初一下册数学二元一次方程

时间:2019-05-12 17:28:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一下册数学二元一次方程》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一下册数学二元一次方程》。

第一篇:初一下册数学二元一次方程

初一下册数学二元一次方程

①{(Y+1)÷4=(X+2)÷3

{2X-3Y=1

②今年祖父的年龄是小华年龄的6倍,若干年后,祖父的年龄是小华的5倍;又过若干年,祖父的年龄将是小华年龄的4倍,求祖父今年的年龄是多少?.③商店运来120台洗衣机,每台售价是440元,每售出一台可以得售价15%的利润。其中二台有些破损,按原价打八折出售,这批洗衣机售完后实得利润为_____元。

④若3X+7Y+Z=5,4X+10Y+Z=3,则X+Y+Z的值等于()

A`9B`2C`-9D`不能求出

第二篇:初中数学二元一次方程教案

初中数学二元一次方程教案1

一、素质教育目标

(一)知识教学点

会列二元一次方程组解简单的应用题,并能检查所得结果是否正确、合理.

(二)能力训练点

培养学生分析问题、解决问题的能力.

(三)德育渗透点

1.进一步渗透化未知为已知的思想.

2.通过应用题的内容,进行理论联系实际的教育.

(四)美育渗透点

学习列二元一次方程解应用题,通过深入挖掘隐含的条件,渗透解题的简捷性的数学美以及准确的设元,发挥解题的创造性的数学美.

二、学法引导

1.教学方法:观察法、谈话法、尝试指导法.

2.学生学法:通过行程问题中的三个量路程、速度、时间结合题意得出两个正确的相等关系是关键,通过反复训练并思考总结出一般性、规律性的知识.

三、重点·难点·疑点及解决办法

(一)重点难点

根据简单应用题的题意列出二元一次方程组.

(二)疑点

正确找出表示应用题全部含义的两个相等关系,并把它们表示成两个方程.

(三)解决办法

反复读题、审题,提高分析问题及解决问题的能力.

四、课时安排

一课时.

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

1.复习列二元一次方程组解应用题的一般步骤,让学生在熟练掌握它的基础上研究新的问题.

2.师生共同探究行程问题中三者的关系,并学会如何通过题意以路程、速度、时间作为等量关系来列二元一次方程组.

七、教学步骤

(一)明确目标

本节课主要学习列二元一次方程组解行程问题的应用题.

(二)整体感知

利用路程、速度、时间的三者关系解关于相遇、追及以及顺、逆流航行的应用题,关键在于寻找以路程或时间为主的等量关系.

(三)教学过程

1.复习提问,导入新课

(1)上节课我们学习了二元一次方程组的应用,列二元一次方程组解应用题的步骤是什么?

(2)列方程组解应用题的关键是哪两步?

学生活动:回答老师提出的问题.

这节课,我们接着学习列二元一次方程组解应用题.

2.探索新知,讲授新课

例3甲、乙二人相距6㎞,二人同时出发,同向而行,甲3小时可追上乙;相向而行,1小时相遇,二人的平均速度各是多少?

提问:(1)题中有几个未知数?分别是什么?

(2)题中的两个相等关系分别是什么?

学生活动:观察、分析后回答.

未知数:甲、乙各自的平均速度

相等关系:

(1)同向而行:甲的行程=乙的行程+6㎞

(2)相向而行:甲行程+乙行程=6㎞

学生活动:设未知数,根据相等关系列出方程组.

解:设甲的平均速度是每小时行㎞,乙的平均速度是每小时行㎞,根据题意,得

解这个方程组,得

答:平均第小时甲行4㎞,乙行2㎞.

注意:检验.

反馈练习:P371,2.

例4甲、乙两码头相距60千米,某船往返两地,顺流时用3小时,逆流时用3小时45分,求船在静水中的航速及水流速度.

分析:复习船在顺流航行及逆流航行中的速度与船在静水中的速度、水流速度的关系.

顺流航行的船速=在静水中的船速度+水流速度

逆流航行的船速=在静水中的船速度-水流速度

师生共同分析两个相等关系:

(1)顺流航行的速度×3=60千米

(2)逆流航行的速度×=60千米

解:设船在静水中的速度为千米/时,水流速度为千米/时.

由题意得

答:略.

练习:P487.

例5某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口.

提问:(1)题中的两个未知数分别是什么?

(2)题中的相等关系是什么?

学生活动:回答老师提出的问题.

教师根据学生回答板书.

未知数:城镇人口与农村人口

相等关系:

(1)城镇人口+农村人口=总人口

(2)城镇人口增加数+农村人口增加数=总人口增加数

学生活动:根据分析设未知数、列方程组,一个学生板演.

解:设城镇人口是万,农村人口是万,得

解这个方程组,得

答:城镇人口是14万,农村人口是28万.

注意:②式中的'42也可以写成.

【教法说明】例3、例4采用了与例1相同的分析方法,这样分析,可以使学生学会列方程组解应用题的分析方法.如果学生的基础较好,也可以采用拟题训练法让学生分析,培养学生的自学能力.

初中数学二元一次方程教案2

7.2 一元二次方程组的解法

------第六课时

教学目的

1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用。

2.通过应用题的教学使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性,体会列方程组往往比列一元一次方程容易。

3.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力。

重点、难点、关键

1、重、难点:根据题意,列出二元一次方程组。

2、关键:正确地找出应用题中的两个等量关系,并把它们列成方程。

教学过程

一、复习

我们已学习了列一元一次方程解决实际问题,大家回忆列方程解应用题的步骤,其中关键步骤是什么?

[审题;设未知数;列方程;解方程;检验并作答。关键是审题,寻找 出等量关系]

在本节开头我们已借助列二元一次方程组解决了有2个未知数的实际问题。大家已初步体会到:对两个未知数的应用题列一次方程组往往比列一元一次方程要容易一些。

二、新授

例l:某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为20xx元,那么该公司出售这些加工后的蔬菜共可获利多少元?

分析:解决这个问题的关键是先解答前一个问题,即先求出安排精加和粗加工的天数,如果我们用列方程组的办法来解答。

可设应安排x天精加工,y加粗加工,那么要找出能反映整个题意的两个等量关系。引导学生寻找等量关系。

(1)精加工天数与粗加工天数的和等于15天。

(2)精加工蔬菜的吨数与粗加工蔬菜的吨数和为140吨。

指导学生列出方程。对于有困难的学生也可以列表帮助分析。

例2:有大小两种货车,2辆大车与3辆小车一次可以运货15.50吨,5辆大车与6辆小车一次可以运货35吨。

求:3辆大车与5辆小车一次可以运货多少吨?

分析:要解决这个问题的关键是求每辆大车和每辆小车一次可运货多少吨?

如果设一辆大车每次可以运货x吨,一辆小车每次可以运货y吨,那么能反映本题意的两个等量头条是什么?

指导学生分析出等量关系。

(1) 2辆大车一次运货+3辆小车一次运货=15. 5

(2) 5辆大车一次运货+6辆小车一次运货=35

根据题意,列出方程,并解答。教师指导。

三、巩固练习

教科书第34页练习l、2、3。

第3题:首先让学生明白什么叫充分利用这船的载重量与容量,让学生找出两个等量关系。

四、小结

列二元一次方程组解应用题的步骤。

1.审题,弄清题目中的数量关系,找出未知数,用x、y表示所要求的两个未知数。

2.找到能表示应用题全部含义的两个等量关系。

3.根据两个等量关系,列出方程组。

4.解方程组。

5.检验作答案。

五、作业

1.教科书第35页,习题7.2第2、3、4题。

第三篇:二元一次方程教案范文

《二元一次方程》教学设计

一、教材的地位与作用

《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标(一)知识与技能:

1.了解二元一次方程概念;

2.了解二元一次方程的解的概念和解的不唯一性;

3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。(二)数学思考:

体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:

初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。(四)情感态度:

培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点

教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析

教法:情境教学法、比较教学法、阅读教学法。学法:阅读、比较、探究的学习方式。

五、教学过程

1.创设情境,引入新课 从学生熟悉的姚明受伤事件引入。

师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗? 设姚明投进了x个两分球,罚进了y个球,可列出方程______。

(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗? 设易建联投进了x个两分球,y个三分球,可列出方程______。

师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗? 从而揭示课题。

(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)2.探索交流,汲取新知

概念思辨,归纳二元一次方程的特征

师:那到底什么叫二元一次方程?(学生思考后回答)

师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)师:根据概念,你觉得二元一次方程应具备哪几个特征? 活动:你自己构造一个二元一次方程。快速判断:下列式子中哪些是二元一次方程? ①x2+y=0

②y=2x+4 ③2x+1=2-x

④ab+b=4(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)二元一次方程解的概念

师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)二元一次方程解的不唯一性

对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗? 师:这些解你们是如何算出来的?

(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解 例:已知方程3x+2y=10,(1)当x=2时,求所对应的y的值;

(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;(3)用含x的代数式表示y;(4)用含y的代数式表示x;

(5)当x=-2,0时,所对应的y的值是多少?

(6)写出方程3x+2y=10的三个解.

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)大显身手: 课内练习第2题 梳理知识,课堂升华

本节课你有收获吗?能和大家说说你的感想吗? 3.作业布置

必做题:书本作业题1、2、3、4。选做题:书本作业题5、6。设计说明

本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解——不止一个解——无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊——一般——特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。

第四篇:二元一次方程解决问题

二元一次方程解决问题

2x+y-z=2

x+2y-z=5

x-y+2z=-7

x+y=3

2x-y+z=4

x-y+2x=3

x+y-z=11

y+z-x=5

z+x-y=1

一、倍分问题

1.甲乙二人,若乙给甲10元,则甲所有的钱为乙的3倍,若甲给乙10元,则甲所有的钱为乙的2倍多10元,求甲乙各拥有多少钱?

2.一批书分给组学生,每人6本则少6本,每人5本则多5本,该组共有多少名学生,这批书共有多少本?

3.某班学生有x人,准备分成y个组开展活动,若每个组7人,则余3人;若每个组8人,则差5人.求全班的人数和所分组数。

4.甲乙两个商店各进洗衣机若干台,若甲店拨给乙店12台,则两店的洗衣机一样多,若乙店拨给甲店12台,则甲店的洗衣机比乙店洗衣机数的5倍还多6台,求甲、乙两店各进洗衣机多少台?

二、.和差倍问题

1.学校的篮球比足球数的2倍少3个,篮球数与足球数的比为3:2,求这两种球队各是多少个?

2.有甲、乙两种金属,甲金属的16分之一和乙金属的33分之一重量相等,而乙金属的55分之一比甲金属的40分之一重7克,求两种金属各重多少克?

3.某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?

二年龄问题

1.今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.2.父子的年龄差30岁,五年后父亲的年龄正好是儿子的3倍,问今年父亲和儿子各是多少岁?

五分配调运

1.七年级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.2.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?

3.将若干练习本分给若干名同学,如果每人分4本,那么还余20本;如果每人分8本,那么最后一名同学分到的不足8本,求学生人数和练习本数。

4.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,问各有多少颗弹珠?

5.小明与他的爸爸一起做投篮球游戏.两人商定规则为:小明投中1个得3分,小明爸爸投中1个得1分.结果两人一共投中了20个,一计算,发现两人的得分恰好相等.你能告诉我,他们两人各投中几个吗?

练习

x+y-z=6

x-3y+2z=1

3x+2y-z=4

1.三年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人?

2.甲乙两条绳共长17米,如果甲绳子减去五分之一,乙绳增加1米,两条绳子相等,求甲、乙两条绳各长多少米?

3.一次篮,排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮,排球各有多少队参赛?

4.课外阅读课上,老师将43本书分给各小组,每组8本,还有剩余;每组9本却又不够。问有几个小组?

5.若干学生住宿,若每间住4人则余20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人?

第五篇:二元一次方程练习题

二元一次方程练习题

班级

姓名

一、填空题〔每题3分,共24分〕

1、如果单项式xy与xy是同类项,那么m=,n=。

2、如果2x-7y=8,那么用y表示x得。

3、方程组的解是。

4、如果︱x-2︱+(x-y+3)=0那么(x+y)=。

5、如果甲数比乙数的少5,甲数与乙数的积是12,求甲数与乙数。设,列出方程组是。

6、如果,那么3m-n+3=。

7、如果x=5,y=7满足kx–2y=1那么k=。

8、方程组的x、y相等,那么m=。

9、二元一次方程2x+3y=9的正整数解是。

10、在3×()+5×()=9的括号内分别填上一个数,使这两个数互为相反数。

11、假设x+y=-3是关于x、y的二元一次方程,那么a=,b=。

12、设有x节车厢,y吨货物,假设每节装10吨,那么还剩12吨未装下,假设每节装12吨,那么还剩下1节车厢,那么所列方程组为。

二、选择题〔每题3分,共24分〕

1、以下方程中,二元一次方程共有〔

①3x+6=2x

xy=3

③y

④10x

A、1个

B、2个

C、3个

D、4个

2、以下各组数中,既是2x-y=3的解,又是3x+4y=10的解是〔

A、B、C、D、3、学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少个?假设设篮球x有个,排球y有个,那么依题意得方程组

A、B、C、D、4、用加减法将方程组中的未知数消去后得到的方程是〔

A、y=4

B、7y=4

C、–7y=4

D、-7y=145、方程

3x-4y=10

②3y+2x=

-1

③6y=4-5x

④2y-7=4x+1

那么所满足的方程是〔

A、①

B、①②

C、①③

D、①②④

6、为了节约用水,某市规定:每户居民每月用水不超过20立方米按每立方米2元收费,超过20立方米,那么超过局部按每立方米4元收费。某户居民三月份交水费72元,那么该户居民三月份实际用水为〔

A、8立方米

B、18立方米

C、28立方米

D、36立方米

7、某种商品进货价廉价8﹪,而售价保持不变,那么他的利润〔按进货价而定〕,可由目前x﹪增加到(x+10)

﹪,那么x﹪是〔

A、12﹪

B、15﹪

C、30﹪

D、50﹪

8、假设︱3a+b+5︱+︱2a-2b-2︱=0,那么-的值为〔

A、14

B、2

C、-2

D、-4

三、解答题〔20分+5分+5分+6分+7分+9分〕

1、用适当的方法解以下方程组〔20分〕

2、代数式,当x=-1时,它的值为-5,当x=-3时它的值是3,求p、q的值。〔5分〕

3、如果方程组与的解相同,求a、b的值。〔5分〕

4、在一次考试中共出了10道题,每题完全做对得10分,做错的扣6分,做对一局部得3分,李聪同学做了全部题目,得77分,问李聪同学做题情况。〔6分〕

5、先读懂古诗,然后答复诗中问题〔7分〕

巍巍古寺在林中,不知寺内几多僧,三百六十四只碗,看看用尽不差争,三人共食一碗菜,四人共吃一碗羹,请问先生明算者,算来寺内几多僧?

6、某地生产的一种绿色蔬菜,假设在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元。

当地一家农工商公司收获这种蔬菜140吨。该公司加工厂的能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨。但两种加工不能同时进行,受季节等条件的限制,公司必须在15天内将这批蔬菜全部销售或加工完毕。为此公司研制了三种可行方案。

方案一:将蔬菜全部进行粗加工。

方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售。

方案三;将局部蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。

你认为选择哪种方案获利较多?为什么?

〔9分〕

下载初一下册数学二元一次方程word格式文档
下载初一下册数学二元一次方程.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二元一次方程单元测试

    二元一次方程(组)单元测试姓名:学号:一、选择题:1.以下各方程中,是二元一次方程的是〔  〕A.B.C.D.2.假设方程组的解满足,那么的值为〔  〕A.16B.15C.14D.133.二元一次方程的正整数解的......

    数学教案 二元一次方程

    一、三维目标(-)知识与技能1.了解二元一次方程、二元一次方程组和它的解的概念. 2.会检验一对数值是不是某个二元一次方程组的解.3. 培养学生分析问题、解决问题的能力和计算能力.(二......

    二元一次方程 -数学教案

    §11.1 二元一次方程 【教学目标】 【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。 【能力目标】通过讨论......

    8.1《二元一次方程方案设计》教案 七年级数学人教版下册

    课题:二元一次方程方案设计学校:古田中学七年级数学备课组三维目标知识与技能:掌握用二元一次方程(组)解决实际问题的步骤,会通过列二元一次方程(组)解决简单实际问题。过程与方法:通......

    “二元一次方程”教学探究

    “二元一次方程”教学探究 李世永 江西省余干县白马初中 335100 “二元一次方程”是九年义务教育新课程标准实验教科书七年级下册第八章内容,本节课主要是通过概念的理解及学......

    4.1二元一次方程教案

    4.1二元一次方程 教学目标: 知识目标:1。了解二元一次方程的概念。 2.了解二元一次方程的解的概念和解的不唯一性。 能力目标:1。会检验一对数是不是二元一次方程的解。 2.会把二......

    二元一次方程教学设计

    二元一次方程教学设计 教学目标 (一)知识与技能: 1.了解二元一次方程概念; 2.了解二元一次方程的解的概念和解的不唯一性; 3.会将一个二元一次方程变形成用关于一个未知数的代......

    二元一次方程教学设计方案

    《二元一次方程》教学设计方案 茂租镇中心学校 刘金平一、教学目标: 1. 理解二元一次方程及二元一次方程的解的概念; 2.学会求出某二元一次方程的几个解和检验某对数值是否......