课题:二元一次方程方案设计
学校:古田中学七年级数学备课组
三维目标
知识与技能:掌握用二元一次方程(组)解决实际问题的步骤,会通过列二元一次方程(组)解决简单实际问题。
过程与方法:通过阅读实际问题,理解题意,准确找出问题中数量间的关系,从而列二元一次方程(组)解决有关方案优化的问题。
情感、态度与价值观:使学生认识到学好数学的重要性,激发学生学习数学的积极性。培养学生简单的数学建模思想。
教学重点:列二元一次方程(组)解决有关方案优化的问题
教学难点:列二元一次方程(组)解决有关方案优化的问题
教学过程:
一、知识的回顾
1、二元一次方程的定义
2、一个二元一次方程的解有几个?
3、下列二元一次方程有几个解?
(1)2x+3y=12
(2)2x+3y=12
(x,y均为正整数)
(3)2x+3y=12
(x,y均为自然数)
4、列方程(组)解决实际问题的步骤
二、课题引入
教材P90
拓广探索中有这样一个问题:
把一根长7米的钢管截成2米长和1米长两种规格的钢管,怎样截不造成浪费?你有几种不同的截法?
思考:如何用学过的数学知识去解决这个问题?
这就是我们今天要学习的内容-------二元一次方程方案设计
例1.为传承中华文化,学习六艺技能,某中学组织初二年级学生到孔学堂研学旅行.已知大型客车每辆能坐60人,中型客车每辆能坐45人,现该校有初二年级学生375人.根据题目提供的信息解决下列问题:
(1)这次研学旅行需要大、中型客车各几辆才能使每个学生上车都有座位,且每辆车正好坐满?
(2)若大型客车租金为1500元/辆,中型客车租金为1200元/辆,请帮该校设计一种最划算的租车方案.
变式练习:1.随着奥运会成功召开,福娃系列商品也随之热销.一天小林在商场看到一件奥运吉祥物的纪念品,标价为每件33元,他的身边只带有2元和5元两种面值的人民币各若干张,他买了一件这种商品.
若无需找零钱,则小林付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?
2.晴晴在某商店购买商品若干次(每次、两种商品都购买),其中第一、二两次购买时,均按标价购买;第三次购买时,商品、同时打折,三次购买商品、的数量和费用如表所示:
购买商品的数量/个
购买商品的数量/个
购买总费用/元
第一次购物
980
第二次购物
940
第三次购物
912
(1)求商品、的标价;
(2)若商品、的折扣相同,问商店是打几折出售这两种商品的?
(3)在(2)的条件下,若晴晴第四次购物共花去了480元,则晴晴有哪几种购买方案?
三、二元一次方程组的方案优化
例2.一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型
甲
乙
丙
汽车运载量(吨/辆)
汽车运费(元/辆)
(1)若全部物资都用甲、乙两种车型来运送,需运费元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知他们的总辆数为辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
(3)求出哪种方案的运费最省?最省是多少元?
变式练习:为了丰富同学们的知识,拓展阅读视野,学习图书馆购买了一些科技、文学、历史等书籍,进行组合搭配成、、三种套型书籍,发放给各班级的图书角供同学们阅读,已知各套型的规格与价格如下表:
套型
套型
套型
规格(本/套)
价格(元/套)
200
150
120
(1)已知搭配、两种套型书籍共15套,需购买书籍的花费是2120元,问、两种套型各多少套?
(2)若图书馆用来搭配的书籍共有2100本,现将其搭配成、两种套型书籍,这两种套型的总价为30750元,求搭配后剩余多少本书?
(3)若图书馆用来搭配的书籍共有122本,现将其搭配成、、三种套型书籍共13套,且没有剩余,请求出所有搭配的方案.
四、课堂小结:
1、如何列二元一次方程(组)解决实际问题
2、在用方程解决实际问题时,一定要检验这个解是否符合实际
五、作业