方法?

以上问题中,属于排列问题的是(填写问题的编号)。

8.若x{x|Z,|x|4},y{y|yZ,|y|5},则以(x,y)为坐标的点共有

9.若x=n!m,则x用An的形式表示为x3!

mm1mm110.(1)AnAn1;(2)AnAn

m 711.(1)已知A101095,那么m;(2)已知9!362880,那么A9(3)已

知An56,那么n(4)已知An7An4,那么n.

12.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有多少种不

同的方法?

13.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有多少中不同的种植方法?

32123414.计算:(1)5A54A4(2)A4A4A4A

416.求证: AnmAnmm1mAn1;222

565A7A62A93A9617.计算:①6② 659!A10A6A5

18.三个数成等差数列,其比为3:4:5,如果最小数加上1,则三数成等比数列,那么原三数为什么?

排列与排列数作业(2)

1.与A10A7不等的是()

98910(B)81A8(C)10A9(D)A10(A)A1037

2.若Am2Am,则m的值为()53

(A)5(B)3(C)6(D)7

3.100×99×98ׄ×89等于()

A.A100B.A100C.A100

2101112 D.A100 134.已知An=132,则n等于()

A.11B.12C.13D.以上都不对

5.将1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法多少种?()

A. 6B. 9C. 11D. 23

6.有5列火车停在某车站并排的五条轨道上,若快车A不能停在第三条轨道上,货车B不能停在第一条

轨道上,则五列火车的停车方法有多少种()

A.78B.72C.120D.96

7.由0,1,3,5,7这五个数组成无重复数字的三位数,其中是5的倍的共有多少个

()

A.9B.21C. 24D.42

8.从9,5,0,1,2,3,7七个数中,每次选不重复的三个数作为直线方程axbyc0的系数,则倾斜角

为钝角的直线共有多少条?()

A.14B.30C. 70D.60

9.把3张电影票分给10人中的3人,分法种数为()

A.2160B.240C.720D.120

10.五名学生站成一排,其中甲必须站在乙的左边(可以不相邻)的站法种数()

A.A44 B.14A42 C.A5 5D.15A5 2

11.从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进

行实验,有种不同的种植方法。

12.9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有种。

13.(1)由数字1,2,3,4,5可以组成.(2)由数字1,2,3,4,5可以组成个无重复数字,并且比13000大的正整数?

14.学校要安排一场文艺晚会的11个节目的出场顺序,除第1个节目和最后1个节目已确定外,4个音乐

节目要求排在第2、5、7、10的位置,3个舞蹈节目要求排在第3、6、9的位置,2个曲艺节目要求排在第4、8的位置,共有种不同的排法?

15.某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有序的方法.(2)如果其中某两工序不能放在最前,也不能放在最后,有种排列加顺序的方法.16.一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、外语、微机、体育、地理六节课,要求上午不排体育,数学必须排在上午,微机必须排在下午,共有种不同的排法?

17.求证:A12A23A3nAnAn11

123nn1

下载排列组合典型问题-分球入盒word格式文档
下载排列组合典型问题-分球入盒.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    排列组合综合问题.[五篇范例]

    [文件] sxgdja0017.doc [科目] 数学 [年级] 高中 [章节] [关键词] 排列/组合/综合 [标题] 排列组合综合问题 [内容] 北京市东直门中学 吴卫 教学目标 通过教学,学生......

    数学广角----简单的排列组合问题

    数学广角----简单的排列组合问题 教学目标 : l、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。2、培养学生初步的观察、分析和推理能力以及有顺序地、全面......

    排列组合中的分组问题

    排列组合中的分组问题 山西省交城中学校王峰峰 分组问题是排列组合教学中的一个重点和难点。某些排列组合问题看似非分组问题,实际上可运用分组问题的方法来解决。 一、 分组......

    08届高三数学排列组合综合问题范文合集

    g3.1092 排列与组合的综合问题 一、知识梳理 1.排列、组合都是研究事物在某种给定的模式下所有可能的配置的数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不......

    中午婚礼全场主持词仙侣球鞠躬宝盒香槟

    全场仙侣球鞠躬宝盒香槟礼物 (1--开场曲)12月12日11月18,范金铺、刘丹,现在,我荣幸地向大家宣布:范金铺、刘丹的结婚喜宴现在开始。 有请今天英俊潇洒的新郎入场。(2-新郎入场)新郎,......

    2016均衡教育迎国检资料(分盒目录)

    目录 一、学校管理 (一)组织领导 1 、推进义务教育均衡发展工作各类文件 2 、贺疃中学推进义务教育均衡发展工作领导小组文件 3 、贺疃中学推进义务教育均衡发展工作实施方案......

    公务员考试 行测 排列组合问题及计算公式

    排列组合公式/排列组合计算公式 排列 A------和顺序有关(P和A是一个意思) 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如 把5本不同的书分给3个人,有几种分法......

    排列组合问题的解题策略的教学设计

    《排列组合问题的解题策略》教学设计河北围场一中 王嘉伟 一、整体设计思路、指导依据: 《数学新课程标准》中指出好的数学教育要从学习者的已有知识和实际生活经验出发,提供......