第一篇:从章起始课教学谈“随机抽样”的教学设计
从章起始课教学谈“随机抽样”的教学设计
浙江省黄岩中学 金克勤
在第九次课题会上,来自浙江的吴寅静老师上了一节“随机抽样”研究课,引发了参与者的讨论与思考.教师在课堂教学过程中反映出的问题,究其原因,主要集中在对教学内容和内容的解析上,这恰恰是目前被许多教师忽视的.章建跃博士强调,上好一节数学课的前提是理解数学.中学教师对数学的理解,主要是对教学内容的正确理解和解析.教学内容的正确解析,是确立正确教学目标的前提;教学目标的正确解析,又是合理设计教学过程的前提.
基于对章起始课的反思和对随机抽样教学内容的重新认识,对这节课作了如下反思性的教学设计.
一、内容与内容解析
统计学是一门关于数据资料的收集、整理、分析和推理的科学.本节课的主要内容是统计学中数据收集的方法—简单随机抽样的基础知识,了解简单随机抽样的概念,简单随机抽样的基本要求,必要性和操作方法,这是统计学的基础和前提.鉴于本课是统计一章的起始课,如何上好起始课,特别是关于章引言的教学是一个值得关注的问题.章引言的教学实际上是帮助学生了解学习本章的意义,从宏观上了解本章的学习内容,了解学习本章的意义,特别是这一章教材所包含的内容和知识、核心概念与思想方法、学习目标和要求,知识前后联系和注意的问题等等;章引言教学的另一个重要任务是激发学生的学习兴趣,调动学生的学习积极性,“数学教学上的成就,很大程度上取决于学生对于数学课的兴趣是否能保持和发展.”统计中,数据收集的方法,普查应该是收集数据最全面、最完整、最准确的方法,但这种方法也存在问题,当总体相当大时,普查有时会显得不可能、不必要或不方便.本节课是学生在初中学习了统计基础知识的基础上进一步学习数理统计的知识与方法.学习的内容侧重于应用随机现象本身的规律性来研究统计方法,这是在初中直观感知统计知识的基础上,从随机现象的规律性来学习统计知识,也体现了统计知识螺旋上升的学习过程.在统计学中,重要的不是对所有的全部对象进行观察与研究,而是抽取其中的部分进行观察、获取数据,并通过这些数据来对所研究的全体进行推断.抽取样本的目的是为了对总体的分布规律进行各种分析推断,因而要求抽取的样本能很好地反映总体的特征,这就必须对抽取随机抽样的方法提出一定的要求.
本课题为“随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量Xi与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,„,Xn为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.
二、目标与目标解析
1.通过实例,了解学习统计的意义,了解统计学的基本内容和方法,学好章引言. 2.通过实例,了解随机抽样的必要性.
3.理解随机抽样的概念.这里随机抽样的概念在初中阶段学生已经学习过,但在此处学习正是体现知识的螺旋上升,这里提出的总体、个体和样本的概念应该更加理性.
4.通过实例分析随机抽样应满足的基本条件.作为教师要明确学习随机抽样的主要目的是用样本估计总体,要使所抽取的样本能估计总体,抽取数据的方法要根据对数据的要求而定,方法应该是量身定做的.
5.初步体会随机抽样的方法.教学过程应该充分体现学生的主体作用,不囿于教材顺序的限定,结合学生已有的知识结构,充分展示学生的学习经验和能力.
三、教学问题诊断
本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.
四、教学支持条件分析
本节课教学支持条件首先是学生已经学习过随机抽样的概念,因此教学可以在此基础上展开.教材例题的选取都来自于学生的生活经验,便于学生理解.可以通过投影和计算机,扩展学生收集数据的方法.基于本节课内容的特点和高一年级学生的心理及思维发展的特征,在教学中选择问题引导、事例讨论和归纳总结相结合的教学方法.与学生建立平等融洽的互动关系,营造合作交流的学习氛围.在引导学生进行观察、分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣.
五、教学过程设计
(一)章起始课的教学
情景引入:(展示图片)
1.我国是世界上的第三个贫水国,人均淡水占有量排列世界第109位;
2.我国土地沙漠化问题非常严重,全国沙漠化土地总面积已超过17.4万km2,并以每年3400 km2的速度扩张.
俗话说:不说不知道,一说吓一跳,你知道这些数据是怎么来的吗?
教师讲解:我们生活在一个数字化时代,时刻都在与数据打交道,我们常常从媒体获得当地的气温、自然资源状况、农作物的产量、电视台的收视率等等.实际上这些数据是通过调查获得的.怎样调查呢?可能大家在初中已经了解了有关调查的知识.是对考察对象进行全面调查吗?尽管全面调查(即普查)有时也是必要的,但现实生活中这既不可能,也没必要.如要了解一批烟花的质量我们总不能一个地“施放”烟花.实践中,由于考察的总体中个数往往很多,而且许多考察带有破坏性,因此,我们通常只考察总体中的一个样本,通过样本来了解总体,这是统计的意义所在.进一步,从节约费用的角度考虑,在保证样本估计总体达到一定精度的前提下,样本中包含的个体数越少越好.于是,如何设计抽样方法,使抽取的样本能够真正代表总体,就成为我们要关注的一个关键,这也是评价一种抽样方法优劣的标准.那么,怎样从总体中抽取样本呢?如何从样本数据中提取基本信息,来推断总体的情况,以我们本章学习的内容.学习了本章以后同学们将会使用适当的抽样方法从总体中抽取样本,并能根据样本数据对总体作出合理的推断.
【设计意图】从章起始课的教学形态看,目前章起始课教学的比较现实的模式是充分利用人教版教材中的章引言材料,通过创设适当的问题情景,由教师通过浅显的讲解,让学生了解本章的学习内容和要求.这里有两个问题值得研究:一是问题情景的创设,可以是与现实背景相关的问题,可以是数学概念的形成过程中的问题,也可以是数学史或数学典故等;二是教师的讲解方式,由于是起始课,在学生还不了解学习内容的情况下,教师的讲解是必要和重要的,但关键是讲解的方式.
(二)创设情景,回顾概念
问题1:有一则小故事,小明的妈妈让小明到超市买一斤桔子,小明买回来后妈妈问:“桔子的质量怎样?”小明说:“都很甜”.“你怎么知道?”“我都已尝过了.”
从统计的观点看,这里发生了什么?
【设计意图】通过一则小故事,首先是激发学生的兴趣,主要目的是使学生回顾普查与抽样的概念,学生可能会感到小明为了获取桔子质量的最好的办法是采取抽样的方法.教师可以追问,如果小明买的是10斤桔子,那他又如何能够知道所买的桔子的质量呢?在现实生活中,为了获取数据我们常常采用普查和抽样的方法,当然采用什么样的获取数据的方法要由目的而定,其实,我们抽取数据的根本目的是为了研究总体的情况.
(三)形成随机抽样的概念
问题2:现在生活中我们为了决策,需要获取很多的数据信息,我们需要采取不同的获取数据的方法.今天我们就要对抽样这样收集数据的方法开展讨论和研究,请大家积极参与,主动发言.在下列问题中你会选择怎样的调查方法?为什么?
(1)要检验超市中牛奶中是否含有三聚腈胺?(2)每天在学生进校时检查体温是否超过37.5℃(3)要了解一锅汤的味道.(4)要检查一批烟花的质量.(5)要检查日光灯管的使用寿命.(6)要统计一座大桥上交通的流量.(7)要调查本校学生的平均身高. 【设计意图】从学生的生活实际经验中选取一些事例提出问题,回顾抽样的概念,在研究这些事例的某方面问题时,由于遇到不方便、不可能、不必要进行普查等因素,就必须采用抽样的方法.教师应给学生独立思考的空间并让学生充分发表自己的意见,只要合理都予以肯定.想一想为什么只要尝一勺汤就能知道一锅汤的味道?高质量的样本数据来自“搅拌均匀”的总体.如果我们能够设法将总体“搅拌均匀”,那么,从中任意抽取一部分个体的样本,它们含有与总体基本相同的信息.
问题3:关于数据的收集方法,你对有关的知识了解了多少?请哪位同学说说? 【设计意图】通过学生的回忆,巩固以下几个关于随机抽样的概念.我们必须普查:为了一定的目的而对考察对象进行全面调查称为普查.总体:所要考察对象的全体称为总体.从数理统计的角度,我们关心的是研究对象的某项数量指标,可以把研究对象的某项指标的值的全体看作总体.个体:组成总体的每一个考察对象称为个体.抽样:从总体中抽取部分个体称为抽样.样本:从总体中抽取的一部分个体叫做总体的一个样本.样本中个体的数目叫做样本容量.
(四)加深对随机抽样的认识
问题3:为了了解本校学生的视力情况,设计了以下三种方法:(1)对一个班级进行调查;
(2)在高三年级选取3个班级进行调查;
(3)在全校的每个班级分别选取3个男同学和3个女同学进行调查. 请你评价和选择你认为合理的抽样方法,并说明理由.
【设计意图】通过实例让学生理解,样本的选取应具有广泛性,只有具备了广泛性才更加具有代表性,随机样本的代表性好于方便样本.
问题4:为了调查本班学生的视力,抽取3位同学进行调查,可以吗?为什么? 【设计意图】通过实例让学生理解如果抽取的样本容量太小,就不具备代表性,而太大没有必要,因此抽取的样本必须的恰当的样本容量.
问题5:小明为了调查本年级同学的视力的情况,为了便于调查,他决定在自己认识的同学中开展抽样调查,你认为他的这种抽样调查合理吗?为什么?
【设计意图】通过实例帮助学生理解样本的选取要体现随机性和公平性,在简单随机抽样中,保证公平性的要求是保证每一个样本被选到的概率相等.如果不具备这样的条件,这种抽样就会不够合理,得出的数据就会不科学.因此,随机样本比方便样本的公平性要好.设计抽样方法时,最重要的是要将总体“搅拌均匀”,即使每个个体有同样的机会被抽中. 接着,教师指出教材中关于这个问题的一个著名的案例,“抽样中的泰坦尼克事件”.你认为预测结果出错的原因是什么?
问题6:为了调查中央电视台春节联欢晚会的收视率,电视台往往在节目播出以后马上进行,你知道这是为什么吗?
【设计意图】设计这个问题的目的是帮助学生理解,在随机抽样的过程中,数据收集的时效性有时也是很重要的.教师可以帮助学生总结在随机抽样中,应该注意抽样的广泛性、代表性、公平性、时效性和可操作性.
(五)随机抽样方法初探 问题7:有10000名高一年级学生参加期末统考,为了了解数学考试成绩,从中抽取1000份试卷.
(1)抽样在卷头拆封前进行;(2)每个考场有25名考生;
(3)参加考试的同一所学校的各个考场是连续编号.
你将如何进行抽样?你如何评价你所设计的抽样方法?为提高随机抽样的准确度,你认为应该怎么做.
【设计意图】这是一个开放性的课内学生实践问题,设计此问题的目的是在课堂内组织学生活动,要充分调动学生思维的主动性,估计学生在设计抽样方法的过程中,会抽出简单随机抽样、系统抽样和分层抽样的方法,教师不必明确这此抽样的方法的名称,待后续的课程予以解决.在学生回答问题的过程中,教师也可以增加抽样的条件,如学校有农村中学和城镇中学如何保证样本的代表性等.
(六)检查小结反馈
今天同学们学习了简单随机抽样的知识,现在我们一起回顾本节课的内容:(1)为什么要进行抽样?
(2)在抽样的过程中为什么要强调“随机性”?(3)在随机抽样中要注意哪些问题?
(4)在刚才同学设计的随机抽样的方法中你能作一个简单的评价吗?(5)你能说说随机抽样的目的是什么吗?
显然,随机抽样是为了帮助人们了解事物的本质,进而帮助人们进行科学的决策.最后我们来看一则故事:美国的著名物理学家费米一次在芝加哥的演讲中,向听众提到了这样一个问题:“芝加哥需要多少位钢琴调音师?” 大家对费米的提问都感到很奇怪,因为大家觉得这个问题根本无从下手.但费米教授用统计学的观点回答了这个问题,你知道他是怎么做的吗?如果让你来回答这个问题,你需要做哪些统计工作?
【设计意图】本节课的小结是通过问题的展开,这有利于学生进一步加深对随机抽样的理解.同时,用一则故事置学生于具体的背景之下,适当运用随机抽样的方法.不管学生采用如种方法教师都给以鼓励.通过这个问题说明在具体运用随机抽样方法时,要注意方法的可操作性.可能会有同学提出直接统计芝加哥有多少个钢琴调音师,实际上由于无法知道谁是钢琴调音师,这是调查的方法实际是不可行的.可以向学生介绍费米是这样做的:“假设芝加哥的人口有300万,每个家庭4口人,全市的家庭有钢琴.那么芝加哥共有25万架钢琴.一般来说,每年需要调音的钢琴只有,那么,一年需要调音5万次.每个调音师每天能调好4架钢琴,一天工作250天,共能调好1000架钢琴,是所需调音量的费米教授推断,芝加哥共需要50位调音师.”
.由此然后请学生思考:费米是怎么知道芝加哥每个家庭4口人,全市些数据是精确数据吗?是采用什么方法获取得? 的家庭有钢琴?这同样“每年需要调音的钢琴有,每个调音师每天能调好4架钢琴,一年工作250天”等数据也都是通过随机抽样获得的数据进行推断的.然后根据统计数据进行统计了推断.这说明随机抽样除了自身需要满足一定的要求外,所获得相关信息越多,推断的结论越准确.
六、目标检测设计
1.请你把抽样调查与普查做一个比较,并说一说抽样调查的好处和可能出现的问题. 2.中央电视台需要在调查“春节联欢晚会”的收视率:(1)每个看电视的人都要被问到吗?
(2)对一所中学学生的调查结果能否作为该节目的收视率?
(3)你认为对不同社区、年龄层次、文化背景的人所做调查的结果会一样吗?
3.鸟岛地处青海省青海湖的西北部,在长约500米,宽约150米的岛上栖息着班头雁、棕头鸥、赤麻鸭、鸬鹚等十多种候鸟,要估计岛上有多少只鸟,你会采取什么方法?
第二篇:“随机抽样”教学设计
一、内容和内容解析
1.内容
本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题.2.内容解析
本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法.在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的.统计有两种.一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查.但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常的大或者有的产品的质量检查是破坏性的.统计和概率的基础知识已经成为一个未来公民的必备常识.抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体.其中蕴涵了重要的统计思想样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.二、目标和目标解析
1.目标
(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;
(3)以问题链的形式深刻理解样本的代表性.2.目标解析
本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题.让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识.对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性.抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解.为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本.由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.三、教学问题诊断分析
学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想样本估计总体以及统计结果的不确定性.学生已有知识经验与本节要达成的教学目标之间还有很大的差距.主要的困难有:对样本估计总体的思想、对统计结果的不确定性产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力.在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳.根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体.四、教学支持条件分析
准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.五、教学过程设计
(一)感悟数据、引入课题
问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?
师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?
设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?
普查:为了一定的目的而对考察对象进行的全面调查称为普查.总体:所要考察对象的全体称为总体(population)
个体:组成总体的每一个考察对象称为个体(individual)
普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等.设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的.(二)操作实践、展开课题
问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?
抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(sampling investigation).样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.列举:一个著名的案例
在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(A.Landon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:
候选人
预测结果% 选举结果%
Roosevelt 43 62
Landon 57 38 问题4:你认为预测结果出错的原因是什么? 设计意图:通过案例让学生进一步体会到:在抽样调查中,样本的选择是至关重要的,样本能否代表总体,直接影响着统计结果的可靠性.问题5:如果要调查下面这几个问题,你认为应该作全面调查还是抽样调查?你们对于普查和抽样调查是怎么看的?普查一定好吗?请举例.(1)了解全班同学每周的体育锻炼时间;
(2)调查市场上某个品牌牛奶的含钙量;
(3)了解一批日光灯的使用寿命.普查
抽样调查
需要大量的人力、物力和财力
节省人力、物力和财力
不能用于带有破坏性的检查
可以用于带有破坏性的检查
在操作正确的情况下,能得到准确结果
结果与实际情况之间有误差
设计意图:通过普查和抽样调查的比较,使学生感受抽样调查的必要性和重要性.问题6:如果我们想了解晋中市高一学生的近视率,你认为该怎么做呢?
师生活动:以2人小组为单位进行讨论,说出比较可行的抽样方案.问题7:我们是否可以用晋中市高一年级学生的近视率来估计山西省高中生的近视率?为什么?
师生活动:教师继续让学生进行小组讨论,引导学生从样本容量以及样本抽取需要考虑的要素,如:学生的层次(高
一、高
二、高三),学生生活的环境(城市、县镇、农村)等.教师对学生的回答进行归纳、整理,与学生一起讨论出比较可行的抽样方案.设计意图:通过进一步的追问,加深学生对样本代表性的理解.让学生进一步的认识到:在多背景下的抽样会产生偏差,以及样本的随机性与样本大小在产生有代表性的样本中的作用,同时对后面的内容进行简单介绍.(三)总结拓展、提升思想
问题8:请你用1-2句话说说自己在本节课的收获.师生活动:引导学生从怎样学会提出统计问题?抽样调查与普查的优缺点?样本的代表性与统计推断结论之间的关系等方面进行总结和回顾.设计意图:总结回顾,巩固课堂知识、初步概括统计思想.六、目标检测设计
1.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()
A.在公园调查了1000名老年人的健康状况
B.在医院调查了1000名老年人的健康状况
C.调查了10名老年邻居的健康状
D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.设计意图:促进学生理解抽样的必要性和样本的代表性.2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B.个体是每一个学生
C.样本是40名学生 D.样本容量是40
设计意图:回顾复习相关概念.3.为了了解全校学生的平均身高,王一调查了自己座位旁边的五位同学,把这五位同学的身高的平均值作为全校学生平均身高的估计值.(1)王一的调查是抽样调查吗?
(2)如果是抽样调查,指出调查的总体、个体、样本和样本容量;
(3)这个调查结果能较好的反映总体的情况吗?如果不能,请说明理由.设计意图:回顾抽样调查的几个基本概念,强化抽样调查中样本的代表性.
第三篇:立体几何起始课教学设计
《立体几何起始课》教学设计 北京市三里屯一中 刘长海
【教材分析】
立体几何是研究三维空间中物体的形状、大小和位置关系的一门数学学科,而三维空间是人们生存发展的现实空间.所以,学习立体几何对我们更好地认识、理解现实世界,更好地生存与发展具有重要的意义.本章内容是义务教育阶段“空间与图形”课程的延续与提高,重点是帮助学生逐步形成空间想象能力.为了符合学生的认知发展规律,培养学生对几何学习的兴趣,增进学生对几何本质的理解,本章在内容的编排及内容的呈现方式上,与以往的处理相比有较大的变化.本章内容的设计遵循从整体到局部、从具体到抽象的原则,强调借助实物模型,通过整体观察、直观感知、操作确认、思辨论证、度量计算,引导学生多角度、多层次地揭示空间图形的本质;重视合情推理与逻辑推理的能力,注意适度形式化;倡导学生积极主动、勇于探索的学习方式,帮助学生完善思维结构,发展空间想像能力.(1)立体几何初步的教学重点是帮助学生逐步形成空间想象能力.我们提供了丰富的实物模型和利用计算机软件呈现的空间几何体,帮助学生认识空间几何体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,掌握在平面上表示空间图形的方法和技能.
(2)因为学生在学习立体几何之前学习过平面几何,平面几何与立体几何研究的对象又都来自于日常空间的抽象,并且研究的对象有部分重叠,因此学生在学习立体几何过程中一定会受平面几何知识的影响.又因为平面几何中的结论不能原封不动地搬到立体几何中,有的在立体几何中还成立,而有的却不成立,但在立体图形的一个平面上,平面几何的所有结论又全都可用.因此,在立体几何起始课上,有必要向学生讲清这一点,为后续学习扫清障碍.
(3)我们在教学过程中恰当地使用现代信息技术展示空间图形,为理解和掌握图形几何性质的教学提供形象的支持,提高学生的几何直观能力.
【教学目标】
1.知识与技能目标
学生明确学习立体几何的目的,初步了解立体几何研究的内容;学生初步建立空间观念,会看空间图形的直观图;学生了解平面几何与立体几何的联系与区别,初步了解立体几何研究问题的一般思想方法.2.过程与方法目标
通过动手试验、互相讨论等环节,学生形成自主学习、语言表达等能力,以及相互协作的团队精神;通过对具体情形的分析,归纳得出一般规律,学生具备初步归纳能力.3.情感、态度与价值观目标
通过设立多种情景引入方式,激发学生学习立体几何的兴趣,通过自主学习、自我探索,形成注重实践、勇于创新的情感、态度与价值观.【重点难点】
重点:初步了解立体几何研究的内容,培养空间想象能力,了解立体几何研究问题的一般思想方法.难点:克服平面几何的干扰,了解平面几何与立体几何的联系和区别,初步了解立体几何研究问题的一般思想方法.【学情分析】
学生在义务教育阶段学习“空间和图形”时,已经认识了一些具体的棱柱(长方体,正方体),对圆柱、圆锥和球的认识也比较具体、直观,同时还学习了一种空间几何体的平面表达方法——三视图,三视图的学习对空间想象能力的培养有很高的价值.
学生的一些惯性思维也会对立体几何的学习形成障碍,学生考虑问题时,思维可能会停留在平面上,缺少在三维空间条件下进行思考的习惯.
【教法分析】
1.由于是起始课,因此多采取直观的演示幻灯片、使用书本、铅笔、木棒、立方体等模型,直观感知、操作确认,避免过度抽象.思辩论证、度量计算等手段在后续课程中再采用;
2.鼓励学生通过动手实验、独立思考、相互讨论等手段得出结论,鼓励学生表达自己的见解,教师只做必要的引导和总结;
3.从多种具体情形出发,引导学生归纳出一般规律,培养学生的归纳总结能力;
4.采用模型或软件,使学生的想法能够即时得到实现,所想即所见,快速形成正确认知,提高教学实效性.【教学过程】
(一)课堂引入(为什么要学习立体几何?)问题1: ①是否存在三条直线两两互相垂直?若存在,请举出实际中的例子.②到一个定点距离等于定长的点的轨迹是______.③用5根长度相等的木棒(或火柴)搭正三角形,最多搭成几个正三角形?用6根呢?
(学生讨论,动手操作,教师巡视,并参与其中,然后请学生回答.)生 ①存在.教室墙角处的三条直线两两互相垂直.②在平面上是圆,在空间中是球.③5根长度相等的木棒(或火柴)可最多搭成2个正三角形.6根长度相等的木棒(或火柴)搭成三棱锥,可最多搭成4个正三角形.师 大家回答得都很好!这表明在现实世界中只研究平面问题是不够的,我们必须“冲出平面,走向空间,迎接挑战,有信心吗?” 生 有!
(用生动有趣的问题创设情境,以达到引入新课的目的.)
(二)研究探讨(立体几何主要研究哪些问题?)问题2平面几何的研究对象、内容是什么?
(学生回答,教师补充.对象:平面图形.内容:点、线的位置关系、图形的画法、相关计算及应用.)
立体几何的研究对象、内容是什么? 生 立体几何的研究对象:空间图形.师 人们在建造房屋、修建水坝、研究晶体的结构、在计算机上设计三维动画等都需要立体几何.我们需要进一步了解我们生活的空间,这就是我们学习立体几何的目的.(提出以下几个问题,然后小结.)
(1)比较图
1、图2,哪个更像正方体?
生 图2.因图2都是实线,像是平面图形.(2)在图1在指出∠A1D1C1、∠A1AD的大小..生 它们都是直角
(3)在图1中,点B1在直线AD上吗?直线BB1与直线CD相交吗? 生 点不在直线上,直线与直线不相交.这表明空间图形与平面图形在画法上的差异,在直观图中判断图形的形状不能沿用平面的眼光,要看得“深远”,要有立体感.(4)在图1中,设AB=1,求四边形ABCD的面积以及正方体的体积.生 四边形的面积是1,正方体的体积也是1.师 由此,我们知道立体几何的研究对象:空间图形;内容:空间图形的画法,点、线、面的位置关系,计算角的大小,线段长短,面积、体积的大小.1.直观图
例1 我们看下面的两幅图,他们有什么区别?请你分别用书和笔表示出来.
(三)思想方法(如何学习立体几何?)1.转化思想
例2 例2.如图,在长方体中ABCD-A1B1C1D1,AB=3.AD=2,AA1=1.①求的BD1长;
②求∠DBD1的正弦值.师 对.把所要求的两个量转化到一个三角形中求解,即把空间问题转化为平面问题,便于计算求值.例3 在例2长方体的顶点有一只小蚂蚁,沿表面爬到顶点,最短路程是多少?
(学生思考、讨论)
师 很好.这是一道难度较大的题,小蚂蚁到底能不能想出办法,关键在于是否能够考虑到把本来不在同一平面的问题转化为同一平面问题求解.在立体几何中,需要计算空间图形里角的大小、线段的长度等,通常采取的方法就是把空间问题转化成平面问题,即转化思想.课堂练习
(1)如图,三棱锥S-ABC中,底面ABC是等边三角形,SA=SB=SC=a,∠ASB=∠BSC=∠CSA=30°,一只蚂蚁从顶点A出发绕侧面一周再回到A的最短距离是多少?
课外练习
(1)几何学是随着人类文明的进步而发展起来的.自公元前1800年左右的古埃及,因尼罗河的泛滥要求丈量土地的面积到如今从土木建筑到家居装潢,从机械设计到商品包装,从航空测绘到零件视图„„空间图形与我们的生活息息相关.请同学们查阅资料,了解几何学的发展进程.(2)链接高考(2013高考北京理第14题)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.
【教后反思】
序言课的主要任务是揭示这门学科研究的对象、内容、解决问题的思想方法,它具有承前启后的作用.上好序言课,对学生学好这门学科有着十分重要的作用.立体几何起始课,如何上呢?我们要从学生身边的“存在”讲起,引导学生观察身在其中的教室、校园,从中选取我们要学习的空间点、线、面、体.这样引入立体几何,学生感到自然、亲切,从而使学生产生学习的兴趣和信心.(1)通过本节课的教学,使学生初步建立空间概念,使学生的视野由平面发展到空间.不过于追求学生数学语言的科学和严谨,而是力求使学生感受体会立体几何的体系和研究思想,不是一开始就让抽象的符号语言把学生吓住,而是使学生感受到立体几何就在身边.在授课过程中,充分考虑学生的认知水平和学习能力,注重了从学生已有的知识出发设计问题.如在立体几何研究的内容中,通过学生熟知的正方体、长方体、圆柱、圆锥等的直观图,使学生深刻认识到了空间图形与平面图形在画法上的差异;通过对长方体、正方体的简单运算,向学生说明了在研究空间图形时不能只依据直觉做出判断,要充分利用平面几何的知识.这部分教学设计,深入浅出,阐明了立体几何研究的内容;在数学思想方法中,用具体的、学生熟悉和感兴趣的例子揭示本质.(2)新课标强调学生的数学学习活动不应只限于接受、记忆、模仿和练习,还应倡导自助探究、动手实践、合作交流等方式.所以新课程下的课堂应当是学生独立思考、自主探究和师生互动的学习过程.教学内容的问题化、教学过程的探索化能激发学生兴趣、调动课堂气氛,使课堂教学成为在教师指导下的探索学习过程.如在引入中通过小实验,创设了学习情境,激发了学生兴趣;在数学思想方法中,在学生已有的平面几何知识的基础上,从问题入手,在解决问题中,培养学生空间想象能力.学生经历的是探索的过程,领悟的是数学学习的方法,得到的是自主探究的结果,体验的是实践成功的喜悦.总之,本节教学案例的教学内容设计中重视从学生已有的平面几何知识入手,利用模型和幻灯片,启发、引导学生积极探索,大胆实践,极大地激发了学生学习的积极性和创造性,使抽象的起始课上得具体、生动,内容丰富.既使学生获得了知识,又培养了学生的能力.为学生学习立体几何创造了一个良好的开端,成功地拉开了立体几何教学的帷幕.参考文献
[1] 贾海燕.良好的开端等于成功的一半——如何上好每一章起始课.高中数学教与学.[2] 文卫星.立体几何引言课教学设计.数学通报.[3] 陶维林.研究章引言上好起始课.中国数学教育.[4] 李建标,吴建洪.快乐地学习立体几何——从“空间几何体的结构”开始.数学通讯.《立体几何起始课》点评 江苏省数学特级教师 吴 锷
姚圣海老师的《立体几何起始课》的教学特点主要可归纳为以下几点:
1.教学设计结构严谨,富有新意
本节课的教学设计没有沿用课本的素材,而是通过题组1,学生从问题和游戏中感受到了空间问题和平面问题的不同,让学生产生了“冲出平面,走向空间”的欲望.而题组2,苏州元素的引入,让学生倍感立体几何就在我们身边,正方体中的点、线、面为学生勾勒出立体几何所研究的宏伟蓝图.其后三个例题构成的题组3,让学生真真切切体会了在空间中是怎样研究几何问题的思考方法.这样的设计,结构严谨,富有新意.
2.教学过程自然流畅,水到渠成
教学过程中教师借助模型,创设情景,通过对精心设计、层层推进的问题串,引发探究,让学生了解立体几何研究的内容,并通过直观感知、操作确认的方式帮助学生建立立体感,一系列有效的师生互动,使学生了解平面几何与立体几何的联系与区别,初步了解立体几何研究问题的一般思想方法,教学过程可谓自然流畅,水到渠成.
3.追求数学本真,突出思想方法
姚老师在本节课的教学中,特别注重数学直觉,追求数学本真。从游戏棒搭建三棱锥、正方体的线面关系到蚂蚁在长方体表面上爬行的最短距离,都是以具体几何模型为载体,激发学生开展活动,结合观察、思考、讨论、归纳,处处渗透重要的数学思想方法,如类比的思想、划归思想.注意到了培养学生对现实世界中蕴涵的一些数学模式进行思考和做出理性的判断,鼓励学生能够应用数学的观点、方法与语言去提出、分析和解决问题.
数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
第四篇:“随机抽样”教学设计及反思
“随机抽样”教学设计及反思
浙江省杭州市余杭高级中学 吴寅静
①统计和概率的基础知识是一个未来公民的必备常识,它是中小学数学课程的重要内容.
在高中阶段,统计的学习从《必修3》第二章开始,本节课是开篇.好的开端等于成功的一半,因此本课很重要.笔者有幸承担本次课题会研究课的教学任务,在接受专家、同行的点评和指导中,对高中阶段的统计教学有了更深的认识.
下面分教学准备、教学设计和教后反思与大家共享我的心得.
教学准备
接到任务后,笔者首先查阅了一些统计论著.可惜,统计专业知识介绍的书籍多,统计教学的论著少之又少.这也从一个侧面反映了我国对中学统计教学研究的不足.
一、教什么
起始课究竟上什么内容?笔者征询了同事们的意见,绝大多数人认为,由于义教阶段学生对全面调查、抽样调查、样本、样本容量等概念都已很熟悉,没必要再纠缠.因此,第一堂课除了简单介绍本章学习内容以及随机抽样的必要性和重要性外,应将“2.1.1简单随机抽样”作为重点,这样整堂课就比较充实,不至于没有内容可讲.也有人认为,《教师教学用书》建议“2.1随机抽样”约为5课时,因此第一课时应只介绍随机抽样而不必涉及抽样方法.
笔者在听取了这些建议,经过再三思考后,决定把本课的教学内容定位于章引言和“随机抽样”的开篇,但不涉及具体抽样方法.理由如下:
1.章引言是整章内容的概括和介绍,既有先行组织者的作用,同时也能以此引出本课需要学习的内容.作为起始课,章引言的作用不可忽略.
2.虽然学生在小学、初中都学过统计,但对为什么要随机抽样,怎么进行随机抽样等的认识还不足.
3.作为统计的起始课,更重要的是让学生通过一些具体的实例感受随机抽样的必要性和重要性,而不是介绍一些具体的抽样方法.
二、怎么教
上述内容定位对教师提出的最大挑战就是如何寻找合适的素材,这个素材既要贴近学生的生活,又能让学生比较容易地参与到抽样活动中,在活动中体会随机抽样.几经选择后,笔者从教材中近视率的背景图中得到启发,设置了一系列关于调查学生近视率的问题串,以此开展整堂课的教学.整个教学过程分解为以下几个部分: 1.通过章头图提供的信息让学生感受数据,提出质疑即:这些数据是怎么来的?
2.让学生调查班级的近视率,感受普查的作用.
3.通过调查年级和全市高一学生的近视率,感受抽样调查的必要性,感受如何才能使样本具有代表性.
4.在小组讨论和师生交流中体会统计结果的不确定性.
5.在小结中结合章头图进行总结回顾,引出本章的知识框架.
教学设计
一、内容和内容解析
1.内容
本课主要内容是让学生了解:认识客观现象的第一步就是通过观察或试验取得观测资料,然后分析这些资料来认识此现象.获取有代表性的观测资料并正确地加以分析是正确认识未知现象的基础,也是统计所研究的基本问题.
2.内容解析
本课是高中统计的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在义教阶段已学了收集、整理、描述和分析数据等处理数据的基本方法.高中的统计学习将逐步让学生体会确定性思维与统计思维的差异,了解统计结果的随机性特征,知道统计推断可能出错.统计有两种:一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如人口普查.但在很多情况下我们无法采用描述性统计对所有个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常大,或者质量检查具有破坏性.
抽样调查是收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用样本数据来推断总体.其中蕴涵了重要的统计思想——样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则是保证样本能很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.
本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.
二、目标和目标解析
1.目标
(1)通过具体案例的分析,逐步学会从现实生活中提出具有一定价值的统计问题;
(2)结合实际问题情境,理解随机抽样的必要性和重要性,深刻理解样本的代表性.
2.目标解析
章引言列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.通过具体实例,引导学生尝试从实际问题中发现并提出统计问题.以培养学生从现实生活或其他学科中发现问题、提出问题的能力、意识和习惯.
对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大.出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查.教学中要通过一定实例让学生体会随机抽样的必要性和重要性.为了使由样本到总体的推断有效,样本必须是总体的代表.在对实例的分析过程中,探讨获取有代表性的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.
三、教学问题诊断分析
学生在初中已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对设计合理的抽样方法,以使样本具有好的代表性的意识还不强.在已有学习中,学习内容多以确定性数学为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学;这里,我们要通过具体问题,让学生体会统计的重要思想——用样本估计总体以及统计结果的不确定性.因此,学生已有知识经验与本节要达成的教学目标之间有较大差距.主要的困难有:对样本估计总体的思想、对统计结果的“不确定性”产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.
教学中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批灯泡的寿命等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本等,这样可以培养学生提出统计问题的能力.
因此,本课的教学难点是:理解怎样的抽样才是随机抽样,如何抽样才能更好地代表总体.
四、教学支持条件分析
准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.
五、教学过程设计
(一)感悟数据、引入课题
问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?
师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?
设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.
问题2:我们班级有很多同学都是戴眼镜的,你知道我们班的近视率吗?你是怎么知道的?
设计意图:通过与学生比较贴近的案例,让他们体会统计与日常生活的关系.
(二)操作实践、展开课题
问题3:如果我想了解我校所有高一学生的近视率,你打算怎么做呢?
师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.
设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.
问题4:你认为下列预测结果出错的原因是什么?
在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(A.Landon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:
设计意图:通过案例让学生进一步体会到:在抽样调查中,样本的选择是至关重要的,样本能否代表总体,直接影响着统计结果的可靠性.
问题5:如果要调查下面这几个问题,你认为应该作全面调查还是抽样调查?大家对普查和抽样调查是怎么看的?普查一定好吗?请举例.
(1)了解全班同学每周的体育锻炼时间;
(2)调查市场上某个品牌牛奶的含钙量;
(3)了解一批日光灯的使用寿命.
设计意图:通过普查和抽样调查的比较,使学生感受抽样调查的必要性和重要性.
问题6:如果我们想了解晋中市高一学生的近视率,你认为该怎么做呢?
师生活动:以2人小组为单位进行讨论,说出比较可行的抽样方案.
问题7:是否可以用晋中市高一年级学生的近视率来估计山西省高中生的近视率?为什么?
师生活动:教师继续让学生进行小组讨论,引导学生从样本容量以及样本抽取需要考虑的要素,如:学生的层次(高
一、高
二、高三),学生生活的环境(城市、县镇、农村)等.教师对学生的回答进行归纳、整理,与学生一起讨论出比较可行的抽样方案.
设计意图:通过进一步的追问,加深学生对样本代表性的理解.让学生进一步认识到:在多背景下的抽样会产生偏差,以及样本的随机性与样本大小在产生有代表性的样本中的作用,同时对后面的内容进行简单介绍.
(三)总结拓展、提升思想
问题8:请你用简要的语言说说自己在本节课的收获.
师生活动:引导学生从怎样学会提出统计问题?抽样调查与普查的优缺点?样本的代表性与统计推断结论之间的关系等方面进行总结和回顾.教师结合章头图对这一章的框架进行简单的介绍,引导学生建构知识体系.
设计意图:总结回顾,巩固课堂知识、初步概括统计思想.
六、目标检测设计
1.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()
A.在公园调查了1000名老年人的健康状况
B.在医院调查了1000名老年人的健康状况
C.调查了10名老年邻居的健康状
D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.
设计意图:促进学生理解抽样的必要性和样本的代表性.
2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B.个体是每一个学生
C.样本是40名学生 D.样本容量是40
设计意图:回顾复习相关概念.
3.为了了解全校学生的平均身高,王一调查了自己座位旁边的五位同学,把这五位同学的身高的平均值作为全校学生平均身高的估计值.
(1)王一的调查是抽样调查吗?
(2)如果是抽样调查,指出调查的总体、个体、样本和样本容量;
(3)这个调查结果能较好的反映总体的情况吗?如果不能,请说明理由.
设计意图:回顾抽样调查的几个基本概念,强化抽样调查中样本的代表性.
教学反思
上完课后,许多听课的教师都对这堂课提出了自己不同的看法,同时也促使笔者进一步思考,究竟该如何来上好这一堂课.
一、如何利用章引言
在人教A版教材中每一章的开头都有章头图和章引言,统计也不例外.对于一线教师来说,章引言的作用以及如何用好章引言都是值得探讨的问题.
1.章引言的作用
统计的章头图、章引言包括日常生活中的一些数据,如缺水量、沙漠化以及相关的一些图表等,还有对本章内容的文字介绍.这些信息的作用在哪里,如何在起始课中把这些信息传递给学生成为笔者首要考虑的问题.在与教研员和同行的探讨中,我们认为统计的章引言有以下几点作用:
(1)沙漠化的图片以及文字说明可以让学生体会到有些数据无法普查,只能通过抽样调查来得到,这还渗透着环保意识.
(2)十大城市缺水量的图表及相关文字既回顾了初中的统计图表,同时也为学习“用样本估计总体”埋下伏笔.
(3)章头图中三个章节的标题以及整个文字介绍对整章起着统领作用.
2.章引言的教学思考
鉴于上述三点作用,对于章引言的教学我们采取了以下做法:
(1)充分利用章头图、章引言中的数据和图片如沙漠化、我国缺水量排名等,在让学生增强环保意识的同时能更为理性地关注数据的来源及其真实性,学会质疑、通过质疑引入本节课的课题,同时也让学生体会到学习这一知识的必要性.
(2)由于章引言中有些概念学生尚未学习,不适宜在课堂一开始就介绍,将其放在课堂小结之后,教师引导学生进行知识框架的构建,可能效果更好.
3.章引言教学效果的分析
自我感受是章引言的作用没有很好的体现,原因在于:
(1)没有考虑学生已有的认知基础.笔者本以为在上课一开始给出沙漠化等数据后,学生会对数据的来源产生质疑,但是几乎全班同学都肯定地认为这个数据是通过抽样调查得到的.
(2)由于上课的节奏没有把握好,没能利用章引言帮助学生构建好知识框架,我自己在课堂上也没有进行很好地解读.
二、如何体现螺旋上升
上完这一节课后,部分听课教师认为这节课似乎是把初中的统计课重上了一遍.新课程实施后,学生从小学一年级就开始学习统计,到初中什么是统计,如何进行数据的收集、整理与描述已有较多的体验,什么是普查、抽样调查、样本、样本容量等概念也都已经比较清晰.而“2.1随机抽样”的教学内容也就是这一些,听课教师有此感受实属正常.
笔者在上这一堂课的时候也存在着这个困惑.对于高中的统计内容,从随机抽样到用样本估计总体、两个变量的相关关系以及选修IA中的统计案例,知识上的螺旋上升比较明显,但是从小学、初中、高中统计学习的螺旋上升框架却并不明晰.比如“随机抽样”中概念、内容基本上都是学生初中已学过的,甚至教材上“一个著名案例”在有些初中教材中也曾出现过.针对这个情况,笔者确定将教学重心落在让学生体会随机抽样的必要性和重要性上,通过课堂的实践操作让学生进一步体会为什么要抽样,如何进行抽样,并在对抽样的比较中体会样本的随机性和统计结果的不确定性.这些在初中的统计教学中没有得到强化,同时也成为本节课值得提升的内容.
课堂实践后,从听课教师的反应来看,这个螺旋上升还没有得到很好的体现,究其原因:
1.教学设计中各个教学环节的设计意图不够明晰.
2.教学过程中强调了学生的参与,教师有效的归纳、总结、提升相对缺乏.
3.没有将理念性的信息通过有效的载体显现,教学中的问题链未达到需要达到的教学层次.
三、如何渗透统计思想
让学生不断体会统计思想是一个重要的教学任务.随机抽样中渗透统计思想是基本任务也是主要任务.笔者在本堂课的教学中也深切体会到了教学的困难.
1.思想是教不会的,它是学生在参与对具体的问题的实践和分析中逐步体会得到,如何寻找恰当、适时的问题或案例让学生进行有效的体会、研究、实践是一个重要问题.笔者在本堂课中通过让学生调查班级、年级、全市、全省中学生的近视率这一条主线进行随机抽样的教学,在让学生小组讨论、全班交流的过程中渗透统计思想.从课堂效果来看,这个教学载体并不是最佳的,但是笔者至今也尚未找到更好的教学载体.
2.概念教学应更多地采用归纳式教学,这对教师提出了极大的挑战.教师绝大多数是在“演绎”的教学中学习长大,我们在中学时所接受的学习方式会影响自己的教学方式.笔者也不例外,从小被演绎惯了,即使有意识地要让学生自己进行实践体会并逐步归纳,但是在教学中还是时不时地“滑向”演绎.
3.课堂的教学时间是有限的,如何在有限的时间内既让学生充分体验、感受统计思想,又能很好完成各项教学任务,提高教学效率,这将是笔者今后的努力方向,虽然做到这一点会很难.
最后感谢课题组专家、成员以及所有的听课教师提出的建议和意见,同时也希望这一堂课能起到抛砖引玉的作用,让更多的教师关注统计,关注统计教学,使这个现代公民必备的常识能在课堂上打下良好基础,并能促使学生学以致用.
第五篇:上好章起始课体会
上好章起始课体会
章起始课通常介绍本章的一些基本概念,从内容上讲较简单,因而它的教学常常被大多数老师忽视,实际上它有承上启下的衔接作用, 一方面,让学生了解学习本章的意义,对将学习的内容进行整体和全局的把握,从而有助于学生形成知识系统;另一方面,能引发学生的兴趣,调动积极性.简单随机抽样是高中数学统计内容的章起始课,因此本文将以“简单随机抽样”的教学设计为例,浅谈如何上好章起始课.一、与时俱进,引章起始
一、充分把握好起始阶段的教学“良好的开端是成功的一半”,这是新教材编写者的指导思想。七年级学生翻开刚拿到的数学课本后,一般都感觉新奇、有趣,想学好数学的求知欲较为迫切。因此,教师要不惜花费功夫,让学生在学习的起始阶段留下深刻的印象并产生浓厚的兴趣。如在教学第一章时,可让学生参与部分实验。
在本章结束后,可以利用课外活动举办一次自由形式的讨论,在讨论的过程中,可以问学生数学难学吗?数学有用吗?数学是不是都这样有趣?基础弱的同学能不能学好?对各种问题展开讨论,以诱发学生的学习兴趣。正如新教材所要求的目标:七年级数学起始阶段的教学,侧重在消除学生害怕的心理、提高学习兴趣上做文章,以数学的趣味性、教学的艺术性给学生以感染,使其像磁铁上的铁屑离不开磁铁一样,向往着教师,向往着数学。
二、求新、求活以保持课堂教学的生动性、趣味性七年级数学比较贴进生活实际,具有很强的知识性、现实性和趣味性。
教师:对于生活在信息爆炸时代的我们来说,时刻都与数据打交道,为了不被这些数据蒙蔽双眼,学习统计知识就显得非常必要了.本章我们就将初步学习数理统计,通过本章的学习,我们将学会如何合理的收集数据,以及如何合理利用这些数据,包括整理,计算,分析等,进而做出合理的估计推断.设计意图:这部分设计有三个亮点:首先,从时下热点话题引入,激发学生兴趣,体现出数学源于生活;其次,巧妙借助数学名言说明学习统计知识的必要性和重要性;最后,由教师言简意赅的说明本章将要学习的内容与思想方法.二、创设情景,引入课题
教师:小明妈妈让小明去买一斤橘子,小明回来后妈妈问:“橘子怎么样?”小明说:“都很甜.”“你怎么知道?”“我都尝过了.”
教师: 从统计学角度看小明用了什么方法获取数据?
学生:普查.教师:如果你是水果批发商要买100斤橘子,还能用上述方法判断橘子的质量么?
学生:不能,抽查.问题1:下面就请同学们思考普查和抽样调查的利弊,并试着举出用普查和抽查的实例.设计意图:通过小故事,激发学生兴趣,回忆初中统计中普查和抽查的概念,通过问题情境的变化,进行对比,说明抽查存在的必要性.三、合作探究,形成概念
问题2:某协会为了解兰炼一中全校学生视力情况,利用大课间对本校进行视力调查,请小组讨论设计出一种合理的调查方法,并说明理由.师生活动:四人一组讨论,每小组派一名代表展示设计方案.设计意图:让学生从该问题中思考如何科学合理地进行抽样,使样本能反映总体特点,样本具有代表性和公平性,从而顺其自然地过渡得出简单随机抽样的定义.四、归纳应用,深化理解
问题3:从简单随机抽样的概念中概括该抽样方法的特点?
例1下列抽取样本的方式是否属于简单随机抽样?
(1)从无限多个个体中抽取100个个体作样本;
(2)盒子中有80个零件,从中取5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后,再把它放回盒子里;
(3)从20件玩具中一次性抽出3件进行质量检查.设计意图:教师引导学生总结归纳出(1)有限性(2)不回性(3)逐个性(4)等率性的特点,加深对定义的理解.例1通过反例深化学生对概念的理解.五、理论迁移,探究方法
理论迁移1:某协会调查本班51名学生的视力情况,它打算抽样调查其中8名同学.问题4:此例中总体、个体、样本、样本容量分别是什么?并请阐述完成这项调查的具体做法.设计意图:首先回忆初中统计中关于随机抽样的几个概念,通过问题情景,让学生说出抽签法雏形,教师启发从而归纳出抽签法一般步骤:编号、制签、搅匀、抽签、取样,并结合上一章的算法设计,将其用流程图(如图1)加以表征,加深对知识的理解.理论迁移2:某协会继续调查高一年级584名学生的视力情况,他打算抽样调查其中60名同学.问题5:可否用抽签法?
设计意图:让学生感受到当总体容量比较大时,编号、制签都比较麻烦,进而找简化制签的方法――随机数表法.图2
问题6:如何利用随机数表法抽样?
设计意图:由老师讲授,学生和老师一起实践,由老师启发学生如何正确编号、如何用随机数表取数,并由学生归纳一般步骤:编号、定位、取数、取样,将其用流程图(如图2)加以表征.六、总结扩展,提升思想
教师:本节课我们主要学习了哪些内容?
教师:学习统计学的意义是什么?
教师:我们使用了哪些方法进行学习?
设计意图:使用渐进式提问学生的方式进行课堂小结,即学了什么(本节课所学的知识),为什么学(解决学习的目的),怎么学(掌握学习的方法,自主、合作、探究学习等)三个方面进行总结.杨聪杰 2018.05.08