第一篇:几种废弃物在混凝土材料中应用的探讨
几种废弃物在混凝土材料中应用的探讨
【中文摘要】众所周知,粉煤灰、废弃橡胶、废弃陶瓷是几种常见的废弃物,且具有一定的污染性。为了实现各废弃物在混凝土材料中的循环利用,解决废料难处理、造成环境污染以及当前混凝土原材料大量短缺等问题,本文列举了几种常见废弃物在混凝土中的应用,总结了各废弃物自身优缺点以及改善各废弃物掺合料自身缺点的有效办法,从而实现废物再利用的目标。
【关键词】混凝土、粉煤灰、废弃橡胶、废弃陶瓷、配合比
发展循环经济是缓解资源约束矛盾的根本出路。随着经济的快速增长和人口的增加,资源不足的矛盾越来越突出。各种废弃物是污染环境的根本杀手,如果能把这些废弃物都能充分利用起来,对社会经济的发展经起到积极的作用;不仅能解决肥料难处理的问题,减少环境污染,实现人类社会的可持续发展,而且解决了原材料短缺和价格等问题,降低了生产成本,并直接节能、环保服务。
1、粉煤灰混凝土的应用
粉煤灰是燃煤电厂烟囱中收集的灰尘,在从高温到温度急剧下降的过程中形成了大量表面光滑的球状玻璃体,其颗粒比水泥细,比表面积很大,因此具有很大的活性。主要化学成分是无定形的
第二篇:粉煤灰在混凝土中的应用
三、粉煤灰在混凝土中的作用
了解混凝土的微结构的特性及其对性能的影响后,就可以更好地认识粉煤灰在混凝土中的作用。粉煤灰的主要作用可以包括以下几方面:
1)填充骨料颗粒的空隙并包裹它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实,在水泥用量较少的混凝土里尤其显著。
2)对水泥颗粒起物理分散作用,使其分布得更均匀。当混凝土水胶比较低时,水化缓慢的粉煤灰可以提供水分,使水泥水化得更充分。
3)粉煤灰和富集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,不仅生成具有胶凝性质的产物(与水泥中硅酸盐的水化产物相同),而且加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用。
4)粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温度裂缝十分有利。
下面对粉煤灰在混凝土中的作用及其机理做一些具体地分析。
长期以来,国内外在混凝土中常掺有一定量粉煤灰,但作为水泥的替代材料,绝大多数情况下是以如下三种方式应用的:在早期强度要求很低,长期强度大约在25~35MPa的大体积水工混凝土中,大掺量地替代水泥使用;在结构混凝土里较少量地替代水泥(10~25%);在强度要求很低的回填或道路基层里大量掺用。
对于粉煤灰的作用机理和应用技术,多年来进行了大量的研究工作,取得了不少进展,这些进展对粉煤灰在混凝土中的应用起了一定的推动作用。如掺用的方法从等量替代水泥,发展到超掺法、代砂法以及与化学外加剂同时使用的双掺法。对于粉煤灰的作用机理,从主要是火山灰质材料特性的作用(消耗了水泥水化时生成薄弱的,而且往往富集在过渡区的氢氧化钙片状结晶,由于水化缓慢,只在后期才生成少量C-S-H凝胶,填充于水泥水化生成物的间隙,使其更加密实),逐步发展到分析它还具有形态效应、填充效应和微集料效应等。但无论哪一方面的研究成果,似乎都改变不了这样一个事实:在混凝土中掺粉煤灰要降低混凝土的强度,包括28天龄期以后一段时间里的强度,其他性能当然也相应受到不同程度的影响,而且这些影响要随着掺量的增大而加剧。这个事实始终禁锢着粉煤灰在混凝土中,尤其是结构混凝土中的掺量,而且似乎形成了这样一种成见:掺用粉煤灰是以牺牲结构混凝土的品质为代价的。
事实上,如前所述,由于高效减水剂的应用,使混凝土的水胶比可以大幅度降低,从而使掺用粉煤灰的效果大为改善,使大掺量粉煤灰混凝土的性能能够大幅度地提高。
1)水胶比的影响 水胶比的上述变化为什么影响这么大呢?在高水胶比的水泥浆里,水泥颗粒被水分隔开(水所占体积约为水泥的两倍),水化环境优异,可以迅速地生成表面积增大1000倍的水化物,有良好地填充浆体内空隙的能力。粉煤灰虽然从颗粒形状来说,易于堆积得较为密实,但是它水化缓慢,生成的凝胶量少,难以填充密实颗粒周围的空隙,所以掺粉煤灰水泥浆的强度和其他性能总是随掺量增大(水泥用量减少)呈下降趋势(当然在早龄期就更加显著)。
在低水胶比的水泥浆里情况就不一样了。不掺粉煤灰时,高活性的水泥因水化环境较差,即缺水而不能充分水化,所以随水灰比下降,未水化水泥的内芯增大,生成产物量下降,但由于颗粒间的距离减小,要填充的空隙也同时减小,因此混凝土强度得到迅速提高。这种情况下用粉煤灰代替部分水泥,在低水胶比条件下(例如0.3左右),水泥的水化条件相对改善,因为粉煤灰水化缓慢,使混凝土实际的“水灰比”增大,水泥的水化因而加快,这种作用机理随着粉煤灰的掺量增大愈加明显(例如掺量为50%左右,初期实际水灰比则接近0.6),水泥水化程度的改善,则有利于粉煤灰作用的发挥,然而与此同时,需要粉煤灰水化产物填充的空隙已经大大减小,所以其水化能力差的弱点在低水胶比条件下被掩盖,而它降低温升等其它优点则依然起着有利于混凝土性能的作用。以上所述低水胶比下粉煤灰作用的变化,我们可以用一个“动态堆积”的概念来认识,这是相对于长期以来沿用的静态堆积而言的。即通常在选择原材料和配合比时,是以各种原材料在加水之前的堆积尽量密实为依据的,但是当加水搅拌后,特别是在低水胶比条件下,如何通过粉状颗粒水化的交叉进行,使初始水胶比尽量降低,混凝土单位用水量尽量减少,配制出的混凝土在密实成型的前提下,经过水化硬化过程,形成的微结构应该是更为密实的。上述大掺量粉煤灰混凝土的例子中,每方混凝土的用水量仅100kg左右,要比目前配制普通混凝土少几十公斤,就是明显的证据。有人曾进行过低水灰比(水胶比)掺/不掺粉煤灰净浆的结合水测定试验[6]:掺有30%粉煤灰,水胶比为0.24的净浆,要比水灰比为0.24的纯水泥浆在28d时的结合水还多,证实上述掺粉煤灰后改善了水泥在低水灰比条件下水化程度的说法。因此低水胶比条件下,大掺量粉煤灰混凝土的强度发展与空白混凝土接近,而后期仍有一定幅度的增长,在一定范围内随掺量变化的影响不大。当然,粉煤灰代替水泥用量大了,由于起激发作用的氢氧化钙含量减少,使粉煤灰的水化条件劣化,所以在不同条件下存在一最佳粉煤灰掺量,并不是越大越好。
2)温度的影响 众所周知,温度升高时水泥水化的速率会显著加快。研究表明:与20℃相比,30℃时硅酸盐水泥的水化速率要加快一倍。由于近些年来大型、超大型混凝土结构物的建造,构件断面尺寸相应增大;混凝设计土强度等级的提高,使所用水泥标号提高、单位用量增大;又由于水泥生产技术的进展,使其所含水化迅速的早强矿物硅酸三钙含量提高、粉磨细度加大,这些因素的叠加,导致混凝土硬化时产生的温升明显加剧,温峰升高。举一个典型的例子:97年北京一栋建筑物底层断面为1.6m×1.6m的柱子,模板采用9层胶合板材料,施工季节为夏季,混凝土浇筑后柱芯的温峰达到110℃。
在达到温峰后的降温期间,混凝土产生温度收缩(也称热收缩)引起弹性拉应力;另一方面,混凝土水胶比的降低,又会使因水泥水化产生的自身收缩增大,同样产生弹性拉应力;而混凝土的水灰比(水胶比)降低,早期水化加快,混凝土的弹性模量随强度的提高而增大,进一步加剧了弹性拉应力增长;与此同时,混凝土的粘弹性,即对于弹性拉应力的松弛作用却显著地减小,这一切,都导致近些年来许多结构物在施工期间,模板刚拆除或以后不久就发现表面大量裂缝。除了凝固前的塑性裂缝以外,硬化混凝土早期出现的裂缝往往深而长(实际上不可见裂缝的长度和深度,要远比可见裂缝大得多)。为了防止可见裂缝的出现,目前常采取外包保温措施,以减小内外温差,这种做法被认为是有效措施而迅速地得到推广。但是没有注意到:由于外保温阻碍了混凝土水化热的散发,加剧了体内的温升,混凝土体温度升高,使水泥水化加速,早期强度发展更加迅速,因此也更容易出现裂缝,只是由于钢筋的约束和对应力的分散作用,使少量宽而长的可见裂缝转变为大量分散的不可见裂缝,它们将为侵蚀性介质提供通道,影响结构混凝土的耐久性。同时较大的弹性拉应力还可能引起钢筋达到屈服点而滑移,从而可能影响结构的使用功能。
与水泥相比,粉煤灰受温度影响更为显著,即温度升高时它的水化明显加快。所以当混凝土浇注时环境温度与混凝土体温度较高时,对纯水泥混凝土来说,由于温升带来不利的影响,而对掺粉煤灰混凝土来说,则不仅温升下降,减小了混凝土因温度开裂的危险,同时由于加快火山灰反应,还提高了28天强度。举一个很有意思的例子:德国在修建一条新铁路时,其隧道衬砌曾严重地开裂,当时要求混凝土10h强度不低于12MPa;后来修改了规定:以隔热的立方模型浇注的试件12h最高强度为6MPa;如果超过了,就要增加粉煤灰的掺量来更多地代替水泥。
以上说明:由于混凝土技术的进展,使混凝土可以在比较低的水胶比条件下制备,这就使粉煤灰在混凝土中的作用出现显著地变化。而近些年来水泥活性增大、混凝土设计等级提高促使水泥用量增大,以及构件断面尺寸加大,在混凝土体温度上升的前提下,进一步促进了粉煤灰在混凝土中作用的发挥,以至可以说:粉煤灰在许多情况下可以起到水泥所起不到的作用,成为优质混凝土必不可少的组分之一。
3)室内试验与现场浇注 长期以来,人们对于混凝土强度——其质量控制主要指标(通常也就是唯一指标)的评价,一直是根据在实验室里制备的小试件(由于骨料最大粒径的减小,试件尺寸从200×200×200mm减小到现在的100×100×100mm),经规定龄期的标准养护(20±3℃;RH≥90%),然后在试验机上破型得到的数据进行。Idorn[7]在91年曾拟文指出:在特定实验室条件下取样制备试件进行试验作为控制质量的方法,而不去开发以物理化学为科学依据的控制方法,是不合乎当今时代的错误。
试验室制备的试件与工程中浇筑构件的实际情况存在着明显的差异:
1)制备试件时的成型条件与工程实际振捣密实的情况不相符,因此不能反映实际结构物中混凝土的振实程度(孔隙率)、沉降程度(离析、泌水)等;
2)试件养护时的温、湿度与实际构件的情况不同,而这种差异随着现代工程结构断面尺寸明显增大、施工中忽视养护的情况使反差更加剧。如前所述,混凝土构件体内的温升及其对
3)室内试验与现场浇注 室内试验结果要反映工程施工中混凝土浇筑的实际情况。
长期以来,人们对于混凝土强度——其质量控制主要指标(通常也就是唯一指标)的评价,一直是根据在实验室里制备的小试件(由于骨料最大粒径的减小,试件尺寸从200×200×200mm减小到现在的100×100×100mm),经规定龄期的标准养护(20±3℃;RH≥90%),然后在试验机上破型得到的数据进行。Idorn[6]在91年曾拟文指出:在特定实验室条件下取样制备试件进行试验作为控制质量的方法,而不去开发以物理化学为科学依据的控制方法,是不合乎当今时代的错误。
试验室制备的试件与工程中浇筑构件的实际情况存在着明显的差异:
1)制备试件时的成型条件与工程实际振捣密实的情况不相符,因此不能反映实际结构物中混凝土的振实程度(孔隙率)、沉降程度(离析、泌水)等;
2)试件养护时的温、湿度与实际构件的情况不同,而这种差异随着现代工程结构断面尺寸明显增大、施工中忽视养护的情况使反差更加剧。如前所述,混凝土构件体内的温升及其对混凝土水化过程的不利影响、随后降温时的变形以及产生的内应力,小试件是反映不出来的,更无法反映上述普通混凝土与大掺量粉煤灰混凝土在温升影响下的反差(纯水泥混凝土后期强度比小试件偏低,而大掺量粉煤灰混凝土强度发展加速和提高)。
3)自由变形的试件和受配筋及其他条件约束的实际构件,在现代结构配筋曰益密集、混凝土水胶比明显降低的情况下,对结构混凝土性能产生的影响差异加大:试件在初龄期自身收缩增大时,强度会呈提高趋势;而实际结构中混凝土早期强度提高(弹性模量增大)、自身收缩加剧时,则因变形受约束,引起很大的拉应力从而导致开裂,强度与耐久性降低。
以上说明:室内试验结果难以完全反映工程施工中混凝土浇筑的实际情况。正是从这个角度出发,许多国家从事混凝土技术研究时,越来越重视足尺试验(与实际结构物尺寸相同或者成比例缩小)和对于实际结构物的现场检测。如上所述,其结果正和小试件的相反。对于大掺量粉煤灰混凝土,或者从更广泛的意义上来说,在混凝土技术领域里的研究方面,我们与先进国家的差距,可能更突出地反映在这些问题上(当然还有其他方面的,例如配制混凝土时所用骨料的变异性大,因此试验结果的重现性差;室内试验混凝土的搅拌、成型和养护条件有待改善等等),而不是如有些人误认为的:因为国内粉煤灰、水泥、外加剂等原材料的质量存在着很大差距,因此得不出类似结果。
四、大掺量粉煤灰混凝土
既然粉煤灰在混凝土中的作用如此重要,为什么粉煤灰混凝土,主要是大掺量粉煤灰混凝土长时间得不到推广呢?在这里提出一个新的看法:目前许多规范中规定的钢筋混凝土中的掺量限制(例如25%),对配制中低强度的混凝土来说,恰恰是最不利于发挥粉煤灰作用的掺量。换句话说,粉煤灰必须用大掺量,才能发挥良好的效果。这是为什么呢?
如上所述,掺用粉煤灰要想取得良好效果,水胶比必须低,而中低强度混凝土的水泥用量通常在350kg/m3以下。这种条件下,即使掺用再好的减水剂,水灰比(水胶比)也只能在0.50左右。因为再减小时,浆体体积就满足不了填充骨料空隙并形成足够厚度润滑层的需要。当掺加粉煤灰时,由于它比水泥轻,等重量替代水泥时可以增大胶凝材料的体积,所以可以使混凝土的水胶比降低。但是当其掺量较小时(如规定的25%以内),增大胶凝材料的体积有限,降低水胶比的作用也就有限。前面谈到的加拿大CANMET进行的大掺量粉煤灰混凝土性能之所以优异,正是因为它在胶凝材料用量为350kg/m3的条件下,粉煤灰占到57%以上,从而将水胶比降低到0.30左右获得的结果。我们重复了它的胶凝材料比例进行试验,因此也得到了类似的效果。
大掺量粉煤灰混凝土不仅强度发展效果良好,而且各种耐久性能也十分优异。由于能够明显降低水化温升,也大大减小了混凝土早期出现开裂的危险,可以说是一种适用于除了早期强度要求非常高以外,能够满足各种工程条件,尤其是侵蚀性严酷环境要求的高性能混凝土。例如公路路面板、桥面板就是这样一类结构,不仅工作环境严酷,而且需要耐磨性良好。大掺量粉煤灰混凝土的后期强度增长幅度大,恰好满足了这样的要求——强度和耐磨性随着时间不断增长。但是目前的耐磨性试验不适宜于判断这种混凝土的耐磨性,因为通常就在28天龄期进行快速试验——用钢球在试件上快速旋转产生的磨耗量来评价。这也说明:推广新材料、新技术需要伴随试验评价方法的改进。
当然,任何事物都有它的两面性,大掺量粉煤灰混凝土也存在局限性。其中,粉煤灰—水泥—化学外加剂之间的相容性,表现为混凝土水胶比能否有效地降低,使粉煤灰能充分发挥作用,自然是应用这种混凝土首先要检验的问题。一般来说,当水胶比只能在0.40以上时,在中等强度要求的混凝土中使用的效果就可能成问题了。其次,由于大掺量粉煤灰混凝土的水泥用量大幅度减少,因此对于水泥质量的稳定性和粉煤灰品质的稳定性就比较高,当两者的质量产生波动时,会给使用效果带来明显的影响。不过大掺量粉煤灰混凝土的水胶比较低这一特性,也有减小混凝土性能波动的益处。同时,从拌合物的工作度检验中,操作人员比较易于获得粉煤灰质量发生了波动的信息,便于及时采取措施减小或避免损失。此外,工程所在地附近一定半径范围里,有可以适用的粉煤灰来源也十分重要,过长的运输距离不仅使粉煤灰使用费用增加,也给及时满足工程对粉煤灰货源的需求带来困难。
另外,在使用大掺量粉煤灰混凝土时,需要注意以下施工条件和事项:
1)配制混凝土的骨料级配良好,以减小空隙率,利于水胶比降低,保证使用效果;
2)必须采用强制性搅拌机拌合这种混凝土,以保证其均匀性,由于它比较粘稠,在出机口、罐车进料口、入泵口以及摊铺过程要采取相应措施;
3)混凝土坍落度应控制比普通混凝土减小(不影响泵送与震捣);浇注后,要及早喷洒养护剂或覆盖外露表面,但一般情况下无需喷雾或浇水养护;
4)气温过低时,要采用保温养护措施,且适当延缓拆模时间,使混凝土硬化和强度发展满足施工需要。
五、混凝土材料的可持续发展
混凝土材料是当今用量最大、用途最广泛的建筑材料,据统计,每年全世界的耗用量接近100亿吨。如此巨大的用量,伴随着生产、使用过程带来矿石资源、能源的消耗,以及对大气和环境造成的污染,已引起全世界业内的关注。
我国的水泥产量多年来居世界首位,占1/3以上。同时我国粉煤灰的年排量也是居世界首位。由于发展基础设施建设的需要,有关部门仍在计划投资建设更多水泥厂。过去在混凝土里掺用粉煤灰,是为了节约水泥、降低工程材料费用,今天对混凝土掺用粉煤灰的认识,应该提高到保护环境、保护资源,使混凝土材料可长久地持续应用于基础设施建设中的高度上来认识。
大掺量粉煤灰混凝土不仅可以改善混凝土的各项性能,延长混凝土结构的使用寿命,同时可以大幅度减小耗费能源多、污染环境严重的硅酸盐水泥用量,因此也是一种绿色混凝土。从这个角度出发,推广大掺量粉煤灰混凝土在我国土木建筑工程中的应用,是一件于国于民有显著效益的事业,必定有强大的生命力,有广阔的发展前景。
第三篇:浅谈混凝土防水在施工中应用
最新【精品】范文 参考文献
专业论文
浅谈混凝土防水在施工中应用
浅谈混凝土防水在施工中应用
【摘要】:高层建筑在城市中已经占到了主导地位,防水问题不断出现在生产、生活和工作中。工业防水、高层防水已经是不可逃避的现实问题,中国的普遍防水材料寿命在15年左右。本文就混凝土防水存在的一些问题进行分析。
【关键词】:蓄水池、厕所卫生间防水、屋顶防水、外墙防水。
中图分类号:TU57 文献标识码:A 文章编号:
0引言:工业工程防水也是不可忽视的重要环节,“百年大计质量第一”到现在来说我们必须要提高一个高度来认真对待。以电厂的污水处理工程为例:沉淀池、蓄水池等都是主要的水储存地,施工缝设计防水一般是橡胶止水条、止水钢板,如果设计没有要求施工单位也必须采取物理方法进行施工缝防水处理:比如在施工缝处留凹槽、阴阳茬等方法。
施工防水是工程防水的第一步,第二部就是混凝土的振捣工作。振捣是措施能不能完成的主要因素,漏振、振捣不到位、混凝土离析都可能让施工防水工作前功尽弃。所以混凝土班组在振捣作业是必须要施工管理人员或技术人员进行技术交底和技术指导工作,监理工程师的全程旁站在工程重要环节不能松懈。
拆模长时间注水后阴水问题还需要设计一步池内壁的防水措施。因为混凝土工程毕竟是有生命的,如果长时间被污水或有腐蚀性的水源浸泡的情况下很容易遭到破坏。内部防水就变得至关重要。
一、混凝土漏水的原因
高层中楼板层的浇筑时间问题,一栋30层的高层在施工当中要经历春、夏、秋、东四个季节的变化,人们往往考虑了热胀冷缩的主观问题并没有考虑到施工影响的严重性。新闻报道了不知多少次,楼上的住户因为疏忽大意忘记关水阀门,造成室内泡水。如果楼板的混凝土密实振捣,施工缝防水处理到位,楼上的水源是不会大面积渗漏
最新【精品】范文 参考文献
专业论文
到楼下造成他人的经济损失。
按照混凝土工程施工中混凝土楼面板是必须要振捣密实,不允许有裂纹,裂纹长度不能大于2米,宽度要小于2毫米,深度不能超过板厚的1/2。如果施工中能够按标准达到要求,楼下住户的财产损失能够降到最低。
屋顶防水在工程中的意识是最强烈的,因为它的独特性,接受日照、雷雨、风雪等恶略天气。屋顶防水的破坏直接影响室内的生产和生活问题。
卫生间防水是每家每户都能切身体会的一件事情,楼上下水道堵塞、跑水、或因淋浴都是会给卫生间防水提出挑战的因素。如果防水效果不好就会在天花板上出现地图的形状,很不美观,而切还会减少楼板层的寿命。
外墙防水是人们最不容易接触到的,但是一旦出现为题也是最不容易处理的。在靠近室外的墙壁在雨天容易出现阴水、或泛水现象,这是因为在施工中墙体上的孔洞没有进行很好的修补处理。
二、源头控制
1、混凝土水灰比、坍落度控制不到位(商混站距离太远,为减少施工成本现场搅拌),造成混凝土和易性差、泌水性大、振捣不实、漏振、养护不及时、脱水都能导致导致混凝土密实性差、收缩大、毛细管通道增多、增大,严重时便造成混凝土出现贯通性裂缝、孔洞产生漏水现象。
2、骨料吸水率大。砂石含泥量、泥块含量严重超标、粗细骨料级配不佳,影响骨料级配防水混凝土的抗渗性能。
3、不同品种的水泥混杂使用。因为不同品种的水泥,其矿物组成各不相同(同一品种,不同厂批次的水泥,其矿物组成亦不尽相表现在性能上当然也就会出现差异,极易形成收缩变形不一,造成裂缝渗漏。
4、由于砼和易性不好,将导致其松散,粘结不良,在施工过程中分层离析,遇水后出现渗漏。砼浇筑前对模具清理干净并清洗湿润,浇筑时合理分层振捣,对钢筋密集处的采用同强度细石砼,振捣密实,最新【精品】范文 参考文献
专业论文
确保砼表面平整光滑、无麻面、蜂窝、孔洞等缺陷。
5、地质勘测不准、水文资料掌握不全或设计考虑不周、不合理,某些部位的构造措施不当等。
三、加强预防和措施
1、强化原材料的质量控制,不合格的砂石不准进场。进场后的砂石应重点核查含泥量、泥块含量和级配等技术质量指标。级配不合格的应予调整,含泥量超过规定的必须用水冲洗,经检验合格后方可使用。泥块含量超过规定的,应过筛清除至符合要求后,准许使用。
2、正确选择设计参数,搞好配合比设计,水灰比、坍落度、砂率和用水量的选择应通过试验确定:骨料质量,最大粒径、每立方米水泥用量和灰砂比等,也应符合有关的技术规定。
3、水泥的存放地应保持干燥,堆放高度不得超过10袋,以防受潮、结块。受潮结块或混入有害杂质的水泥均不得使用e
4、同一防水结构,应选用同一厂批、同一品种、同一强度等级的水泥,以保证混凝土性能的一致性。不使用过期水泥。
5、做好搅拌、运输、振捣和养护等工作的技术交底。混凝土搅拌前,质检人员应再次核查原材料的出厂合格证和复检合格证,并观察水泥、砂石等材质是否有可疑征兆。如有疑问,应被查清、排除后方可开盘。每天测定砂石含水率1~2次,及时调整配合比。当拌合物出现离析或泌水现象,应查明原因,及时纠正处理。混凝土拌合物的运输、停留时间不应过长,从搅拌机出料算起,至浇筑完毕,不宜超过45min。
实行振捣工作挂牌责任制。养护人员要做到7d内,混凝土表面始终处于湿润状态。
6、地质勘测和水文勘察点不可过稀,对于复杂地形,应适当加密勘测、勘察点,出示的数据能正确反映实际情况,以便于设计上准确掌握和正确应用。
7、当粗骨料为卵石时,砂石的混合级配以无曲线为最好。
8、为增进混凝土的防水性能,可在混凝土中掺加一定是粒径小于0.15mm的粉细料,以便更严密地把空隙堵塞起来,使混凝土更加密实,有利于抗渗性能的提高。但掺量不宜过多,因为细粉料太多,最新【精品】范文 参考文献
专业论文
骨料的比表面积必然增大,这就需要较多的水泥浆来包裹粗细骨料的表面;因此,在同样的水泥用量下,细粉料过多,反而导致抗渗性能下降,一般掺量以占骨料总量的5%~8%为宜。
四、补救措施和方法
1、查明渗漏原因,探明渗漏水的来源,为切断水源、拟定防水处理方案提供依据。
核查水文、地质资料与实际情况是否吻合,设计是否合理、可靠(如强度、刚度等),细部构造措施是否正确。
2、查明渗漏水部位。慢渗漏水部位先用于布擦干,然后在其表面上均匀撒干水泥粉,出现湿点或涸湿线的地方,就是渗漏水孔缝。如果洇湿面积较大,采用上述方法不易发现渗漏的具体位置时,则可采用1:1的水泥水玻璃胶浆在渗漏水处均匀涂刷一薄层,并立即在表面撒上干水泥一层,这时观察到的湿点或湿线,便是渗漏部位。快渗漏部位可用毛刷或布擦干基层,立即出现湿痕或水渍,即是渗漏水部位。而涌水一般直观即可判断。
3、确定渗漏水封堵原则。一般应尽可能在无水状态下进行施工修复,如在渗漏状态下进行修堵,则应尽可能减小渗漏面积,使渗漏水集中于一点或几点或一线,以减少其他部位的渗水压力,便于修堵工作的顺利进行。为减少渗漏水面积,先要做好引水工作,给水以出路,以便于施工操作和处理。
4、直接快速堵塞法和木楔堵塞法进行处理。必要时亦可采用丙凝灌浆和氰凝灌浆堵漏法进行治理。参见“地下防水工程堵漏技术”的有关内容。
5、裂缝渗漏水的治理方法:由于温度变化、结构变形或施工不当等原因形成裂纹后而出现的渗漏水,都属于裂缝渗漏水。修堵时视水压大小而采取不同的堵漏方法。参见本手册14.4“地下防水工程堵漏技术”的有关内容。
6、混凝土蜂窝、麻面裂缝渗漏处理:由于混凝土施工质量不佳产生的蜂窝、麻面引起的渗漏水,根据压力大小可采取将基层表面松散部分及污物清除,并用钢丝刷洗后,用水冲洗干净,然后在基层表面涂刷胶浆一层,其配合比为水泥:促凝剂=1:1.1并揉抹均匀,随
最新【精品】范文 参考文献
专业论文
即在胶浆上薄薄撤一层干水泥粉,水泥粉出现的湿点即为漏水点,立即用手指压住漏水点的位置,待胶浆凝固后再抬手,依次堵完各个漏水点。如果水压较大、漏水量较大首先按上面方法找出漏水点,以坐标法固定各漏水点位置。将漏水点剔一小槽(直径12mm,深25mm),按孔眼漏水“直接堵塞法”将所剔小槽一一堵塞。在堵漏材料方面,除了水泥—水玻璃胶浆外,视具体情况,亦可采用下列材料:
①水泥—石膏速堵漏料浆
使用前应先通过试验找出适宜的加水量和满足施工需要的凝结时间。
材料名称比例(重量比)
硅酸盐水泥(强度等级42.5)生石膏粉
注:配成的堵漏材料,要求3~5min初凝。
②水泥—防水堵塞料浆
它由氯化钙、氯化铝和水组成。属于氯化金属盐类防水剂,其产品指标及配合比参见表19-4.使用时要加水调节凝结时间。水量与防水料浆的比例在0~50%之间时,凝结时间由几小时到几秒钟。防水料浆的掺量为水泥重量的1.5%~5%。冬期施工或需要缩短水泥—防水料浆的凝结时间,可采取加热料浆(将料浆倒入铁锅内加热,温度控制在50℃左右)或干炒水泥加热(温度200℃左右,保持0.5h,稍冷却即倒入密闭的铁桶内储存备用)。作为快凝水泥堵漏所用水泥的强度等级应不低于42.5,储存期不超过3个月。使用时,操作人员必须戴乳胶手套。每次拌合量不宜过多,使用前应通过试验确定所需加水量和凝结时间。促凝剂和水事先拌合均匀再用。在拌合过程中,不允许往料浆中掺水。防水浆的适宜掺量由试验确定,不宜过多,因为掺量愈多,水泥面的收缩愈大,导致收缩开裂的可能性愈大。
③膨胀水泥
用于紧急堵漏可用快凝膨胀水泥或石膏矾土膨胀水泥,如把该水泥加热到200℃,使水泥中的二水石膏变成半水石膏,其堵漏效果会更好一些。用于大面积修补,可用明矾石膨胀水泥或硅酸盐膨胀水泥。
总之,混凝土容易渗水,对于混凝土出现的各种渗漏情况, 要分析其原因, 采用以上有效的方法予以处理,有效地预防和控制由于设
最新【精品】范文 参考文献
专业论文
计考虑不周, 选材不当或施工质量差等等而造成的渗漏现象。
参考文献:
[1] 黄建鑫.混凝土的表面处理[J].淮北职业技术学院学报.2010(05)
[2] 段景梅,邹环宇.浅析如何选择防水材料和防水施工[J].中国高新技术企业.2008(06)
[3] 费九良.建筑防腐施工中混凝土基层质量缺陷控制方法[J].铜业工程.2009(04)
[4] 杨君礼.防水卷材和防水涂料的适用性比较[J].四川建材.2003(Z1)
------------最新【精品】范文
第四篇:各种性能混凝土材料在土木工程中的应用
各种性能混凝土材料在土木工程中的应用
摘要: 对混凝土(高性能混凝土、活性微粉混凝土、低强混凝土、轻质混凝土、钢纤维混凝土、自密实混凝土、智能混凝土等)以及混凝土增强材料(非金属配筋、新型预应力钢棒等)近年的应用与发展,作了简要的论述.关键词: 结构材料 混凝土
混凝土是现代工程结构的主要材料,我国每年混凝土用量约10亿m3,钢筋用量约2500万t,规模之大,耗资之巨,居世界前列。可以预见,钢筋混凝土仍将是我国在今后相当长时期内的一种重要的工程结构材料,物质是基础,材料的发展,必将对钢筋混凝土结构的设计方法、施工技术、试验技术以至维护管理起着决定性的作用。本文对构成钢筋混凝土的主要材料--混凝土及其增强材料的应用与发展,从工程应用角度作简要介绍。混凝土
组成钢筋混凝土主要材料之一的混凝土的发展方向是高强、轻质、耐久(抗磨损、抗冻融、抗渗)、抗灾(地震、风、火〕、抗爆等。1.1 高性能混凝土(high performance concrete,HPC)HPC是近年来混凝土材料发展的一个重要方向,所谓高性能:是指混凝上具有高强度、高耐久性、高流动性等多方面的优越性能。从强度而言,抗压强度大于C50的混凝土即属于高强混凝土,提高混凝土的强度是发展高层建筑、高耸结构、大跨度结构的重要措施。采用高强混凝土,可以减小截面尺寸,减轻自重,因而可获得较大的经济效益,而且,高强混凝土一般也具有良好的耐久性。我国己制成C100的混凝土。已有文献报道1),国外在试验室高温、高压的条件下,水泥石的强度达到662MPa(抗压)及64.7MPa(抗拉)。在实际工程中,美国西雅图双联广场泵送混凝土56 d抗压强度达133.5MPa。
在我国为提高温凝土强度采用的主要措施有[1]:(1)合理利用高效减水剂,采用优质骨料、优质水泥,利用优质掺合料,如优质磨细粉煤灰、硅灰、天然沸石或超细矿渣。采用高效减水剂以降低水灰比是获得高强及高流动性混凝土的主要技术措施;(2)采用525,625,725号的硫铝酸盐水泥、铁铝酸盐水泥及相应的外加剂,这是中国建筑材料科学研究院制备高性能混凝土的主要技术措施;(3)以矿渣、碱组分及骨料制备碱矿渣高强度混凝土,这是重庆建筑大学在引进前苏联研究成果的基础上提出的研制高强混凝土的技术措施;(4)交通部天津港湾工程研究所采用复合高效减水剂,用525号水泥320kg/m3,水灰比0.43,和425号水泥480kg/m3,水灰比0.32,在试验室中制成了抗压强度分别为68MPa和65MPa的高强混凝土。
文献[2]报告了采用某些金属矿石粗骨料如赤铁矿石、钛铁矿石等,可以比用普通石料作粗骨料获得强度更高、耐久性和延性更好的高性能混凝土。
高强混凝土具有优良的物理力学性能及良好的耐久性,其主要缺点是延性较差。而在高强混凝土中加入适量钢纤维后制成的纤维增强高强混凝土,其抗拉、抗弯、抗剪强度均有提高,其韧性(延性)和抗疲劳、抗冲击等性能则能有大幅度提高。此外,在高层建筑的高强混凝土柱中,也可采用X形配筋、劲性钢筋或钢管混凝土等结构方面 的措施来改善高强混凝土柱的延性和抗震性能[3]。
1.2 活性微粉混凝土(reactive powder concrete,RPC)[4]
RPC是一种超高强的混凝土,其立方体抗压强度可达200-800MPa,抗拉强度可达25~150MPa,断裂能可达30KJ/m2,单位体积质量为2.5-3.0t/m3。制成这种混凝土的主要措施是:(1)减小颗粒的最大尺寸,改善混凝土的均匀性;(2)使用微粉及极微粉材料,以达到最优堆积密度(packing density);(3)减少混凝土用水量,使非水化水泥颗粒作为填料,以增大堆积密度;(4)增放钢纤维以改善其延性;(5)在硬化过程中加压及加温,使其达到很高的强度。
普通混凝土的级配曲线是连续的,而RPC的级配曲线是不连续的台阶形曲线,其骨料粒径很小,接近于水泥颗粒的尺寸。RPC的水灰比可低到0.15,需加入大量的超塑化剂,以改善其工作度。RPC的价格比常用混凝土稍高,但大大低于钢材,可将其设计成细长或薄壁的结构,以扩大建筑使用的自由度。在加拿大Sherbrook已设计建造了一座跨度为60m、高3.47m的B200级RPC的人行-摩托车用预应力桁架桥。
1.3低强混凝土[4]
美国混凝土学会(AC1)229委员会,提出了在配料、运送、浇筑方面可控制的低强混凝土,其抗压强度为8MPa或更低。这种材料可用于基础、桩基的填、垫、隔离及作路基或填充孔洞之用,也可用于地下构造,在一些特定情况下,可用其调整混凝土的相对密度、工 作度、抗压强度、弹性模量等性能指标,而且不易产生收缩裂缝。荷兰一座隧洞工程中曾采用了低强度砂浆(1ow-strength mortar,LSM〕,其组分为:水泥150kg/m3,砂;1080kg/m3,水570kg/m3,超塑化剂6kg/m3,膨润土35kg/m3,所制成的LSM的抗压强度为3.5MPa,弹性模量低于500Mpa。LSM制成的隧洞封闭块,比常规的土壤稳定法节约造价50%,故这种混凝土可望在软土工程中得到发展应用。
1.4轻质混凝土[5]
利用天然轻骨料(如浮石、凝灰岩等)、工业废料轻骨料(如炉渣、粉煤灰陶粒、自燃煤矸石等)、人造轻骨料(页岩陶粒、粘土陶粒、膨胀珍珠岩等)制成的轻质混凝土具有密度较小、相对强度高以及保温、抗冻性能好等优点利用工业废渣如废弃锅炉煤渣、煤矿的煤矸石、火力发电站的粉煤灰等制备轻质混凝土,可降低混凝土的生产成本,并变废为用,减少城市或厂区的污染,减少堆积废料占用的土地,对环境保护也是有利的。
1.5纤维增强混凝土[6]
为了改善混凝土的抗拉性能差、延性差等缺点,在混凝土中掺加纤维以改善混凝土性能的研究,发展得相当迅速。目前研究较多的有钢纤维、耐碱玻璃纤维、碳纤维、芳纶纤维、聚丙烯纤维或尼龙合成纤维混凝土等。
在承重结构中,发展较快、应用较广的是钢纤维混凝土。而钢纤维主要有用于土木建筑工程的碳素钢纤维和用于耐火材料工业中的 不锈钢纤维。用于土木建筑工程的钢纤维主要有以下几种生产方法:(1)钢丝切断法;(2)薄板剪切法;(3)钢锭(厚板)铣削法;(4)熔钢抽丝法。当纤维长度及长径比在常用范围,纤维掺量在1%到2%(体积分数,本文中的掺量均指体积分数)的范围内,与基体混凝土相比,钢纤维混凝土的抗拉强度可提高40%~80%,抗弯强度提高50%~120%,抗剪强度提高50%~100%,抗压强度提高较小,在0~25%之间,弹性阶段的变形与基体混凝土性能相比没有显著差别,但可大幅度提高衡量钢纤维混凝土塑性变形性能的韧性。
中国工程建设标准化协会于1992年批准颁布了由大连理工大学等单位编制的《钢纤维混凝土结构设计与施工规程》(CECS 38:92),对推广钢纤维混凝土的应用起到了重要作用。
钢纤维混凝土采用常规的施工技术,其钢纤维掺量一般为0.6%~2.0%。再高的掺量,将容易使钢纤维在施工搅拌过程中结团成球,影响钢纤维混凝土的质量。但是国内外正在研究一种钢纤维掺量达5%~27%的简称为SIFCON的砂浆渗浇钢纤维混凝土,其施工技术不同于一般的搅拌浇筑成型的钢纤维混凝土,它是先将钢纤维松散填放在模具内,然后灌注水泥浆或砂浆,使其硬化成型。SIFCON与普通钢纤维混凝土相比,其特点是抗压强度比基体材料有大幅度提高,可达100~200MPa,其抗拉、抗弯、抗剪强度以及延性、韧性等也比普通掺量的钢纤维混凝土有更大的提高[7]。
另一种名为砂浆渗浇钢纤维网混凝土(SIMCON)的施工方法与SIFCON的基本相同,只是预先填置在模具内的不是乱向分布的钢纤 维,而是钢纤维网,制成的产品中,其纤维掺量一般为4%~6%,试验表明,SIMCON可用较低的钢纤维掺量而获得与SIFCON相同的强度和韧性,从而取得比SIFCON节约材料和造价的效果。
虽然SIFCON或SIMCON力学性能优良,但由于其钢纤维用量大、一次性投资高,施工工艺特殊,因此它们只是在必要时用于某些特殊的结构或构件的局部,如火箭发射台和高速公路的抢修等。
在砂浆中铺设钢丝网及网与网之间的骨架钢筋(简称钢丝网水泥)所做成的薄壁结构,具有良好的抗裂能力和变形能力,在国内外造船、水利、建筑工程中应用较为广泛。近年来,在钢丝网水泥中又掺人钢纤维来建造公路路面、渔船、农船等,取得了更好的双重增韧、增强效果。
1.6自密实混凝土(self-compacting concrete)
自密实混凝土不需机械振捣,而是依靠自重使混凝土密实。混凝土的流动度虽然高,但仍可以防止离析。配制这种混凝土的方法有[4]:(1)粗骨料的体积为固体混凝土体积的50%;(2)细骨料的体积为砂浆体积的40%;(3)水灰比为0.9-1.0;(4)进行流动性试验,确定超塑化剂用量及最终的水灰比,使材料获得最优的组成。
这种混凝土的优点有:在施工现场无振动噪音;可进行夜间施工,不扰民;对工人健康无害;混凝土质量均匀、耐久;钢筋布置较密或构件体型复杂时也易于浇筑;施工速度快,现场劳动量小。
1.7智能混凝土(smart concrete)[4]
利用混凝土组成的改变,可克服混凝土的某些不利性质,例如: 高强混凝土水泥用量多,水灰比低,加入硅灰之类的活性材料,硬化后的混凝土密实度好,但高强混凝土在硬化早期阶段,具有明显的自主收缩和孔隙率较高,易于开裂等缺点。解决这些问题的一个方法是,用掺量为25%的预湿轻骨料来替换骨料,从而在混凝土内部形成一个“蓄水器”,使混凝土得到持续的潮湿养护。这种加入“预湿骨料”的方法,可使混凝土的自生收缩大为降低,减少了微细裂缝。高强混凝土的另一问题是良好的密实性所引起的防火能力降低.这是因为在高温(火灾〕时,砂浆中的自由水和化学结合水转变为水气,但却不能从密实的混凝土中逸出,从而形成气压,导致柱子保护层剥落,严重降低了柱的承载力,解决这个问题的一种方法是,在每方混凝土中加2kg聚丙烯纤维,在高温(火灾)时,纤维熔化,形成了能使水气从边界区逸出的通道,减小了气压,从而防止柱的保护层剥落。
1.8预填骨料升浆混凝土1)
国内在大连中远60000t船坞工程中,因地质条件复杂,船坞底板首次采用了坐落于基岩上的预填骨料升浆混凝土,即用密度较大的厚4~5m的铁矿石作为预填骨料,矿石层下再铺设1m厚的石灰石块石。矿石层上是厚60~80cm的现浇钢筋混凝土板在预填骨料层中布置压浆孔注入砂浆,形成预填骨料升浆混凝土。采取这种工艺,缩短了工期,取得了良好的经济效益。
1.9碾压混凝土[8]
碾压混凝土近年发展较快,可用于大体积混凝土结构(如水工大坝、大型基础)、工业厂房地面、公路路面及机场道面等。用于大体 积混凝土的碾压混凝土的浇筑机具与普通混凝土不同,其平整使用推土机,振实用碾压机,层间处理用刷毛机,切缝用切缝机,整个施工过程的机械化程度高,施工效率高,劳动条件好,可大量掺用粉煤灰,与普通棍凝土相比,浇筑工期可缩短1/3~1/2,用水量可减少20%,水泥用量可减少30%~60%。碾压混凝土的层间抗剪性能是修建混凝土高坝的关键问题,国内大连理工大学等单位曾开展这方面的研究工作。在公路、工业厂房地面等大面积混凝土工程中,采用碾压混凝土,或者在碾压混凝土中再加入钢纤缝,成为钢纤维碾压混凝土,则其力学性能及耐久性还可进一步改善。
1.10再生骨料混凝土
新中国建国至今己逾50年,建国前后修建的不少混凝土结构,因老化或随着经济的发展,需拆除重建,其拆除量十分巨大,在拆除的混凝土中,约有一半是粗骨料,应该考虑如何使之再生利用。以减少环境垃圾,变废为用。文献[4]报道,在荷兰的德尔夫特,一个272所住宅的方案中,所有的混凝土墙均利用了再生骨料,该方案下一步的计划,是在混凝土楼板中也利用再生骨料。当然,在利用这些再生骨料时,需对这种馄凝土的性能进行试验,例如,文献[9]报道了有关再生轻质混凝土收缩和徐变较为显著的试验成果,值得重视。配筋及增强材料 2.1纤维筋[6]
钢筋混凝土结构的配筋材料,主要是钢筋最近在国际上研究较多的是树脂粘结的纤维筋(fiber reinforced plastics,FRP)作馄 凝土及预应力混凝土结构的非金属配筋,常用的纤维筋有树脂粘结的碳纤维筋(GFRP)、玻璃纤维筋(GFRP)及芳纶纤维筋(AFRP)国外研究指出,这几种纤维筋的强度都很高,只是玻璃纤维筋的抗碱化性能较差。纤维筋的突出优点是抗腐蚀、高强度,此外,还具有良好的抗疲劳性能、大的弹性变形能力、高电阻及低磁导性,其缺点是断裂应变性能较差、较脆、徐变(松弛)值较大,热膨胀系数较大。
国外已有日本、德国、荷兰等国将纤维筋用于预应力混凝土桥,包括体外预应力桥的实例[4]。
2.2双钢筋[1]
为了减小裂缝宽度和构件的变形,国内在一些工程中,采用焊成梯格形的双钢筋,在构件内平放或竖放布置。
2.3冷轧变形钢筋[1]
为了节约钢材用量,国内引进国外设备或自制设备,用光圆钢筋,经过冷轧,轧成带肋的直径小于母材直径的钢筋,称为冷轧带肋钢筋。另一种类似的钢筋,是用I级光圆用筋冷轧扭转成型,称为冷轧变形用筋或冷轧扭钢筋。这两种冷轧钢筋的抗拉强度标准值(极限抗拉强度)及设计值都比母材大大提高,与混凝土的粘结强度也得到提高,但直径较小。它们主要用作板式构件的受力钢筋或梁、柱构件的箍筋或作预应力筋。由于强度提高,可以节约材料用量,获得经济效益。这两种钢筋,国内己制订了规程。为将这种小直径钢筋的用途扩展至梁、柱的受力钢筋,也可采用双筋或三筋的并筋,但需适当增大其锚固长度。
第五篇:简述减水剂在混凝土中的应用
简述减水剂在混凝土中的应用
黑龙江省建工集团
张 宇 2012年1月13号
近年来随着我国城乡建设的快速发展,建筑结构设计标准不断提高;因此混凝土外加剂在建筑施工中用量越来越大。混凝土外加剂种类很多,主要按其功能分类;有高性能减水剂、高效减水剂、普通减水剂、引气减水剂、泵送剂、早强剂、缓凝剂和引气剂等。高性能减水剂是近年开发的新型外加剂,目前主要使用品种为聚羧酸盐类产品,它具有“流状”的结构特点,根据其组成的分子设计引入不同功能团,控制成分比例和反应条件可生产出具有各种不同性能和特性的高性能型、早强型、标准型和缓凝高性能型等减水剂,该类减水剂也可掺入不同组分复配而成。其减水效率高,混凝土拌合物工作性及工作性保持性较好,氯离子和碱含量较低,有效改善体积稳定性和耐久性,与水泥适应性好,能很好地满足混凝土的施工要求,极大地降低了混凝土蜂窝、麻面等缺陷,硬化后的混凝土强度高,饰面效果好。而其生产和使用过程中不污染环境,是环保型外加剂。
混凝土施工
减水剂使用外加剂提高有关效益
混凝土中掺加有关外加剂,如高效减水剂和早强剂,可使混凝土的7天强度提高1倍以上,降低泌水率,提高减水率,并在标养28天后抗压强度比可达到150%以上,这样在配制高强或超高强度混凝
土就易于实现。在混凝土掺加有关外加剂提高强度同时,改善了其和易性和泌水性,调节含气量,提高耐腐蚀性,减弱碱-集料反应,提高钢筋抗锈能力,提高粘结力,这不但扩大了混凝土的使用范围,并节省了建筑材料,节约水泥或替代特种水泥。而在混凝土中掺加缓凝型减水剂,可调节凝结时间、改善可泵送性,延缓了砼凝结时间和硬化时间,可满足不同工程,特别是大体积混凝土工程的施工及质量要求。在混凝土中选用外加剂时,要同时考虑水泥的品种和其他成分的特性,并根据目的不同选择不同类型减水剂,选用时既要考虑经济性,又要注意减水剂的质量稳定性。如遇到水泥和外加剂不适应的问题,必须通过试验排除有关因素,选择适当的减水剂类型,分析水泥有关质量问题,确定合适掺量,砼配合比影响等。在几种外加剂复合使用时,需注意品种之间的相容性及对砼性能的影响,使用前应进行试验,如聚羧酸系高性能减水剂与萘系减水剂不宜复合使用。随着混凝土外加剂的发展和应用,克服了工程中存在的“强度低、自重大、脆性高”等弱点,并确保了工程施工的连续性,大大缩短了工期,推动了流态混凝土技术及泵送浇注新工艺的发展,加速了商品混凝土的发展。而商品混凝土的发展给我国建筑业带来了很好的经济效益和环境保护效益,进一步推动了建筑业的发展和建筑技术的提高。实现混凝土施工中的低用水量的技术途径
混凝土施工性特性是流动性和其强度的控制,主要取决于混凝土单位体积用水量和水灰比(水胶比)。我国现行混凝土设计规范中混凝土用水量的取值是依据混凝土坍落度和石子最大粒径确定的。设计
高性能混凝土配合比时,用水量仍以满足其工作性为条件,按规范所列经验数据选用。往往用水量的多少,对控制砼强度的高低是有直接影响因素。有时在未使用有关外加剂时候,使用一定用水量时虽然满足了和易性(即坍落度要求),但是其强度往往上不去,甚至达不到设计强度,这是因为水灰比大了,并且水泥的用量又要满足有关规范要求,所以就无法设计出一个合理的配合比;而砼在较低塌落度时候,强度是比较容易提高的,但其和易性是不行的。所以,为了既保证和易性又要保证强度的不降低甚至提高,就必须使用有关外加剂。许多流动性混凝土利用高效减水剂的减水作用,改善了混凝土的和易性,并减少水泥用量,不仅达到同样的混凝土标号,节约了水泥15%~25%,而且使流动性混凝土施工省力、工效提高、造价低,大大满足了现代化施工要求和特种工程需要。需掌握外加剂的掺量
每种外加剂都有适宜的掺量,并且由于生产厂家的不同,即使同一种型号外加剂,不同的用途都有不同的适宜的掺量。而且不能单凭厂家推荐用量来确定掺量,还需要通过试验试拌来确定。如果在掺量过大,不仅在经济上不合理,而且可能造成质量事故。如对有引气、缓凝作用的减水剂,尤其要注意不能超掺量。如对于粉剂和水剂又有不同掺量要求,粉剂掺量需少点,因其浓度更高,不宜大量掺入。高效减水剂掺量过小,失去高效能作用,而掺量过大(>1.5%),则会由于泌水而影响质量。氯离子的限制是有要求的,过量会引起钢筋锈蚀等等来控制外加剂的掺量。总之,影响外加剂掺量的因素较多,在掺
加减水剂之前,需通过试验取得用途不同的适量掺量,有关试验可根据国标《混凝土外加剂GB 8076-2008》和有关行业标准对所掺的外加剂量的减水率、泌水率、含气量、凝结时间之差、抗压强度比、收缩性等进行试验。
外加剂需采用适宜的掺加方法。在混凝土搅拌过程中,外加剂的掺加方法对外加剂的使用效果影响较大。如减水剂掺加方法大体分为先掺法(在拌合水之前掺入)、同掺法(与拌合水同时掺入)、滞水法(在搅拌过程中减水剂滞后于水2~3min加入)、后掺法(在拌合后经过一定的时间才按1次或几次加入到具有一定含量的混凝土拌合物中,再经2次或多次搅拌)。不同的掺加方法将会带来不同的使用效果,不同品种的减水剂,由于作用机理不同,其掺加方法也不一样。影响外加剂掺加方法的因素主要有水泥品种、减水剂品种、减水剂掺量、掺加时间及复合的其它外加剂等,均宜通过试拌确定。新型外加剂中的聚羧酸高性能减水剂
该品种减水剂是国内外近年来开发的新型品种,具有“流状”的结构特点,有带有游离的羧酸阴离子团的主链和聚氧乙烯基侧链组成,用改变单体的种类,比例和反应条件可生产出各种不同性能和特性的高性能减水剂。而由分子设计引入不同功能团可生产出早强型、标准型和缓凝型高性能减水剂。其具有更高的减水率、更好塌落度保持性能、较小干燥收缩,且具有一定引气性能的减水剂。聚羧酸高性能减水剂主要技术特征:
4.1 聚羧酸系高效减水剂掺量低,减水率高 聚数酸系高效减水
剂掺量占胶凝材料的0.80%-1.25%,减水率可达(20-35)%,与粉煤灰配合使用,使得水胶比较低,适应配制中、高强度的高性能混凝土。
4.2 混凝土流动性大,坍落度损失小 由于聚羧酸系高效减水剂良好的分散稳定性,聚羧酸系高效减水剂所配制的大流动性混凝土(坍落度≥180mm)经时损失小,一小时基本无坍落度损失,二小时经时损失小于15%,弥补了常用萘系高效减水剂配制的混凝土坍落度损失大、易泌水等方面的缺陷,与粉煤灰配合使用,减水剂的小掺量即可获得优异的流动性,适应生产商品混凝土的工艺要求,特别对于泵送混凝土不易发生堵管现象。
4.3 与胶凝材料的适应性良好 工程实践中,不同厂家生产的水泥配制泵送混凝土,同时掺有大量的粉煤灰,聚羧酸系高效减水剂掺入后,与不同水泥的相容性较好,无明显泌水离析、阻碍混凝土强度增长的现象产生,并因其高减水率,适应与粉煤灰配合使用,减小了粉煤灰混凝土的收缩,又使混凝土可泵性得到明显改善,而且提高了混凝土的耐久性。混凝土设计强度等级相同时,水泥用量增加,减水剂用量随着少量增加,水胶比下降,混凝土强度提高;不同设计强度等级的混凝土,减水剂用量随着胶凝材料用量增加而少量增加,水胶比下降,混凝土的强度随之提高,但混凝士和易性总体保持稳定,坍落度可达(180-240)mm。
4.4 适应浇筑防水抗渗混凝土,对施工环境温度要求低 羧酸系高效减水剂配制泵送商品混凝土,由于混凝土流动性大,易于浇筑密实,加之聚合物对水化产物的聚合活性,生成具有胶凝状态的水化物
填充空隙,混凝土密实度、强度大幅度提高,聚合物的填充作用和聚合物膜的密封作用使混凝土抗渗抗裂的性能得到改善;并且粉煤灰掺量大,混凝土水化热小,减水剂的保塑功能明显,适宜大体积混凝土及夏季施工,对于冬季施工,因为水胶比较低,聚合物形成的空间柔性网络,提高了混凝土拌合物的粘聚力,使得混凝土早期抗冻性能增强。结论
随着混凝土减水剂品种的不断开发增加,质量逐步提高,在混凝土施工中的应用日益广泛,越来越多的人认识到外加剂是混凝土中除水泥、砂、石和水之外的不可缺少的第五种材料。混凝土外加剂的特点是品种多、掺量小、在改善新拌和硬化混凝土性能中起着重要的作用。外加剂的研究和应用促进了混凝土施工新技术和新品种混凝土的发展研究会更加深入,因此一定会在建筑业中发挥巨大的作用并产生良好的效益