九年级数学下册2.6《二次函数应用之最大利润问题》教学案(无答案)北师大版[小编整理]

时间:2019-05-12 22:09:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《九年级数学下册2.6《二次函数应用之最大利润问题》教学案(无答案)北师大版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《九年级数学下册2.6《二次函数应用之最大利润问题》教学案(无答案)北师大版》。

第一篇:九年级数学下册2.6《二次函数应用之最大利润问题》教学案(无答案)北师大版

二次函数应用之最大利润问题

第一环节 温故而知新

1、把二次函数yx22x1配方成顶点式为()A.y(x1)2 B. y(x1)22 C.y(x1)21 D.y(x1)22

2、已知二次函数y=ax+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x的图象与反比例函数y=错误!未找到引用源。的图象在同一坐标系中大致是()

23、二次函数y=x–2x–3的图象如图所示.当y<0时,自变量x的取值范围是()A、–1<x<3 B、x<–1 C、x>3 D、x<–3或x>3

4、二次函教y=x+2x﹣5有()

A、最大值﹣5 B、最小值﹣5 C、最大值﹣6 D、最小值﹣6

25、已知抛物线y=-2x+3x+5请回答以下问题:(1)化成顶点式:____________________(2)它的开口向,对称轴是直线,顶点坐标为 ;(3)图象与x轴的交点为,与y轴的交点为。(4)当X=_____时Y有最_____值,是___________

6、顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 .

第二环节 创设问题情境,引入新课

活动内容:

1、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件。

请你帮助分析,销售单价是多少时,可以获利最多? 设销售单价为x(x≤13.5)元,那么

(1)销售量可以表示为 ;(2)销售额可以表示为 ;

(3)所获利润可以表示为 ;(4)当销售单价是 元时,可以获得最大利润,22最大利润是 .

2、【探究】某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出18件。已知商品的进价为每件40元,如何定价才能使利润最大?

第三环节 巩固练习活动内容:解决本章伊始,提出的“橙子树问题”(1.验证猜测;2.进一步分析)

1.本章一开始的“种多少棵橙子树”的问题,我们得到了表示增种橙子树的数量x(棵)与橙子总产量y(个)的函数关系是:二次函数表达式y=(600-5x)(100+x)=-5x+100x+60000。当时曾经利用列表的方法得到一个猜测,现在可以验证当初的猜测是否正确?你是怎么做的?与同伴进行交流。

(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系。

(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?

2、某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件。根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件。如何提高售价,才能在半个月内获得最大利润?2

3、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.

(1)求平均每天的销售量y(箱)与销售价x(元/箱)之间的函数关系式;

(2)求该批发商平均每天的销售利润W(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 第四环节 课堂小结

学会了分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,提高解决问题的能力。第五环节 课后作业

1、一种销售成本为每千克40元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克,针对这种水产品的销售情况,请解答以下问题:①当销售单价定为每千克55元时,计算月销售量和月销售利润②设销售单价为每千克x元时,月销售利润为y元,求y与x之间的函数关系式; ③当销售单价定为多少时,月销售利润最大?最大利润是多少?

2、一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;

(2)当x取何值时,y的值最大?

(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为

3、我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;

3(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)

4、某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价40元,每年销售该产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系。(1)y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价x为何值时,年获利最大?并求这个最大值;(3)若公司希望这种产品一年的销售获利不低于40万元,借助(2)中函数的图像,请你帮助该公司确定销售单价的范围,在此情况下,要使产品销售量最大你认为销售单价应定为多少元?

近五年中考题(22题)

1、(2012年中考)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;

(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销 4 售单价x(元/个)之间的函数关系式;

(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.

2、(2011年中考)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.

(1)写出销售量y件与销售单价x元之间的函数关系式;

(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?

3、(2010年中考题)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y10x500.

(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?

(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?

4、(2009中考)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x3x36,而其每千克成本y2(元)与销售月份x(月)满足的函8数关系如图所示.(1)试确定b、c的值;

(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(月)满足关系式y(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?

5、(2008中考)某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)求y与x之间的函数关系式;

(2)设公司获得的总利润(总利润总销售额总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?

第二篇:湘教版九年级数学下册二次函数教学案

湘教版九年级数学下册

第二章二次函数教学案

总 1 3 课时

编写人 阳卫民

第二章、二次函数

总序第9个教案

课 题 建立二次函数模型 第1课时 编写时间 2012年11 月 日 执教时间 2012年11 月 日 执教班级

教学目标:知识与技能:

1.探索并归纳二次函数的概念,熟练掌握二次函数的一般形式及自变量的取值范围。

2.能够表示简单变量之间的二次函数关系。

过程与方法:

通过用二次函数表示变量之间关系的体验过程,增强对函数的感性认识,培养学生分析问题,解决问题的能力。

情感态度价值观:

通过学生之间的交流合作的过程,培养学生的合作意识,体验与他人交流合作的重要性。

教学重点:建立二次函数数学模型和理解二次函数概念。教学难点:建立二次函数数学模型。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课

1.欣赏一组录像画面:篮球场上同学们传球投篮,田径场上同学们投掷铅球„„

2.观察:篮球投篮时,掷铅球时„„在空中运行的路线是一条什么样的路线?

3.导入课题

二、合作交流,解读探究(课件演示)1.通过实际问题建立二次函数模型

问题一:植物园的面积(教科书“动脑筋”问题1)------植物园的面积随着砌法的不同怎样变化?

问题二:电脑的价格(教科书“动脑筋”问题2)2.二次函数的概念和一般形式

A.交流讨论:观察上面得出的两个函数关系式有什么共同点? B.归纳及注意:二次函数的自变量取值范围是所有实数。C.二次函数的特殊形式。

三、应用迁移,巩固提高(课件演示例题)1.类型之一----二次函数的概念 2.类型之二----建立二次函数模型

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

总序第10个教案

第二章、二次函数

课 题 二次函数的图象与性质 第1课时 编写时间 2012年11 月 日 执教时间 2012年11 月 日 执教班级

教学目标:知识与技能:

1.能够运用描点法作出函数y=ax2(a>0)的图象。2.能根据图象认识和理解二次函数y=ax2(a>0)的性质。

过程与方法:

通过观察图象,并概括出图象的有关性质,训练学生的观察、分析能力。

情感态度价值观:

通过用描点法画出函数的图象,培养学生尊重客观事实的科学态度。

教学重点:会用描点法画出二次函数y=ax2(a>0)的图象以及探索函数性质。

教学难点:探索二次函数性质。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课

1.什么是二次函数?一般形式是什么?

2.反比例函数的图象是什么呢?它有哪些性质? 3.二次函数的图象是什么呢?它又有哪些性质?

二、合作交流,解读探究(课件演示)1.画出二次函数y=x2的图象

引导学生探索二次函数y=x2的图象的画法(列表、描点、1212连线)

2.二次函数y=x2的图象的性质

A.引导学生探索二次函数y=x2的图象的性质 B.归纳总结二次函数y=ax2(a>0)的图象画法和性质

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=ax2(a>0)图象性质的运用 2.类型之二----二次函数y=ax2(a>0)图象性质的实际运用 例:已知正方形周长为Ccm,面积为Scm2。

(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求S=1cm2出时,正方形的周长;(3)根据图象,求出C取何值时,S≥4cm2。

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

1212

总序第11个教案

第二章、二次函数

课 题 二次函数的图象与性质 第2课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级

教学目标:知识与技能:

1.会用描点法画出二次函数y=ax2(a<0)的图象。2.了解y=ax2与y=-ax2(a≠0)的图象的位置关系。3.理解二次函数的图象是抛物线以及抛物线的概念。

过程与方法:

通过观察图象,类比二次函数y=ax2(a>0)与y=ax2(a<0)两种函数图象的相互关系,培养学生的观察、分析能力,渗透数形结合的思想方法。

情感态度价值观:

增强学生对数学学习的好奇心与求知欲。

教学重点:会用描点法画二次函数y=ax2(a<0)的图象及探索其性质。教学难点:二次函数y=ax2(a<0)的图象特点及性质的探究。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课

1.怎样画出函数y=ax2(a>0)的图象? 2.我们已画过y=x2的图象,能不能由它得出y=-x2的图象?

二、合作交流,解读探究(课件演示)1.由y=x2画出y=-x2的图象

A.讨论回顾:反比例函数y=与y=-的图象有什么关系? B.猜一猜:y=-x2的图象与y=x2的图象会是怎样的关系? C.验证猜想:引导学生分析讨论。2.y=-x2的图象与性质

A.讨论交流:对比y=x2的图象与性质,说一说y=-x2具

12121212122x2x12121212有哪些性质? B.归纳总结

C.做一做:画出二次函数y=-x2的图象。

3.抛物线及其有关概念

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=ax2(a<0)的图象与性质的运用 2.类型之二----抛物线y=ax2性质的运用

例:函数y=ax2(a≠0)与直线y=2x-3的图象交于点(1,b)。求:(1)a和b的值;(2)求抛物线y=ax2的开口方向,对称轴,顶点坐标;(3)作y=ax2的草图。

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

第二章、二次函数

总序第12个教案

课 题 二次函数的图象与性质 第3课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级.教学目标:知识与技能:

1.会用描点法画二次函数y=a(x+d)2的图象,并能理解它与y=ax2的关系,理解a,d对二次函数图象的影响。2.能正确说出y=a(x+d)2的图象的开口方向、对称轴和顶点坐标。

过程与方法:

通过研究y=a(x+d)2与y=ax2的位置关系,培养学生观察、分析、总结的能力。

情感态度价值观:

让学生体会与人合作,与人交流思维的过程与结果。

教学重点:会用描点法画二次函数y=a(x+d)2的图象,理解它的性质。教学难点:理解y=a(x+d)2与y=ax2的关系。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课 1.设计一个小船平移的多媒体动画进行演示。(引导回顾平移的概念及性质)

2.提问:抛物线y=ax2(a>0)是否也可以这样平移? 3.引入课题。

二、合作交流,解读探究(课件演示)1.二次函数y=(x+1)2的图象与性质

A.观察多媒体动画演示教科书P.31图2-5。B.各自记录观察结果,然后进行讨论。C.归纳总结。

2.二次函数y=a(x+d)2的图象与性质

A.做一做:写出三条抛物线的开口方向、对称轴、顶点坐标。B.讨论交流。C.归纳总结。

3.用描点法作出y=a(x+d)2的图象

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=a(x+d)2的图象与性质 2.类型之二----抛物线平移规律的运用

3.类型之三----二次函数y=a(x+d)2的性质的运用

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

12第二章、二次函数

总序第13个教案

课 题 二次函数的图象与性质 第4课时 编写时间2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.理解y=a(x+d)2的图象与y=a(x+d)2+h的图象的关系。2.能正确说出y=a(x+d)2+h的图象的开口方向、对称轴和顶点坐标。

过程与方法:

通过研究y=a(x+d)2+h与y=a(x+d)2的位置关系,培养学生观察、分析、总结的能力。

情感态度价值观:

让学生体会与人合作,与人交流思维的过程与结果。

教学重点:会画形如y=a(x+d)2+h的二次函数的图象,理解它的性质。教学难点:理解y=a(x+d)2与y=a(x+d)2+h的图象之间的关系。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、复习引入(课件演示)

1. 抛物线y=x2的顶点是(),对称轴是(),开口向()。

122.抛物线y=(x+1)2的顶点是(),对称轴是(),开口向()。

3.说一说,下列函数是将抛物线y=2x2经过怎样的平移得到的?(1)y=2(x+3)2(2)y=2(x-1)2 4.引入课题。

二、合作交流,解读探究(课件演示)

1.理解抛物线y=(x+1)2与抛物线y=(x+1)2-3的平移关系。2.探索二次函数y=a(x+d)2+h的图象性质。(用观察比较的方法

121212得到y=a(x+d)2+h的图象性质)

3.探索画二次函数y=a(x+d)2+h的图象的一般步骤

A.归纳总结

B.做一做:画出二次函数y=(x+1)2-3的图象。

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=a(x+d)2+h的图象与性质的运用 例1:已知二次函数y=ax2+bx+c的图象的顶点为(1,﹣),且经过点(﹣2,0),求该二次函数的函数关系式。

2.类型之二----抛物线平移规律的运用 例2:把抛物线y=a(x+d)2+h向左平移4个单位,再向上平移

29212个单位,得到抛物线y=x2,求函数的解析式。

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

总序第14个教案

第二章、二次函数

课 题 二次函数的图象与性质 第5课时 编写时间 2012年 月 日 执教时间2012年 月 日 执教班级.教学目标:知识与技能:

1.会用配方法确定抛物线y=ax2+bx+c的顶点和对称轴;会求它的最大值与最小值。

2.会用描点法画出二次函数y=ax2+bx+c的图象。

过程与方法:

通过将二次函数y=ax2+bx+c配方成y=a(x+d)2+h的过程,培养观察、分析、总结的能力。

情感态度价值观:

让学生体会与人合作,与人交流思维的过程与结果。

教学重点:用配方法确定抛物线y=ax2+bx+c的顶点和对称轴。教学难点:用配方法将y=ax2+bx+c转化为y=a(x+d)2+h的形式。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、复习引入(课件演示)

1.已知二次函数:y=2x2,y=2(x+1)2,y=2(x+1)2-3,分别说出它们图象的开口方向、顶点坐标、对称轴。

2.填空:4x2-4x+1=()2

二、创设情境

三、探究新知

1.如何将二次函数y=-2x2+6x-1化成y=a(x+d)2+h的形式?

2.探索二次函数y=ax2+bx+c的图象画法。

分析:(1)用配方法将y=-2x2+6x-1转化为y=-2(x-)2+的3272形式,找出其顶点坐标和对称轴(2)用描点法和对称性画出y=-2(x-)2+的图象。

3.探索二次函数y=ax2+bx+c的图象性质(课件演示)(1)引导学生思考:当x等于多少时?函数y=-2x2+6x-1有最3272大值?最大值是多少?(2)概括总结二次函数y=ax2+bx+c的图象性质

四、讲解例题(课件演示)例:教科书P.37的例6---求函数y=-x2+2x-1的最大值。

五、应用新知

完成教科书P.38练习第1、2、3题。

六、课堂小结 作业: 后记:

第二章、二次函数

总序第15个教案

课 题 把握变量之间的依赖关系 第1课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.能利用二次函数解决实际问题和对变量的变化趋势进行预测。

2.会用待定系数法求二次函数的解析式。

过程与方法:

经历运用二次函数解决实际问题的过程:问题情境—建模—解释。

情感态度价值观:

让学生认识到数学是解决问题和进行交流的工具。

教学重点:会根据不同的条件,利用二次函数解决生活中的实际问题。教学难点:建立二次函数模型,渗透数形结合的思想。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、复习引入(课件演示)

1.复习二次函数的解析式、图象及性质。2.在现实生活中,我们常常会遇到与二次函数及其图象有关的问题。例如拱桥的跨度、拱高的计算的等。本节课,我们共同研究,尝试利用二次函数的有关知识解决实际问题。

二、创设情境(课件演示)问题:一座拱桥的纵截面是抛物线的一段,拱桥的跨度是4.9m,水面宽4m时,拱顶离水面2m,如图所示。想了解水面宽度变化时,拱顶离水面的高度怎样变化。你能想出办法来吗?

三、探究新知

引导学生思考下列问题:(1)拱桥的纵截面是什么样的函数?(2)怎样建立直角坐标系比较简便?(3)如何写出抛物线的解析式?(4)自变量x的取值范围是多少?

引导学生思考:你能求出当水面宽3m时,拱顶离水面高多少米吗?

四、讲解例题(课件演示)例:教科书P.42例1。说明:成本函数、利润函数,学生初次遇到,教师要引导学生认真理解题意,把握变量之间的相依关系。

解:见教科书P.42。

五、应用新知(课件演示)

六、课堂小结 作业: 后记:

总序第16、17个教案

第二章、二次函数

课 题

二次函数与一元二次方程的联系 第1、2课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.通过探索,使学生了解二次函数与一元二次方程的联系。

2.已知函数值,会求自变量的对应值。

3.会利用二次函数的图象求一元二次方程的近似解。

过程与方法:

经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

情感态度价值观:

经历探索二次函数与一元二次方程的关系的过程,感受发展实践能力和创新精神的重要性。

教学重点:会求出二次函数y=ax2+bx+c(a≠0)与坐标轴的交点坐标。教学难点:培养学生综合解题能力,渗透转化及数形结合的思想。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)课件演示:教科书P.43投掷铅球的示意图。提问:(1)铅球在空中经过的路线是什么图象?(2)建立直角

129x+x+1,其4020坐标系,如果铅球在空中经过的抛物线解析式为y=-中x是铅球离初始位置的水平距离,y是铅球离地面的高度。你能求出铅球被扔出多远吗?(3)当铅球离地面的高度为2m时,它离初始位置的水平距离是多少?

二、合作交流,解读探究(课件演示)

1.通过一元二次方程求抛物线与x轴的交点的横坐标。例1 :求抛物线y=4x2+12x+5与x轴的交点的横坐标。例2 :求抛物线y=x2+2x+2与x轴的交点的横坐标。

2.抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系。例3: 抛物线y=x2+2x+2与x轴有交点吗?

3.已知二次函数值,通过一元二次方程求自变量的对应值。例4:若铅球在空中经过的抛物线解析式为y=-129x+x+1,当4020铅球离地面的高度为2m时,它离初始位置的水平距离是多少?

4.利用二次函数的图象求一元二次方程的解的近似值。

例5:求一元二次方程y=x2-2x-1的解的近似值。(精确到0.1)

三、应用迁移,巩固提高(课件演示)

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

第二章、二次函数

总序第18个教案

课 题

优化问题 第1课时 编写时间 2012年 月 日 执教时间2012年 月 日 执教班级.教学目标:知识与技能:

1.会用配方法将y=ax2+bx+c变形为y=a(x+d)2+h的形式。2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,使实际问题获得最优决策。

过程与方法:

通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力。

情感态度价值观:

能够对解决问题的基本策略进行反思,形成个人解决问题的风格。

教学重点:利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。

教学难点:将实际问题转化为函数问题,并利用函数的性质进行决策。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)最大面积问题,最大利润问题是实际生活中常见的问题。例如: 问题一:学校准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形植物园,如图所示,学校现已备足可以砌100米长的墙的材料,怎样砌法,才能使矩形植物园的面积最大?(图见第一节2-1-1)

问题二:某商场将进货单价为18元的商品,按每件20元销售,每天可销售100件。如果每提价1元(每件),日销售量就要减少10件,那么该商品的售出价格为多少时,才能使每日获得利润最大?最大利润为多少?

二、合作交流,解读探究(课件演示)

1.对于问题1,先进行自主分析,再小组讨论、交流。2.问题2让一学生在黑板上板书其解答过程,师生共同评析。

三、应用迁移,巩固提高(课件演示)1.类型之一----社会经济中的优化问题 2.类型之二----几何中的优化问题

四、总结反思,拓展升华

五、当堂检测反馈(课件演示)

1.龙泉休闲山庄现有116米长篱笆材料,山庄计划利用这些材料和已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,让游客能自己进菜地采摘新鲜蔬菜,菜地当然是越大越好,若你是庄主,你将如何使得这块菜地的面积达到最大?

作业: 后记:

总序第19个教案

第二章、二次函数

课 题

小结与复习

(一)第1课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.通过对本章知识的梳理,使学生深刻理解二次函数的概念、图象与性质。

2.能灵活运用二次函数的概念与性质解决有关数学问题。

过程与方法:

通过练习掌握基本知识和基本技能,体会不同的数学思想方法解决实际问题。

情感态度价值观:

积极参与交流,并积极发表意见,体验与他人交流合作的重要性。

教学重点:二次函数的概念、图象与性质。教学难点:二次函数图象与性质的运用。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)

1.学生自学教科书P.50“小结与复习”中的内容提要。2.归纳:(1)(2)二次函数的图象都是抛物线。

画二次函数y=ax2+bx+c(a≠0)图象的步骤。

3.抛物线y=ax2+bx+c(a≠0)的特征与系数a,b,c,的关系:

二、合作交流,解读探究(课件演示)

1.举例复习二次函数的概念及二次函数y=ax2(a≠0)的图象的性质。例1:已知函数y=(k+2)x

k

2+k-

4是关于x的二次函数,求:(1)满足条件的k值;(2)k为何值时,函数有最小值?最小值是什么?这时当x为何值时,y随x增大而增大?(3)k为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x增大而减小?

2.用配方法求抛物线的顶点、对称轴;抛物线画法,平移规律。例2:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴。说明通过怎样的手段,可得到y=-3x2.三、应用迁移,巩固提高(课件演示)

1.类型之一----二次函数的概念与图象性质的综合运用 2.类型之二----二次函数解析式的确定 3.类型之三----二次函数与几何知识的综合运用

四、总结反思,拓展升华

五、当堂检测反馈(课件演示)作业: 后记:

第二章、二次函数

总序第20个教案

课 题

小结与复习

(二)第2课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.通过复习使学生掌握二次函数模型的建立,能灵活运用二次函数的相关知识来解决实际问题。

2.提高学生运用数学思维方法分析、解决问题的能力。

过程与方法:

通过练习掌握基本知识和基本技能,体会不同的数学思想方法解决实际问题。

情感态度价值观:

积极参与交流,并积极发表意见,体验与他人交流合作的重要性。

教学重点:利用二次函数的知识解决实际问题。教学难点:建立二次函数模型解决实际问题。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)1.一次函数图象的特征和性质。

2.二次函数图象的特征和性质。

3.学生阅读教科书P.51----“

一、二次函数的应用”。

二、合作交流,解读探究(课件演示)1.何时获得最大利润问题。

例1 :某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系,如图所示。(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润为s元。A.试用销售单价x表示毛利润s;B.试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?

2.如何得到最大面积问题。

例2:用6米长的铝合金型材做一个形状如图所示的矩形窗框。应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?

三、应用迁移,巩固提高(课件演示):见教科书P.53C组题

四、总结反思,拓展升华

引导学生小结将实际问题转化为二次函数问题,从而利用二次函数的性质解决优化问题的过程。

五、当堂检测反馈(课件演示)作业: 后记:

第二章、二次函数

总序第21个教案

课 题

数学建模 第1课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.经历“问题解决”的全过程,了解“数学建模”的过程。

2.了解“数学结果”与“实际结果”的差异。

过程与方法:

通过以活动形式引导学生研究数学知识的课堂教学,激发学生学习兴趣,打开学生的思维。

情感态度价值观:

积极参与交流,并积极发表意见,体验与他人交流合作的重要性。

教学重点:经历数学建模的全过程。教学难点:将实际问题抽象成数学问题。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)

同学们假期出去旅游过吗?你所乘坐的火车或汽车有没有经过隧道?隧道的纵截面由什么图形构成?车辆的高度和宽度与隧道的高度和宽度有怎样的大小关系?

二、合作交流,解读探究

以小组讨论、交流、合作的形式进行探究。1.议一议 2.想一想

3.做一做(学生动手,老师引导点拨)(1)画出隧道的截面图。(2)建立直角坐标系。(3)求解

(4)将“数学结果”转化为“实际结果”。4.评一评

5.说一说(让同学们充分发表意见)(1)什么是数学建模?

(2)你获得了哪些研究问题的方法和经验?

三、应用迁移,巩固提高(课件演示)

四、总结反思,拓展升华

请同学们说说,这节课有什么收获和体会或有什么疑难。

五、当堂检测反馈(课件演示)作业: 后记:

第三篇:数学北师大版九年级下册22.2.1《二次函数》教学设计

22.2.1《二次函数》教学设计

一、教学目标:

1、经历根据具体问题的数量关系探索二次函数的模型的过程,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、通过二次函数概念和概括过程,进一步培养学生观察、分析、概括和特化的能力以及准确的运算能力。

3、理解二次函数的概念和解析式。

教学重难点:

重点:二次函数的概念

难点:通过提出问题、建立二次函数的数学模型。

二、学情分析:

九年级学生面临中考的压力大与七八年相比部分学生热情高、主动参与性强,但经过初中两年学生学习、两极分化明显、能力差异较大、整体上不如七八年学生爱积极发言、比较沉默,不过学生在八年级已经学习了一次函数和反比例函数,有了一定的函数基础,因此在教学时,教师一要激发学生的学习兴趣,二要在学生数形结合的思想的培养上,应鼓励学生自主探究,合作交流。

三、教学内容分析:

二次函数是在学习一元二次议程,一次函数等基础上学习的它是一种非常基本的初等函数,也是一种数学建模的方法。二次函数中模型与实际生活紧密相连,学好二次函数,可以解决实际生活中的一些问题,提升学生的数学应用能力,同时也是学好高中数学的奠基过程。

四、教学媒体资源的选择与应用:

学习二次函数,要紧扣数学建模思想努力让学生会从实际问题中获取信息,建立数学,分析问题和解决问题,因此首先以学生感兴趣的实际问题为背景,借助动画Flash的媒体,吸引学生注意力,引发学生对问题的思考建模二次函数,通过合作探究,得出二次函数的概念归纳出二次函数的解析式。

五、教学过程:

一、创设问题情境:

播放Flash《阿凡提智斗财主巴依》

阿克逊湖是牧民的母亲湖牧民世代生活居位在湖边。财主巴依为了征收更多的赋税,逼迫交不出钱的牧民离开阿克逊湖。路过此地阿凡提知道了这件事,决心帮助牧民,教训财主巴依。阿凡提拿出随身携带的珠宝送给财主巴依,请他拾可怜的牧民五张羊皮可以圈住的土地,让他们世代居住。财主巴依想既不是骆驼皮也不是,马皮,小小的五张羊皮能有多大地方。垂涎珠宝的财主一口答应了阿凡提的请求,并且立字为据,请所有牧民作证。

思 考:

1、你知道阿凡提的智谋吗?请向大家介绍。、明确阿凡提把并羊皮撕成,尽可能细的细条,连结成一根长的绳,然后利用湖岸,把细绳与湖岸连成圆形,一下子圈出了很大的一片土地来。牧民们欢呼崔跃,财主吐血而亡。

2、这个故事包含了哪些数学知识?

(1)为什么他们要把羊皮绳围成圆形?

(2)如果利用湖岸,把羊皮绳圈成矩形。假如羊皮绳的长度为1000米,短形的长为X米,矩形的面积为Y平方米,你能用含X的代数式表示Y吗?X的值是否可以任意取?有限定范围吗?

探究*明确:

当矩形的长X的值确定后,矩形的面积Y的值也随随确定,Y 是X的函数。代数式为:

110000<x<10000 y?(10000?x)x 23

110000<x<10000…… y??x2?500x 23

设计意图:

激发学生学习积极性,初步感受二次函数的模型来自于生活

二、自主学习(PPt显示)

1、正方体的六个面都是 的棱长为x,表面积为y,请思考:

(1)当正方体的棱长确定之后,正方体的表面积是否也随*确定了?y是x的函数吗?

y?6x2(x>0)

(2)x的值是否可以任意取?如果不能任意取,请求它的范围。(x的值有能任意取,其范围是x?0)

2、多边形的对角线?与多边形的边数有什么关系?

思考:

(1)如果多边形有几条边,那么它有 个顶点,从一个顶点出发,连结与这个顶点不相邻的各顶点,可以作 条对角线。

(2)对角线的总数是多少?你能用含有n的代数式表示吗? 1明确:n(n?3)2

(3)当多边形的边数确定之后,多边形的对角线数是否也随之确定了??是n的函数吗? 1是函数关系为??n(n?3)(n?3)2

1??n(n?3)(n?3)2

(4)n的值是否可以任意取?如果不能任意取,请求出它的范围。设计意图:

加深学生对函数模型能解决实际问题的认识

三、合作探究

1、仔细观察函数关系式①②③(PPt显示)

110000① y??x2?500x <x<10000 23

② y?6x2(x>0)

123n?n(n>0)22 思 考:

(1)函数关系式①②③的自变量各有几个?

(各有一个)

113(2)多项式n2?5000x、6x2、n2?n分别是几次多项式? 222

(分别是二次多项式)

2、PPt出示二次函数的定义: ③ a?

形如y?ax2?bx?c(a、b、c是常数,a?0)的函数叫做x的二次函数。a叫做二次的系数,b叫做一次项的系数,c叫做常项。

3、思考:

①概念中的二次项的系数a为什么不能是0?b和c可以是0吗?

②如果b和c有一个为0,上面的函数式可改成怎样?你认为它还是二次函数吗?

③如果b和c全为0,上面的函数式可改成怎样?你认为它还是二次函数吗?

④ 由上你认为,一个函数是二次函数,关键是看什么?

设计意图:

突出本课的重点,明确二次函数的特征、掌握二次函数的定义

四、巩固拓展:(PPt显示)

1、下列函数中,哪些是二次函数?(口算)

(1)y?5x?1(2)y?4x2?1(3)y?2x2?3x2

5(4)y?5x4?3x?1(5)y?(6)s?2t4?1t?2 x

x2?3(7)y?12?5x(8)y? 24

2、求m为何值时,函数y?(m?2)xm2?2是二次函数。

3、用20米的篱笆围一个矩形的花圃,美化火车站旁边的空地。假设靠墙的一边长为x,矩形的面积为y,求:

(1)y关于x的函数关系式

(2)当x=3时,矩形的面积为多少?

设计意图:

巩固二次函数解析式的特点,强化二次二数函数的模型能建构并解决实际生活问题

五、课堂小结:(PPt显示)

教学评价及反思:

(1)二次函数的定义:y?ax2?bx?c(a、b、c是常数)

(2)二次函数的特征:

(3)数学建模的方法

1、本课是从阿凡提的故事入手,通过Flash激发学生兴趣,引出对新知识的好奇与思考。

体验用函数思想去描述研究变量之间变化规律的意义,帮助学生建构二次函数的概念。

2、对于学生来说,学习新概念都有一家难度,所以这节课教师不去灌溉输,得出二次函数的特征,掌握二次函数的定义。

3、新知识学生是否掌握教师通过学题来检验,巩固学生数学建模的方法和步骤,掌握二次函数定义和意义为下节课学习二次函数的图象做准备。

第四篇:九年级数学北师大版下册第二章二次函数单元检测试题

第二章

二次函数

单元检测试题

(满分120分;时间:90分钟)

一、选择题

(本题共计

小题,每题

分,共计27分,)

1.已知函数y=(m+3)x2+4是二次函数,则m的取值范围为()

A.m>-3

B.m<-3

C.m≠-3

D.任意实数

2.抛物线y=-13x2+3x-2与y=ax2的形状相同,而开口方向相反,则a=()

A.-13

B.3

C.-3

D.13

3.在二次函数①y=-3x2,②y=13x2,③y=43x2中,它们的图象在同一坐标系中,开口大小的顺序用序号来表示应是()

A.②>③>①

B.②>①>③

C.③>①>②

D.③>②>①

4.在平面直角坐标系中,二次函数y=a(x-h)2(a≠0)的图象可能是()

A.B.C.D.5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()

A.抛物线开口向上

B.抛物线的对称轴是x=1

C.当x=1时,y的最大值为4

D.抛物线与x轴的交点为(-1, 0),(3, 0)

6.二次函数y=3(x-2)2-5与y轴交点坐标为()

A.(0, 2)

B.(0,-5)

C.(0, 7)

D.(0, 3)

7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为()

A.1

B.2

C.3

D.4

8.已知二次函数y=-x2-bx+1(-5

A.先往右上方移动,再往右平移

B.先往左下方移动,再往左平移

C.先往右上方移动,再往右下方移动

D.先往左下方移动,再往左上方移动

9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=-1,与x轴的交点为(x1, 0)、(x2, 0),其中00;②-3y2;⑥a>-c3.其中,正确结论的个数为()

A.2

B.3

C.4

D.5

二、填空题

(本题共计

小题,每题

分,共计24分,)

10.将抛物线y=-2(x-1)2向右平移5个单位后,所得抛物线对应的函数解析式为________.

11.已知二次函数y=-x2+ax-4的图象最高点在x轴上,则该函数关系式为________.

12.已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5),则此抛物线的解析式是________.

13.抛物线y=ax2+bx+c的顶点是A(2, 1),经过点B(1, 0),则函数关系式是________.

14.用配方法将二次函数y=x2-6x+11化为y=a(x-h)2+k的形式,其结果为________.

15.已知等边三角形的边长为x(cm),则此三角形的面积S(cm2)关于x的函数关系式是________.

16.已知方程3x2-5x+m=0的两个实数根分别为x1、x2,且分别满足-2

17.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.2x2+1.5x-2,则最佳加工时间为________min.

三、解答题

(本题共计

小题,共计69分,)

18.若一次函数

y=(k+1)x+k的图象过第一、三、四象限,判断二次函数

y=kx2-kx+k有最大值还是最小值,并求出其最值.19.抛物线y=x2-4x+m与y轴的交点坐标是(0, 3).

(1)求m的值.

(2)在直角坐标系中画出这条抛物线.

(3)求这条抛物线与x轴交点坐标,并指出当x取什么值时,y随x的增大而减小?

20.如图,为美化环境,某校计划在一块长为60m,宽40m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为xm,花圃的面积为S,(1)求S与x之间的函数关系,并写出自变量x的取值范围;

(2)如果通道所占面积是整个长方形空地面积的,求此时通道的宽.

21.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a≠0),与x轴交于A、B两点(点A在点B的左侧).

(1)求点A和点B的坐标;

(2)若点P(m, n)是抛物线上的一点,过点P作x轴的垂线,垂足为点D.

①在a>0的条件下,当-2≤m≤2时,n的取值范围是-4≤n≤5,求抛物线的表达式;

②若D点坐标(4, 0),当PD>AD时,求a的取值范围.

22.二次函数y=ax2+bx+2的图象交x轴于点A-1,0,点B4,0两点,交y轴于点C,动点M从A点出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动时间为t秒.

(1)求二次函数y=ax2+bx+2的表达式;

(2)直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰—直角三角形时,求此时点D的坐标;

第五篇:九年级数学下册 第2章 二次函数 2.4 二次函数的应用 2.4.1 二次函数的应用教案 (新版)北师大版

2.4.1二次函数的应用

一、教学目标

1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.

二、课时安排 1课时

三、教学重点

掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.

四、教学难点

运用二次函数的知识解决实际问题.

五、教学过程

(一)导入新课

引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:

(二)讲授新课 活动1:小组合作

如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1)设矩形的一边AB=xm,那么AD边的长度如何表示?

(2)设矩形的面积为ym,当x取何值时,y的值最大?最大值是多少?

2解:1设ADbm,易得b3x30.4 332yxbx(x30)x230x4432x20300.4b4acb2或用公式:当x20时,y最大值300.2a4a活动2:探究归纳

先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲

例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?

解:由4y7xx15.得y157xx.4x2157xxx2

窗户面积S2xy2x()2427157152x2x (x)22214225

.56b154acb2225 当x1.07时,s最大值4.02.2a144a56即当x≈1.07m时,窗户通过的光线最多.此时窗户的面积为4.02m.(四)归纳小结

“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测

1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm.

2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.

23.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.

(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?

(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?

4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.

(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y 12,要使△DEF为等腰三角形,m的值应为多少? m

5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.

(1)求y与x的函数关系式,并求出自变量x的取值范围.(2)生物园的面积能否达到210平方米?说明理由.

【答案】 1.12.5 2.根据题意可得:等腰三角形的直角边为2xm矩形的一边长是2xm,其邻边长为20422x21022x,

1所以该金属框围成的面积S2x1022x2x2x

2 10当x30202时,金属框围成的图形面积最大.322此时矩形的一边长为2x60402m,另一边长为10221032210210m.

S最大3002002m2.3.解;(1)设矩形广场四角的小正方形的边长为x米,根据题意 得:4x+(100-2x)(80-2x)=5 200,整理得x-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则

y=30[4x+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x-3 600x+240 000,配方得 y=80(x-22.5)+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元. 4.⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,22222∴BFBEy8x, ∴ CECDxm8xx2即y

m

8xx212,化成顶点式: yx42 ⑵当m=8时,y888xx12(3)由y,及y得关于x的方程: mmx28x120,得x12,x26

∵△DEF中∠FED是直角,∴要使△DEF是等腰三角形,则只能是EF=ED,此时,Rt△BFE≌Rt△CED,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5.解:(1)依题意得:y=(40-2x)x. ∴y=-2x+40x.

x的取值范围是0< x <20.

(2)当y=210时,由(1)可得,-2x+40x=210. 即x-20x+105=0.

∵ a=1,b=-20,c=105,∴(20)2411050,∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计

2.4.1二次函数的应用 2

2探究: 例题:

“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.七、作业布置 课本P47练习练习册相关练习

八、教学反思

下载九年级数学下册2.6《二次函数应用之最大利润问题》教学案(无答案)北师大版[小编整理]word格式文档
下载九年级数学下册2.6《二次函数应用之最大利润问题》教学案(无答案)北师大版[小编整理].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐