第一篇:排列组合问题之 插板法应用小结!
数算]排列组合问题之 插板法应用小结!
插板法就是在n个元素间的(n-1)个空中插入 若干个(b)个板,可以把n个元素分成(b+1)组的方法。
应用插板法必须满足三个条件:(1)这n个元素必须互不相异
(2)所分成的每一组至少分得一个元素
(3)
分成的组别彼此相异
分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。QZZN有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。有条件的朋友可以到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的一个网站,极力的推荐给大家(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)。大家好好学习吧!最后,祝大家早日上岸。此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。
===== 举个很普通的例子来说明
把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足 条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用
a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法)
例1 :把10个相同的小球放入3个不同的箱子,问有几种情况?
3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入
1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?
显然就是 c12 2=66------------------
例2: 把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况? 我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为 把9个相同小球放3不同箱子,每箱至少1个,几种方法? c8 2=28 ==== b 添板插板法
例3:把10个相同小球放入3个不同的箱子,问有几种情况?
-ooooo
o表示10个小球,-表示空位
11个空位中取2个加入2块板,第一组和第三组可以取到空的情况,第2组始终不能取空 此时 若在 第11个空位后加入第12块板,设取到该板时,第二组取球为空 则每一组都可能取球为空
c12 2=66-------------------------例4:有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有几个? 因为前2位数字唯一对应了符合要求的一个数,只要求出前2位有几种情况即可,设前两位为ab 显然a+b<=9 ,且a不为0 1-1-1-1-1-1-1-1-1
-ooooo
o代表10个糖,-代表9块板
10块糖,9个空,插入9块板,每个板都可以选择放或是不放,相邻两个板间的糖一天吃掉 这样一共就是 2^9= 512啦
============================================= d 分类插板
例7: 小梅有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法? 此问题不能用插板法的原因在于没有规定一定要吃几天,因此我们需要对吃的天数进行分类讨论
最多吃5天,最少吃1天
1: 吃1天或是5天,各一种吃法
一共2种情况 2:吃2天,每天预先吃2块,即问11块糖,每天至少吃1块,吃2天,几种情况? c10 1=10 3:吃3天,每天预先吃2块,即问9块糖,每天至少1块,吃3天? c8 2=28 4:吃4天,每天预先吃2块,即问7块糖,每天至少1块,吃4天?c6 3=20 所以一共是 2+10+28+20=60 种
================================= e 二次插板法
例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?
-ooo
三个节目abc 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 所以一共是 c7 1×c8 1×c9 1=504种
第二篇:排列组合细节(插板法)
排列组合细节(插板法)
四个相同的求放入三个盒子,每个盒子最少有一个,总共有多少种方法?
盒子1 盒子2
盒子3
三个盒子插两个板,有三个位置。一共有С32=3钟。但前提是每个盒子至少放一个。
如果 四个相同的求放入三个盒子,盒子可空不放,总共有多少种方法? 可以分为三种情况:
0 0 4 0 1 3 0 2 2 1 1 2 С3A3
1С3 1С3
一共15种。如果用插板的话就会有两个空盒子的情况。两板重合。
解法来自一道题
x+y+z+w=100求这个方程组的自然数解的组数。
可以看成100个一样的球放在四个盒子里,盒子可空。把它转化为每个盒子至少有一个的情况(x+1)+(y+1)+(z+1)+(w+1)=104 这样可以用插板法了,一共有
С103 种方法。
3所以使用插板法前提:元素相同,分组中元素个数大于等于1。
第三篇:经典插板法,个人总结版
插板法就是在n个元素间的(n-1)个空中插入 若干个(b)个板,可以把n个元素分成(b+1)组的方法。应用插板法必须满足三个条件:
(1)这n个元素必须互不相异
(2)所分成的每一组至少分得一个元素
(3)
分成的组别彼此相异
举个很普通的例子来说明
把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?
=====
问题的题干满足 条件(1)(2),适用插板法,c29=36
下面通过几道题目介绍下插板法的应用
===== a 凑元素插板法
(有些题目满足条件(1),不满足条件(2),此时可适用此方法)
例:把10个相同的小球放入3个不同的箱子,问有几种情况?
3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入
1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?显然就是c212=66
=====
例:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?
我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为 把9个相同小球放3不同箱子,每箱至少1个,几种方法?
c28=28
==== b 添板插板法
例:把10个相同小球放入3个不同的箱子,问有几种情况?
-ooooo
o表示10个小球,-表示空位
11个空位中取2个加入2块板,第一组和第三组可以取到空的情况,第2组始终不能取空
此时 若在 第11个空位后加入第12块板,设取到该板时,第二组取球为空
则每一组都可能取球为空
C212=66
====
例:有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有几个?
因为前2位数字唯一对应了符合要求的一个数,只要求出前2位有几种情况即可,设前两位为ab 显然a+b≤9 且a不为0
1-1-1-1-1-1-1-1-1
-ooooo
o代表10个糖,-代表9块板
10块糖,9个空,插入9块板,每个板都可以选择放或是不放,相邻两个板间的糖一天吃掉
这样一共就是 2^9= 512啦
============================================= d 分类插板
例7: 小梅有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?
此问题不能用插板法的原因在于没有规定一定要吃几天,因此我们需要对吃的天数进行分类讨论
最多吃5天,最少吃1天
1:吃1天或是5天,各一种吃法
一共2种情况
2:吃2天,每天预先吃2块,即问11块糖,每天至少吃1块,吃2天,几种情况? c10 1=10 3:吃3天,每天预先吃2块,即问9块糖,每天至少1块,吃3天? c8 2=28 4:吃4天,每天预先吃2块,即问7块糖,每天至少1块,吃4天?c6 3=20 所以一共是 2+10+28+20=60 种
=================================
e 二次插板法
例 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?
-ooo
三个节目abc
可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位。所以一共是C1×7C1×8C19=504种
----------------------------
第四篇:职业能力测试:排列组合之不相邻问题
职业能力测试:排列组合之不相邻问题
通辽人事考试信息网:http://tongliao.offcn.com/
通辽人事考试信息网:http://tongliao.offcn.com/
第五篇:三角函数的应用问题研究小结
三角函数的应用问题研究小结
通过这次研究性学习我们学会了很多东西,也懂得了很多。以前学数学一般是理论性的比较多,缺乏与实际的联系,学了不知道怎么用。这次研究性学习的最大所得,不在于取得什么成果,而是培养一种思维习惯,一种将现实生活中的现象转化为问题并进行研究的习惯。当我们在黑板上写字,用力过大而将粉笔折断时,是否想到了粉笔多长才是最优化长度;又当我们去打电话时,是否能够联想到这类似于“函数模型”,从而求出电话费与时间的函数。甚至当我们玩游戏时,能否用离散和概率的思想。不禁一笑后,你会发现,其实这些问题都来自于我们的生活,但是它们的复合与延伸,就可能涉及到今日科学的前沿。
另外感觉自己的知识面还是不够宽,例如老师给了很多有价值的问题,由于我们知识浅薄,最终我们选择了“函数、不等式、数列在生活中的应用”等进行探索、研究。对问题数据计算还可以,但对计出的数据找规律时,就遇到了困难,老师给我们作了指导。在如果平时学习时,多注意理论与实践的结合,学以致用,做起研究性学习就更能得心手。
研究性学习毕竟是个集体项目,它不仅培养了我们的合作精神,而且也培养了大家的团结友爱,互助协作的精神。所以组成小组后,我们组就常常在一起讨论题目,等到讨论成熟后,就进行计算研究。俗话说,三个臭皮匠顶个诸葛亮。大家在一起如果做出一些东西来,就会有一种成就感,这也是 研究性学习带给我们的乐趣所在。
研究性学习培养的是一种创新精神,以及快速解决问题的能力。参加研究性学习小组,也给了我们一次简单的科学研究工作的体验。科学工作所需要的严谨,大胆都在这样活动中有着完整的体现。使我们体会到了科研工作的艰辛,这些将对我们今后的学习与工作产生积极的作用和深远的影响。