面面垂直的性质学案1(精选5篇)

时间:2019-05-12 17:22:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《面面垂直的性质学案1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《面面垂直的性质学案1》。

第一篇:面面垂直的性质学案1

§2.3.4平面与平面垂直的性质

一、学习目标:

1.掌握平面与平面垂直的性质定理的证明及应用; 2.掌握空间中的垂直关系相互转化的方法。

(三)得出定理

面面垂直的性质定理:

符号语言表述:

二、教学重点和难点:

重点:理解掌握面面垂直的性质定理的内容和推导。难点:性质定理的运用。三:教学过程(一)复习引入

1.平面与平面垂直的定义:2.面面垂直判定定理:

(二)探索新知

(1)观察黑板所在的平面和地面,它们是互相垂直的,那么黑板所在的平面里的任意一条直线是否就一定和地面垂直?

(2)观察长方体ABCD-A`B`C`D`中,平面AA`D`D与平面ABCD垂直,AD是交线,则直线AA、与AD关系如何?直线AA、与平面ABCD呢?

反思:以上两个问题有什么共性?你得出了什么结论?根据图形用符号语言把它描述在下面,并试着证明这个结论。

·1·

(四)拓展应用

1、如图,已知PA⊥平面ABC,平面PAB⊥平面PBC 求证:BC⊥平面PAB

练习:如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,平面PAC⊥平面ABC,(1)求证:BC⊥平面PAC。

(2)判断平面PBC与平面PAC是否垂直,并证明。

P

A

C

P

C

A

B

O

(五)巩固深化、发展思维

思考

1、设平面α⊥平面β,点P在平面α内,过点P作平面β的垂线a,直线a与平面α具有什么位置关系?

c

c

思考

2、如图,已知平面α、β,α⊥β,α∩β =AB, 直线a⊥β, aα, 试判断直线a与平面α的位置关系

(六)小结反思 1.面面垂直的性质定理

2、空间垂直关系有哪些?如何实现空间垂直关系的相互转化?

指出下图中空间垂直关系转化的依据?

(七)作业

已知:α⊥γ,β⊥γ,α∩β=a。求证:a⊥γ.2·

·

第二篇:面面垂直学案

§2.3.4平面与平面垂直的性质

一、学习目标:

1.掌握平面与平面垂直的性质定理的证明及应用;

2.掌握空间中的垂直关系相互转化的方法。

二、学习过程:

(一)复习引入

1.平面与平面垂直的定义:

2.面面垂直判定定理:

(二)探索研究

(1)观察黑板所在的平面和地面,它们是互相垂直的,那么黑板所在的平面里的任意一条直线是否就一定和地面垂直?

(2)观察长方体ABCD-A`B`C`D`中,平面AA`D`D与平面ABCD垂直,你能否在平面AA`D`D中找一条直线垂直于平面ABCD?

(三)严格证明

已知,CD,AB,ABCD于B.求证:AB.A

DB

(四)得出定理

面面垂直的性质定理:

两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言表述:

(五)知识应用举例

1、已知平面α与β互相垂直,判断下列命题是否正确:

(1)若b,则b。

(2)若=l,bl则b。

(3)若b,则b垂直于平面内的无数条直线。

(4)过一个平面内任意一点作交线的垂线,则此垂线

必垂直于另一个平面。

2、平面与平面互相垂直,m,P,Pm,判断:

(1)过点P且垂直于的直线a是否一定在内?

(2)过点P且垂直于的直线l与是什么位置关系?并证明

3、如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,平面PAC⊥平面ABC,(1)求证:BC⊥平面PAC。(2)判断平面PBC与平面PAC是否垂直,并证明。

A

O B

练习:如图,AB是⊙O的直径,点C是圆上异于A,B的任意一点,PA⊥平面ABC,AF⊥PC于F.求证:AF⊥平面PBC.C

解题反思:

(六)小结反思

1.面面垂直的性质定理

2..空间垂直关系有那些?如何实现空间垂直关系的相互转化?请指出下图中空间垂直关系转化的定理依据?

(七)家庭作业《同步导学》

第三篇:面面垂直性质定理

数学学案

【学习目标】

1.掌握平面与平面垂直的性质定理;平面与平面垂直的性质编辑:

2.能运用平面垂直的性质定理解决一些简单问题;

3.了解平面与平面垂直的判定定理和性质定理间的相互联系。

【学习重点】掌握平面与平面垂直的性质定理并能运用解决一些简单问题

【数学思想】转化的思想

【知识回顾】

1.两个平面互相垂直的定义:

2.两个平面互相垂直的判定定理:符号表示:

【新知导航】

线面平行面面平行线面垂直面面垂直(面面垂直判定定理)

面面垂直线面垂直 ?

【探究1】黑板所在平面与地面垂直,你能否在黑板上画几条与地面垂直的直线?你为什么这么画?你能归纳总结出这些直线有什么共同点吗?

【探究2】下图正方体中,平面ADD1A1与平面ABCD垂直,直线A1A垂直于其交线AD,平面ADD1A1内的直线A1A与平面ABCD垂直吗?

A1B

1探究结论:()

【新知学习】两个平面互相垂直的性质定理

定理的证明:(由文字语言转化为符号语言证明)已知: 求证: 证明:

【探究3】过平面外一点作已知平面的垂线,你能做出几条来?

探究结论()【尝试练习1】如图,已知平面,,,直线a满足a,a,试判断直线a与平面的位置关系.【尝试练习2】如图,已知平面平面,平面平面,a,求证:

a.【课堂小结】

1、请归纳一下本节课你学习了什么性质定理,其内容各是什么?

2、类比两个性质定理,你发现它们之间有何联系?

【达标检测】

1、下列命题中,正确的是()

A、过平面外一点,可作无数条直线和这个平面垂直 B、过一点有且仅有一个平面和一条定直线垂直 C、若a,b异面,过a一定可作一个平面与b垂直

D、a,b异面,过不在a,b上的点M,一定可以作一个平面和a,b都垂直.2、已知直线l,m,平面,,且l,m,给出下列命题:(1)//lm(2)lm//(3)l//m(4)l//m其中正确的命题是

BCAB

3、在三棱锥P—ABC中,平面PAB平面PBC,求证:PA面ABC,4、如图,在正方体ABCDA1B1C1D1中,M是AB上的一点,N是A1C的中点,MN面A1DC,求证:(1)MN//AD1

(2)M是AB的中点

第四篇:面面垂直判定性质教学案

高二数学导学案面面垂直的判定及性质2012-9-2

5预习案:

目标(1)了解“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;理解面面垂直的判定定理及性质定理。

(一)阅读课本P67-69,回答下列问题:

1、半平面、二面角是怎么定义的?请你试着画出一个二面角,并给出记法。

__________________________________________

2、我们应该怎样刻画二面角的大小?___________平面角是怎么定义的?__________________二面角的平面角在哪个范围内?______________

3、直二面角是怎么定义的?__________________________________

4、如图,∠AOB为直二面角α-l-β 的平面角,那么直线AO与平面α的位置关系如何?______

5、在二面角α-l-β中,直线OA在平面β内,如果OA⊥α,那么二面角α-l-β是直二面角吗? lB

猜想:如果一个平面内有一条直线垂直于另一个平面,那么这两个平面互相垂直吗?_____

【归纳】

平面与平面垂直的判定定理:_____________________________________________________ 符号表示:______________________________

(二)阅读课本P71-72,回答下列问题:

1、若α⊥β,那么α内的所有直线都垂直于β吗?

2、两平面互相垂直,分别在这两平面内的两直线是否互相垂直。

3、两平面互相垂直,分别在两平面且互相垂直的两直线一定分别与另一个平面垂直吗?

4、两平面互相垂直,过一平面内的任一点在该平面内作交线的垂线,则此直线必垂直于另一个平面吗?

平面与平面垂直的性质定理:_____________________________________________

符号语言:_____________________________________

(三)预习自测:

1、判断下列命题是否正确?

(1)一个二面角的平面角只有一个()

(2)二面角的棱必垂直于这个二面角的平面角所在的平面()

(3)若,则平面内所有直线都垂直于平面。()

(4)若,则平面内一定存在直线平行于平面。()

(5)若平面不垂直于平面,则平面内一定不存在直线垂直于平面。()

(6)若,,=l,则l。()

课堂案:

目标:1)使学生正确理解 “二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及性质定理,并会其简单的应用; 【典型例题】

1、如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.强化练习:如图所示,四边形ABCD是平行四边形,直线PB⊥平面ABCD,E是PD的中点,求证:平面EAC⊥平面ABCD.

例2如图,在四面体PABC中,PA面ABC,强化练习2:已知:α⊥γ,β⊥γ,α∩β=a。求证:a⊥γ.P

面PAB面PBC,求证:BCAB.BC

例3如图,在四棱锥P – ABCD中,底面是边长为a的正方形,侧棱

(1)求证PB面ABCD(2)求证:平面PAC平面PBD

强化练习3:如图所示,直三棱柱ABC—A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1、AB的中点.C1 A

1(1)求证:C1M⊥平面A1ABB1;

(2)求证:A1B⊥AM;B1

(3)求证:平面AMC1∥平面NB1C;巩固案

1、已知l,则过l与垂直的平面()

A、有1个B、有两个C、有无数个D、不存在2、设m、n是两条不同的直线, α、β、γ是三个不同的平面, 给出下列四个命题:①若m⊥α, n //α, 则m⊥n;②若α//β, β//γ, m⊥α, 则m⊥γ;③若m //α, n //α, 则m // n;④若α⊥γ, β⊥γ, 则α//β.其中正确命题的序号是()

A.① ②B.② ③C.③ ④D.① ④

3、设两个平面互相垂直,则()

A.一个平面内的任何一条直线都垂直与另一个平面

B.过交线上一点垂直于一个平面的直线必在另一个平面上 C.过交线上一点垂直于交线的直线,必垂直于另一个平面 D.分别在两个平面上的两条直线互相垂

A N

B

C

4.如图,已知AB⊥平面BCD,BC⊥CD,你能发现哪些平面互相垂直,为什么?

5.在正方体ABCD-A1B1C1D1中, 求证:平面B1AC⊥面B1D1DB6、如图,直三棱柱ABC-A1B1C1,平面A1BC平面A1ABB1 求证:ABBC

A

1B1

C1

A

C

7、如图,,AB,CD,CDAB,CE、EF,FEC90, 求证:平面EFD平面DCE

.8、(选作)如图所示,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD边的中点,(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;

(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.B

E C

A

D

F

C

B

第五篇:面面垂直的性质定理的教学案[定稿]

§2.3.4平面与平面垂直的性质

【学习目的】

1.理解和掌握两个平面垂直的性质定理及其应用;

2.进一步理解线线垂直、线面垂直、面面垂直的相互转化及转化的数学思想.【学习重点】平面与平面垂直的性质定理;

【学习难点】平面与平面垂直的性质定理的应用;

【学习过程】

一、复习回顾:

复习1:面面垂直的定义是什么?

复习2:面面垂直的判定定理是什么?

二、新课探究:

(一)探究:平面与平面垂直的性质

问题1:观察两垂直平面中,一个平面内的直线与另一个平面的有哪些位置关系?

问题2:概括结论:

新知:平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.反思:这个定理实现了什么关系的转化?

(二)概念巩固

练习:已知平面α⊥平面β,α∩ β=l,判断下列命题的正误.(1)平面α内的任意一条直线必垂直于平面β()

(2)垂直于交线l的直线必垂直于平面β()

(3)过平面α内任意一点作交线的垂线,则此垂线必垂直于平面β()

波利亚:从最简单的做起。

三、典型例题讲

例1:如图,已知平面,,,直线a满足a,a,求证:a∥面.例2: 如图,四棱锥P

ABCD的底面是个矩形,AB2,BCPAB是等边三角形,且侧面PAB垂直于底面ABCD.⑴证明:侧面PAB侧面PBC;

⑵求侧棱PC与底面ABCD所成的角.变式练习:如图,已知PA⊥平面ABC,平面PAB⊥平面PBC,求证:BC⊥平面PAB。C

四、总结提升

※ 学习小结

※ 知识拓展

两个平面垂直的性质还有:

⑴如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面; ⑵三个两两垂直的平面,它们的交线也两两垂直.⑶如果两个平面互相垂直,那么经过一个平面内一点且垂直于另外一个平面的直线,必在这个平面内;

你能试着用图形和符号语言描述它们吗?

五、课堂作业

课本73页,A组5

波利亚:从最简单的做起。

下载面面垂直的性质学案1(精选5篇)word格式文档
下载面面垂直的性质学案1(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    面面垂直导学案

    平面与平面垂直课前预习案【课前预习】【预习目标】:(1)理解并掌握平面与平面垂直的概念(2)掌握平面与平面垂直的判断定理和性质定理一、复习回顾(1)线面的位置关系有几种?(2)直线与平......

    面面垂直性质定理及习题(大全)

    面面垂直性质定理及习题《必修2》1.2.4一、 学习目标撰稿:第四组审稿:高二数学组时间:2009-9-81. 理解面面垂直的性质定理2. 会用性质定理解决有关问题3. 线线、线面、面面之间的......

    线面、面面垂直性质测试题

    线面、面面垂直性质练习试题一、选择题1在空间,如果一个角的两边分别与另一个角的两边垂直,那么这两个角的关系是()A.相等B.互补C.相等或互补D.无法确定2下列命题正确的是……......

    面面垂直的性质定理(范文模版)

    线面、面面垂直的性质定理教学目标:1.掌握垂直关系的性质定理,并会应用。2.通过定理的学习,培养和发展空间想象能力、推理论证能力、运用图形语言进行交流的能力、几何直观能......

    线面垂直 ,面面垂直导学案

    1.2.3 空间中的垂直关系第1课时 线面垂直预习案主备人:史红荣【预习目标】1.掌握直线与平面垂直的定义2.掌握直线与平面垂直的判定定理并能灵活应用定理证明直线与平面垂直.【自主......

    2.3.4面面垂直的性质(合集5篇)

    山东省新泰市第二中学高一数学组主编人:李东 李健2.3.4平面与平面垂直的性质学习目标:1、 掌握平面与平面垂直的性质定理及其推论;2、 理解平面与平面垂直的判定定理与性质定理......

    面面垂直的性质定理0

    学习目标:1.探究平面与平面垂直的性质定理2.面面垂直的性质定理的应用3.通过平面与平面垂直的性质定理的学习,培养转化思想.重点难点:重点:平面与平面垂直的性质定理.难点:平......

    面面垂直的判定和性质教案(精选)

    两平面垂直 布吉高中 庄 素 娟教案:1.2.4平面与平面垂直一、 教学目标1. 知识目标:使学生理解和掌握面面垂直的定义、判定定理及性质定理,并能应用定理解决相关问题2.能力目标:加......