第一篇:面面垂直判定与性质循序渐进式练习
面面垂直判定与性质循序渐进式练习
二、面面垂直与线面垂直:
1、条件的正确填写:
(1)由线面垂直证明面面垂直的训练:
①如左图:∵PC⊥平面ABCD,∴平面PCD⊥平面ABCD
②如左图:∵CD⊥平面PCB,∴平面ABCD⊥平面PCB
③如左图:∵⊥平面PCD,∴平面PCB⊥平面PCD
(2)由面面垂直证明线面垂直的训练:
①如左图:由3个条件:平面BAP⊥平面PAD,和可证:BA⊥平面PDA
②如左图:由3个条件:平面PAC⊥平面ABCD,和可证:BD⊥平面PAC
③如左图:由3个条件:,PA⊥AB
和可证:PA⊥平面ABCD
④如上图:∵,和
∴CD⊥平面PAD2、简单的证明题:
(1)底面是正方形的四棱锥P-ABCD中,(2)底面是正方形的四棱锥P-ABCD中,PC⊥CD,求证:平面PCD⊥平面PCB平面PAC⊥平面ABCD,求证:BD⊥PC3、中档的证明题:
(1)如图,在正方体ABCD-EFGH中(2)如图:VA=VB=VC,∠ACB=90°,求证:平面BED⊥平面AEGC∠CVA=∠CVB=60°
求证:平面ACB⊥平面AVB
(3)如图,AB为圆O的直径,C为圆O上的一点,PA⊥平面ABC,AE⊥PB,AF⊥PC
求证:PB⊥平面
AEF
第二篇:线面垂直判定与性质循序渐进式练习
线面垂直判定与性质循序渐进式练习
一、线线垂直与线面垂直:
1、条件的正确填写:
(1)由线线垂直证明线面垂直的训练:
①如左图:由5个条件:可证:AB⊥平面PDC
②如左图:由5个条件:可证:AP⊥平面PBC
③如左图:由5个条件:可证:BC⊥平面PAC
(2)由线线垂直证明线面垂直的训练:2个条件
①如左图:∵PA⊥平面ABC,∴PA⊥BC
②如左图:∵,PC平面PAC ∴BC⊥PC
③如左图:∵PE⊥平面,∴PE⊥AF
④如左图:∵⊥平面PAB,∴EF⊥AB
⑤如左图:∵⊥平面,∴AF⊥BC2、简单的证明题:
(1)已知:如图,PA⊥AB,PA⊥AC,(2)已知:如图,PA⊥AB,BC⊥平面PAC,求证:PA⊥BC。求证:PA⊥平面ABC。、中等的证明题:
(1)如图,在三棱锥VABC中,VAVC,ABBC,求证:(2方体中,)正O为底面ABCD中心,.VBAC求证:BD平面AEGC
(3)AB是圆O的直径,PA⊥AC, PA⊥AB,(4)AD⊥BD, AD⊥DC,AD=BD=CD,∠BAC=60°
求证: BC⊥平面PAC求证: BD⊥平面ADC
第三篇:面面垂直的判定和性质教案(精选)
两平面垂直 布吉高中 庄 素 娟
教案:1.2.4平面与平面垂直
一、教学目标
1. 知识目标:使学生理解和掌握面面垂直的定义、判定定理及性质定理,并能应用定理解决相关问题
2.能力目标:加深学生对化归思想方法的理解及应用.
3. 情感目标:通过实物模型及计算机软件演示来陶冶学生的数学情操.在数学与实际问题密切联系中,激发学生的学习欲望和探究精神,在课堂学习中,学生既有独立思考,又有合作讨论,有意识、有目的地培养学生自主学习的良好习惯以及协作共进的团对精神。
二、教学重点、难点
重点:两个平面垂直的判定定理; 难点:两个平面垂直的性质定理及应用
三、教学方法与教学手段
教学方法:本节课采用“问题探究式”教学法,通过观察、归纳、启发探究,运用现代化多媒体教学手段,进行教学活动..
教学手段:采用多媒体辅助教学,增强直观性,增大教学容量,提高效率。
四、教学过程
第四篇:线线垂直、线面垂直、面面垂直的判定与性质
清新县滨江中学2012届高三文科数学第一轮复习资料2011-12-
31空间中的垂直关系
1.判断线线垂直的方法:所成的角是,两直线垂直;
垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的,那么它也和这条斜线垂直。三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直
PO,O推理模式: PAAaAO。
a,aAP
2.线面垂直
定义:如果一条直线l和一个平面α相交,并且和平面α内的任意一条直线都,我们就说直线l和平面αl叫做平面的垂线,平面α叫做直线l的垂面,直线与平面的交点叫做垂足。直线l与平面α垂直记作:。
直线与平面垂直的判定定理:如果,那么这条直线垂直于这个平面。
推理模式:
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线。
3.面面垂直
两个平面垂直的定义:相交成的两个平面叫做互相垂直的平面。两平面垂直的判定定理:(线面垂直面面垂直)
如果,那么这两个平面互相垂直。
推理模式:
两平面垂直的性质定理:(面面垂直线面垂直)
若两个平面互相垂直,那么在一个平面内垂直于它们的的直线垂直于另一个平面。
课后练习
1、(2008上海,13)给定空间中的直线l及平面,条件“直线l与平面内无数条直线都垂直”是“直线l与平面垂直”的()条件
A.充要B.充分非必要C.必要非充分D.既非充分又非必要
2、已知正方体ABCD-A1B1C1D1中,直线l是异面直线AB1 和A1D的公垂线,则直线l与直线BD1的关系为()
A.l⊥BD1B.l∥BD1C.l与BD1 相交D.不确定
1、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点
(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE.2、如图,棱柱ABCA1B1C1BCC1B1的侧面是菱形,B1CA1B
证明:平面AB1C平面A1BC13、如图,四棱锥PABCD中,底面ABCD为平行四边形。DAB60,AB2AD,PD 底面ABCD,证
明:PABD4、如图所示,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M
面面垂直的性质
1、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.S
A C2、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD 证明:AB⊥平面VAD
V D
C B3、如图,平行四边形ABCD中,DAB60,AB2,AD4将
沿BD折起到EBD的位置,使平面EDB平面ABD 求证:ABDE4、如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD;
(2)平面BEF⊥平面PAD
(第4题
图)
CBD
5.如图,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =2,D 是A1B1 中点.(1)求证C1D ⊥平面A1B ;(2)当点F 在BB1 上什么位置时,会使得AB1 ⊥平面C1DF ?并证明你的结论
第五篇:面面垂直判定性质教学案
高二数学导学案面面垂直的判定及性质2012-9-2
5预习案:
目标(1)了解“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;理解面面垂直的判定定理及性质定理。
(一)阅读课本P67-69,回答下列问题:
1、半平面、二面角是怎么定义的?请你试着画出一个二面角,并给出记法。
__________________________________________
2、我们应该怎样刻画二面角的大小?___________平面角是怎么定义的?__________________二面角的平面角在哪个范围内?______________
3、直二面角是怎么定义的?__________________________________
4、如图,∠AOB为直二面角α-l-β 的平面角,那么直线AO与平面α的位置关系如何?______
5、在二面角α-l-β中,直线OA在平面β内,如果OA⊥α,那么二面角α-l-β是直二面角吗? lB
猜想:如果一个平面内有一条直线垂直于另一个平面,那么这两个平面互相垂直吗?_____
【归纳】
平面与平面垂直的判定定理:_____________________________________________________ 符号表示:______________________________
(二)阅读课本P71-72,回答下列问题:
1、若α⊥β,那么α内的所有直线都垂直于β吗?
2、两平面互相垂直,分别在这两平面内的两直线是否互相垂直。
3、两平面互相垂直,分别在两平面且互相垂直的两直线一定分别与另一个平面垂直吗?
4、两平面互相垂直,过一平面内的任一点在该平面内作交线的垂线,则此直线必垂直于另一个平面吗?
平面与平面垂直的性质定理:_____________________________________________
符号语言:_____________________________________
(三)预习自测:
1、判断下列命题是否正确?
(1)一个二面角的平面角只有一个()
(2)二面角的棱必垂直于这个二面角的平面角所在的平面()
(3)若,则平面内所有直线都垂直于平面。()
(4)若,则平面内一定存在直线平行于平面。()
(5)若平面不垂直于平面,则平面内一定不存在直线垂直于平面。()
(6)若,,=l,则l。()
课堂案:
目标:1)使学生正确理解 “二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及性质定理,并会其简单的应用; 【典型例题】
例
1、如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.强化练习:如图所示,四边形ABCD是平行四边形,直线PB⊥平面ABCD,E是PD的中点,求证:平面EAC⊥平面ABCD.
例2如图,在四面体PABC中,PA面ABC,强化练习2:已知:α⊥γ,β⊥γ,α∩β=a。求证:a⊥γ.P
面PAB面PBC,求证:BCAB.BC
例3如图,在四棱锥P – ABCD中,底面是边长为a的正方形,侧棱
(1)求证PB面ABCD(2)求证:平面PAC平面PBD
强化练习3:如图所示,直三棱柱ABC—A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1、AB的中点.C1 A
1(1)求证:C1M⊥平面A1ABB1;
(2)求证:A1B⊥AM;B1
(3)求证:平面AMC1∥平面NB1C;巩固案
1、已知l,则过l与垂直的平面()
A、有1个B、有两个C、有无数个D、不存在2、设m、n是两条不同的直线, α、β、γ是三个不同的平面, 给出下列四个命题:①若m⊥α, n //α, 则m⊥n;②若α//β, β//γ, m⊥α, 则m⊥γ;③若m //α, n //α, 则m // n;④若α⊥γ, β⊥γ, 则α//β.其中正确命题的序号是()
A.① ②B.② ③C.③ ④D.① ④
3、设两个平面互相垂直,则()
A.一个平面内的任何一条直线都垂直与另一个平面
B.过交线上一点垂直于一个平面的直线必在另一个平面上 C.过交线上一点垂直于交线的直线,必垂直于另一个平面 D.分别在两个平面上的两条直线互相垂
A N
B
C
4.如图,已知AB⊥平面BCD,BC⊥CD,你能发现哪些平面互相垂直,为什么?
5.在正方体ABCD-A1B1C1D1中, 求证:平面B1AC⊥面B1D1DB6、如图,直三棱柱ABC-A1B1C1,平面A1BC平面A1ABB1 求证:ABBC
A
1B1
C1
A
C
7、如图,,AB,CD,CDAB,CE、EF,FEC90, 求证:平面EFD平面DCE
.8、(选作)如图所示,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD边的中点,(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.B
E C
A
D
F
C
B