线面垂直习题精选精讲129

时间:2019-05-12 17:22:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《线面垂直习题精选精讲129》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《线面垂直习题精选精讲129》。

第一篇:线面垂直习题精选精讲129

习题精选精讲

线面垂直的证明

M为CC1 的中点,AC交BD于点O,求证:AO如图1,在正方体ABCDA平面MBD.

1B1C1D1中,12如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.

3如图1所示,ABCD为正方形,SA⊥平面ABCD,过

A且垂直于SC的平面分别交SB,SC,SD于

E,F,G.求证:AESB,AGSD.如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.

习题精选精讲

5如图3,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

6.空间四边形ABCD中,若AB⊥CD,BC⊥AD,求证:AC⊥BD

D

7.证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D

A

C

8.如图,PA平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:

MNAB

C

.9如图在ΔABC中,AD⊥BC,ED=2AE,过E作FG∥BC,且将ΔAFG沿FG折起,使∠A'ED=60°,求证:A'E⊥平面A'BC

分析:

AC

D

GEAB

F10如图, 在空间四边形SABC中, SA平面ABC, ABC = 90, ANSB于N, AMSC

于M。求证: ①ANBC;②SC平面ANM

A.aB

.aC.aD.a

3.三个平面两两垂直,它们的三条交线交于一点O,P到三个面的距离分别是3,4,5,则OP的长为()

A.5B.52C.35D.

24.在两个互相垂直的平面的交线上,有两点A、B,AC和BD分别是这两个平面内垂直于AB的线段,AC=6,AB=8,BD=24,则C、D间距离为_____.

5.设两个平面α、β,直线l,下列三个条件:①l⊥α,②l∥β,③ α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确的命题个数为()

A.3B.2C.1D.0 【典型例题精讲】

[例1] 如图9—39,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.

图9—39

[例2]如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.

习题精选精讲

图9—40

[例3]如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点.

图9—

42(1)求证:平面MNF⊥平面ENF.(2)求二面角M—EF—N的平面角的正切值.

[例4]在长方体ABCD—A1B1C1D1中,底面ABCD是边长为平面D1EF⊥平面AB1C.

2的正方形,侧棱长为3,E、F分别是AB1、CB1的中点,求证:

例题

1.棱长都是2的直平行六面体ABCD—A1B1C1D1中,∠BAD=60°,则对角线A1C与侧面DCC1D1所成角的正弦值为_____.

2.如图9—44,已知斜三棱柱ABC—A1B1C1的各棱长均为2,侧棱与底面成3的角,侧面ABB1A1垂直于底面,图9—4

4(1)证明:B1C⊥C1A.(2)求四棱锥B—ACC1A1的体积.

3.如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.

习题精选精讲

图9—4

5(1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离.(1)【证明】PA⊥平面ABCD,AD是PD在底面上的射影,4.已知直四棱柱ABCD—A1B1C1D1的底面是菱形,对角线AC=2,BD=

23,E、F分别为棱CC1、BB1上的点,且满足EC=BC=2FB.

图9—46

(1)求证:平面AEF⊥平面A1ACC1;(2)求异面直线EF、A1C1所成角的余弦值. .

【解题指导】在证明两平面垂直时,一般方法是先从现有的直线中寻找平面的垂线;若没有这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论根据并且要有利于证明,不能随意添加.在有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直.解决这类问题的关键是熟练掌握“线线垂直”“线面垂直”“面面垂直”间的转化条件和转化应用.

【拓展练习】

一、备选题

1.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.(1)求证:平面PAC⊥平面PBC;

(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.

第二篇:线面垂直性质习题及答案

直线与平面垂直的性质练习

一.选择题

C是⊙O上的任一点,求证:PC⊥BC.

1.直线平面,直线m内。则有()

Al和m异面Bl和m相交Cl∥mDl不平行m 2 直线a∥平面,直线ba, 则b与的关系是()A.b∥B、b 与相交C、b D、不能确定

3.直线b直线a,直线b平面,则直线a与平面的关系是()A.a∥BaD a 或a∥Da

A

4.已知PH⊥Rt△HEF所在的平面,且HE⊥EF,连结PE、PF,则图中直角三角形的个数是()F

A1B 2H

C3D

45.在下列四个正方形中,能得到AB⊥CD的是()

(A)

(B)(C)(D)

6.已知直线a、b和平面M、N,且aM,那么()(A)b∥Mb⊥a(B)b⊥ab∥M(C)N⊥Ma∥N(D)aNMN

二.填空题。

7.在RtABC中,D是斜边AB的中点,AC=6cm,BC=8cm,EC平面ABC,EC=12cm,则

EA=cm ;EB=cm ; ED=cm。

8.已知正△ABC的边长为2cm,PA⊥平面ABC,A 为垂足,且PA=2cm,那么P到BC的距离为。

9.设棱长为1的正方体ABCD-A/B/C/D/中,M、N分别为AA/和BB/的中点,则直线CM和D/N所成的角的余弦值为 10.在菱形ABCD中,已知∠BAD=600,AB=10cm,PA⊥菱形ABCD所在平面,且PA=5cm,则P到BD的距离为,P到DC的距离为。11.如图3,已知PA⊥平面ABC,AB是⊙O的直径,12.设A在平面BCD内的射影是直角三角形BCD的斜边BD的中点O,ACBC1,CD

求(1)AC与平面BCD所成角的大小;(2)二面角ABCD的大小;(3)异面直线AB和CD的大小.

参考答案

1~6DDCBAAEA=;

EB= ;9.1

10.10cm , 10cm

11.证明:∵PA⊥平面ABC, ∴PA⊥BC

∵AB是⊙O的直径 ∴AC⊥BC

∴BC⊥平面ACP ∴PC⊥BC 12.解:(1)∵AO面BCD,∴AOCO,∴ACO为AC与面BCD所成角.

∵BC1,CD

∴BD,∴CO

12BD

∴cosACO,∴ACO6,即AC与平面BCD所成角的大小为

.(2)取BC中点E,连接OE,AE,∴OE//CD.∵CDBC,A

F

B

OD

E

C。

ED= 13 cm

∴OEBC.又∵AO面BCD,∴AEBC,∴AEO为二面角ABCD的平面角.

11又∵OECDAO,∵AOOE,22

∴tanAEOAOAEOarctan 

OE22

. 2即二面角ABC

D的大小为arctan

(3)取AC的中点E,连接EF,OF,则EF//AB,OE//CD,∴OE与EF所成的锐角或直角即为异面直线AB和CD所成角. 易求得OEF45,即异面直线AB和CD所成角为45.

第三篇:专题线面垂直

专题九: 线面垂直的证明

题型一:共面垂直(实际上是平面内的两条直线的垂直)例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE

1题型二:线面垂直证明(利用线面垂直的判断定理)

例2:在正方体ABCDAO为底面ABCD的中心,E为CC1,1BC11D1中,平面BDE 求证:AO1

题型三:异面垂直(利用线面垂直的性质来证明,高考中的意图)例3.在正四面体ABCD中,求证ACBD

P N D C A M B 练:如图,PA平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MNAB

题型四:面面垂直的证明(本质上是证明线面垂直)

例4.已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号

是.①平面PAB平面PBC ②平面PAB平面PAD ③平面PAB平面PCD

例5.如图,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

第四篇:线面垂直习题精选精讲

线面垂直的证明中的找线技巧

 通过计算,运用勾股定理寻求线线垂直

M为CC1 的中点,AC交BD于点O,求证:AO1如图1,在正方体ABCDA平面MBD. 1BC11D1中,1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,∴DB⊥平面A平面A1ACC1 ∴DB⊥AO1ACC1,而AO1.1

2设正方体棱长为a,则A1O2AM在Rt△AC中,M111323a,MO2a2. 2492222a.∵AO,∴AOOM. ∵MOAM111

4OM∩DB=O,∴ AO1⊥平面MBD.

评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.

利用面面垂直寻求线面垂直

2如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求

证:BC⊥平面PAC.

证明:在平面PAC内作AD⊥PC交PC于D.

因为平面PAC⊥平面PBC,且两平面交于PC,AD平面PAC,且AD⊥PC,由面面垂直的性质,得AD⊥平面PBC.又∵BC

平面PBC,∴AD⊥BC.

∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC.

∵AD∩PA=A,∴BC⊥平面PAC.

评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一

条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图

形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直线

面垂直线线垂直.

判定

性质判定性质线面垂直面一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直

面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.

3如图1所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.求证:AESB,AGSD.

证明:∵SA平面ABCD,∴SABC.∵ABBC,∴BC平面SAB.又∵AE平面SAB,∴BCAE.∵SC平面AEFG,∴SCAE.∴AE平面SBC.∴AESB.同理可证AGSD.

评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.

证明:取AB的中点F,连结CF,DF.

∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.

∵CD平面CDF,∴CDAB.

又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD.

评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.

5如图3,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

证明:∵AB是圆O的直径,∴ACBC.

∵PA平面ABC,BC平面ABC,∴PABC.∴BC平面APC.

∵BC平面PBC,∴平面APC⊥平面PBC.

∵AE⊥PC,平面APC∩平面PBC=PC,∴AE⊥平面PBC.

∵AE平面AEF,∴平面AEF⊥平面PBC.

评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.

10如图, 在空间四边形SABC中, SA平面ABC, ABC = 90, ANSB于N, AMSC于M。求证: ①ANBC;②SC平面ANM 分析:

①要证ANBC, 转证, BC平面SAB。

②要证SC平面ANM, 转证, SC垂直于平面ANM内的两条相交直线, 即证SCAM, SCAN。要证SCAN, 转证AN平面SBC, 就可以了。

证明:

①∵SA平面ABC

∴SABC

又∵BCAB, 且ABSA = A

∴BC平面SAB

∵AN平面SAB

∴ANBC

②∵ANBC, ANSB, 且SBBC = B

∴AN平面SBC

∵SCC平面SBC

∴ANSC

又∵AMSC, 且AMAN = A

∴SC平面ANM

[例2]如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.

图9—40

(1)求证:AB⊥BC;

(1)【证明】作AH⊥SB于H,∵平面SAB⊥平面SBC.平面SAB∩平面SBC=SB,∴AH⊥平面SBC,又SA⊥平面ABC,∴SA⊥BC,而SA在平面SBC上的射影为SB,∴BC⊥SB,又SA∩SB=S,∴BC⊥平面SAB.∴BC⊥AB.

[例3]如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.

(1)求平面PCD与平面ABCD所成的二面角的大小;(2)求证:平面MND⊥平面PCD

(1)【解】PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,故∠PDA为平面ABCD与平面PCD所成二面角的平面角,在Rt△PAD中,PA=AD,∴∠PDA=45°

(2)【证明】取PD中点E,连结EN,EA,则

EN AM,∴四边形ENMA是平行四边形,∴EA∥MN.

∵AE⊥PD,AE⊥CD,∴AE⊥平面PCD,从而MN⊥平面PCD,∵MN平面MND,∴平面MND⊥平面PCD.

【注】 证明面面垂直通常是先证明线面垂直,本题中要证MN⊥平面PCD较困难,转化为证明AE⊥平面PCD就较简单了.另外,在本题中,当AB的长度变化时,可求异面直线PC与AD所成角的范围.

[例4]如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点.

2CD 图9—

42(1)求证:平面MNF⊥平面ENF.(2)求二面角M—EF—N的平面角的正切值.

(1)【证明】∵M、N、E是中点,∴EB1B1NNC1C1M∴ENB1MNC145

∴MNE90即MN⊥EN,又NF⊥平面A1C1,MN平面A1C1∴MN⊥NF,从而MN⊥平面ENF.∵MN 平面MNF,∴平面MNF⊥平面ENF.

(2)【解】过N作NH⊥EF于H,连结MH.∵MN⊥平面ENF,NH为MH在平面ENF内的射影,2

3∴由三垂线定理得MH⊥EF,∴∠MHN是二面角M—EF—N的平面角.在Rt△MNH中,求得MN=2a,NH=3a,MN662,即二面角M—EF—N的平面角的正切值为2. ∴tan∠MHN=NH

4.如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.

图9—4

5(1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离.

(1)【证明】PA⊥平面ABCD,AD是PD在底面上的射影,又∵四边形ABCD为矩形,∴CD⊥AD,∴CD⊥PD,∵AD∩PD=D∴CD⊥面PAD,∴∠PDA为二面角P—CD—B的平面角,∵PA=PB=AD,PA⊥AD∴∠PDA=45°,取Rt△PAD斜边PD的中点F,则AF⊥PD,∵AF 面PAD∴CD⊥AF,又PD∩CD=D∴AF⊥平面PCD,取PC的中点G,连GF、AG、EG,则

GF 12CD又

AE 12CD,∴

GF AE∴四边形AGEF为平行四边形∴AF∥EG,∴EG⊥平面PDC又EG 平面PEC,∴平面PEC⊥平面PCD.

(2)【解】由(1)知AF∥平面PEC,平面PCD⊥平面PEC,过F作FH⊥PC于H,则FH⊥平面PEC

∴FH为F到平面PEC的距离,即为A到平面PEC的距离.在△PFH与 △PCD中,∠P为公共角,FHPFPC,设AD=2,∴PF=2,而∠FHP=∠CDP=90°,∴△PFH∽△PCD.∴CD

PC=PDCD423,2

226623∴A到平面PEC的距离为3. ∴FH=2

【拓展练习】

一、备选题

1.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.

(1)求证:平面PAC⊥平面PBC;

(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.

(1)【证明】∵C是AB为直径的圆O的圆周上一点,AB是圆O的直径

∴BC⊥AC;

又PA⊥平面ABC,BC平面ABC,∴BC⊥PA,从而BC⊥平面PAC.

∵BC 平面PBC,∴平面PAC⊥平面PBC.

(2)【解】平面PAC⊥平面ABCD;平面PAC⊥平面PBC;平面PAD⊥平面PBD;平面PAB⊥平面ABCD;平面PAD⊥平面ABCD.

2.ABC—A′B′C′是正三棱柱,底面边长为a,D,E分别是BB′,CC′上的一点,BD=2a,EC=a.

(1)求证:平面ADE⊥平面ACC′A′;

(2)求截面△ADE的面积.

(1)【证明】分别取A′C′、AC的中点M、N,连结MN,则MN∥A′A∥B′B,∴B′、M、N、B共面,∵M为A′C′中点,B′C′=B′A′,∴B′M⊥A′C′,又B′M⊥AA′且AA′∩A′C′=A′

∴B′M⊥平面A′ACC′.

设MN交AE于P,a

∵CE=AC,∴PN=NA=2.

又DB=2a,∴PN=BD.

∵PN∥BD,∴PNBD是矩形,于是PD∥BN,BN∥B′M,∴PD∥B′M.

∵B′M⊥平面ACC′A′,∴PD⊥平面ACC′A′,而PD平面ADE,∴平面ADE⊥平面ACC′A′.

(2)【解】∵PD⊥平面ACC′A′,∴PD⊥AE,而PD=B′M=2a,AE=2a.

∴S△ADE=2×AE×PD 13622aaa24=2×.

第五篇:线面垂直高考题

高考真题演练:

(2012天津文数).(本小题满分13分)

如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2.(I)求异面直线PA与BC所成角的正切值;

(II)证明平面PDC⊥平面ABCD;

(III)求直线PB与平面ABCD所成角的正弦值。

(2012天津理数)(本小题满分13分)P如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面

直线BE与CD所成的角为30°,求AE的长.C

D

(2010年安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF,BFC90,BF=FC,H为BC的中点.(I)求证:FH//平面EDB;

(II)求证:AC⊥平面EDB;

(III)求二面角B—DE—C的大小.(2012上海理数)如图,在四棱锥P-ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,PA=2.求:

E

(1)三角形PCD的面积;(6分)(2)异面直线BC与AE所成的角的大小.(6分)

B

(2012山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求证:BD⊥平面AED;

(Ⅱ)求二面角F-BD-C的余弦值。

(2012年北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,(I)求证:A1C⊥平面BCDE;

(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;

(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

(2012辽宁)如图,直三棱柱ABCABC,BAC90,[来源:学科网]

///

ABACAA/,点M,N分别为A/B和B/C/的中点。

(Ⅰ)证明:MN∥平面AACC;

(Ⅱ)若二面角AMNC为直二面角,求的值。

(2012江苏)如图,在直三棱柱ABCA1B1C1中,A1B1ACCC1E分别是棱BC,11,D,上的点(点D 不同于点C),且ADDE,F为B1C1的中点. A1求证:(1)平面ADE平面BCC1B1;

(2)直线A1F//平面ADE.

(2012湖南),在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。(Ⅰ)证明:CD⊥平面PAE;

(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

B A

D

/

/

/

C1

E

(2012湖北),∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A-BCD的体积最大;

(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小

(2012广东),在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。

(1)证明:BD⊥平面PAC;

(2)若PH=1,AD=2,求二面角B-PC-A的正切值;

(2012年福建)在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点。(Ⅰ)求证:B1E⊥AD1;

(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由。(Ⅲ)若二面角A-B1EA1的大小为30°,求AB的长。

(2012大纲全国卷)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;

(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小。

(2012安徽)平面图形ABB1AC11C如图4所示,其中BB1C1C是矩形,BC2,BB1

4,ABAC,A1B1A1C1BC和B1C1折叠,使ABC

与A1B1C1所在平面都与平面BB1C1C垂直,再分别连接AA1,BA1,CA1,得到如图2所示的空间图形,对此空间图形解答下列问题。

(Ⅰ)证明:AA1BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角ABCA1的余弦值。

下载线面垂直习题精选精讲129word格式文档
下载线面垂直习题精选精讲129.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线面垂直教案

    2012第一轮复习数学教案线面垂直、面面垂直教学目标:掌握线面垂直、面面垂直的证明方法,并能熟练解决相应问题. (一) 主要知识及主要方法:【思考与分析】要证明线面垂直,我们可以......

    线面垂直教案

    课题:直线与平面垂直 授课教师:伍良云 【教学目标】知识与技能 1、掌握直线与平面垂直的定义及判定定理. 2、使学生掌握判定直线与平面垂直的方法. 过程与方法 培养学生的......

    线面垂直练习题

    例1如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.变式训练已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.例2如图9,在......

    线线垂直、线面垂直、面面垂直的习题及答案

    线线垂直、线面垂直、面面垂直部分习及答案 1.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形. 求证:BC⊥AD;2如图,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC. (1)求证:AB......

    线面垂直教学设计

    教案课题:直线与平面垂直的判定(一)【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;过程与方法目标:通过对定义......

    线面垂直的判定范文合集

    漯河高中2013—2014高一数学必修二导学案2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质编制人:魏艳丽方玉辉审核人:高一数学组时间:2013.12.03【课前预习】一、预习导学......

    线面垂直面面垂直专题练习

    线面垂直专题练习1.设M表示平面,a、b表示直线,给出下列四个命题:aMa//baMa//M①②③b∥M④M. bMa//bb⊥abaMbMab其中正确的命题是A.①②B.①②③C.②③④D.①②④2.如图所示,......

    线面垂直测试题1

    戴氏教育簇桥校区线面垂直测试题授课老师:唐老师1如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:A1O平面MBD.证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,∴DB⊥平面A1ACC......