第一篇:高中数学难点解析教案08 奇偶性与单调性(二)
高中数学辅导网
http://www.xiexiebang.com
高中数学难点解析 难点8 奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场
2(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式[flog2(x+5x+4)]≥0.
●案例探究
[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x-3)<0,设不等式解集为A,B=A∪{x|1≤x≤5},求函数g(x)=-3x2+3x-4(x∈B)的最大值.命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.解:由0x6得23x336x3x3
32且x≠0,故0
12)2-
134知:g(x)
2]都成立?若存在,求出符合条件
高中数学辅导网
http://www.xiexiebang.com 设t=cosθ,则问题等价地转化为函数g(t)=t-mt+2m-2=(t-1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正.∴当m22
m2)-
2m42+2m-2在[0,<0,即m<0时,g(0)=2m-2>0m>1与m<0不符;
m2当0≤≤1时,即0≤m≤2时,g(m)=-
m42+2m-2>0 4-22
本难点所涉及的问题以及解决的方法主要有:
(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练
一、选择题
1.(★★★★)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于()A.0.5
B.-0.5
C.1.5
D.-1.5 2.(★★★★)已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是()A.(22,3)C.(22,4)
二、填空题
3.(★★★★)若f(x)为奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则xf(x)<0的解集为_________.4.(★★★★)如果函数f(x)在R上为奇函数,在(-1,0)上是增函数,且f(x+2)=-f(x),试比较f(1323
B.(3,10)D.(-2,3)),f(),f(1)的大小关系_________.三、解答题
5.(★★★★★)已知f(x)是偶函数而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f(x)=(1)求a的值;
京翰教育http://www.xiexiebang.com/
a2112xx(a∈R)是R上的奇函数,高中数学辅导网
http://www.xiexiebang.com(2)求f(x)的反函数f(x);(3)对任意给定的k∈R+,解不等式f-1(x)>lg
1xk-
1.747.(★★★★)定义在(-∞,4]上的减函数f(x)满足f(m-sinx)≤f(12m-任意x∈R都成立,求实数m的取值范围.8.(★★★★★)已知函数y=f(x)=有最小值2,其中b∈N且f(1)<
52ax2+cos2x)对
1bxc(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)
.(1)试求函数f(x)的解析式;
(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案
难点磁场
解:∵f(2)=0,∴原不等式可化为f[log2(x2+5x+4)]≥f(2).又∵f(x)为偶函数,且f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上为减函数且f(-2)=f(2)=0 ∴不等式可化为log2(x2+5x+4)≥2
或log2(x+5x+4)≤-2 由①得x2+5x+4≥4 ∴x≤-5或x≥0 由②得0<x+5x+4≤2
252
① ② ③ ④
52
14得≤x<-4或-1<x≤由③④得原不等式的解集为 {x|x≤-5或5210≤x≤-4或-1<x≤
5210或x≥0} 歼灭难点训练
一、1.解析:f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)=-f(-0.5+2)= f(-0.5)=-f(0.5)=-0.5.答案:B 2.解析:∵f(x)是定义在(-1,1)上的奇函数又是减函数,且f(a-3)+f(9-a2)<0.∴f(a-3)<f(a2-9).1a31∴1a29
1∴a∈(22,3).2a3a9答案:A
二、3.解析:由题意可知:xf(x)<0x0x0 或f(x)0f(x)0x0x0x0x0 或 或f(x)f(3)f(x)f(3)x3x3京翰教育http://www.xiexiebang.com/
高中数学辅导网
http://www.xiexiebang.com ∴x∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3)4.解析:∵f(x)为R上的奇函数 ∴f(-23131323231)=-f(-),f()=-f(-),f(1)=-f(-1),又f(x)在(-1,0)上是增函数且->
3>-1.∴f(-13)>f(-1323)>f(-1),∴f(2313)<f(23)<f(1).答案:f()<f()<f(1)
三、5.解:函数f(x)在(-∞,0)上是增函数,设x1<x2<0,因为f(x)是偶函数,所以 f(-x1)=f(x1),f(-x2)=f(x2),由假设可知-x1>-x2>0,又已知f(x)在(0,+∞)上是减函数,于是有f(-x1)<f(-x2),即f(x1)<f(x2),由此可知,函数f(x)在(-∞,0)上是增函数.6.解:(1)a=1.(2)f(x)=2121xx(x∈R)f--1(x)=log21x(-1<x<1).1x(3)由log21x1x>log2
1xklog2(1-x)<log2k,∴当0<k<2时,不等式解集为{x|1-k<x<1};当k≥2时,不等式解集为{x|-1<x<1}.msinx4m4sinx727.解:12mcosx4 即74m12msin472msinx12mcosx42xsinx1,对x∈R恒成立, m331
m或m22∴m∈[
32,3]∪{
12}.8.解:(1)∵f(x)是奇函数,∴f(-x)=-f(x),即
ax2ax21bxc1ax21bxcbxcbxc
∴c=0,∵a>0,b>0,x>0,∴f(x)=
1bxabxbx2≥2
ab2,当且仅当x=
1a时等号成立,于是2ab2=2,∴a=b,由f(1)<2
521x得
a1b<
52即
b1b<
52,∴2b2-5b+2<0,解得
12<b<2,又b∈N,∴b=1,∴a=1,∴f(x)=x+.(2)设存在一点(x0,y0)在y=f(x)的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在y=f(x)
京翰教育http://www.xiexiebang.com/
高中数学辅导网
http://www.xiexiebang.com x021y0x0图象上,则
2(2x0)1y02x0消去y0得x0-2x0-1=0,x0=1±2.∴y=f(x)图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.2
京翰教育http://www.xiexiebang.com/
第二篇:单调性奇偶性教案
函数性质
一、单调性
1.定义:一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,若都有f(x1)f(x2),那么就说函数在..区间D上单调递增,若都有f(x1)f(x2),那么就说函数在区间D上单调递减。例1.证明fxx1在1,上单调递增 x
总结:
1)用定义证明单调性的步骤:取值----作差----变形-----定号-----判断 2)增+增=增
减+减=减
-增=减
1/增=减 3)一次函数ykxb的单调性 例1.判断函数y2.复合函数分析法
设yf(u),ug(x)x[a,b],u[m,n]都是单调函数,则yf[g(x)]在[a,b]上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减
1的增减性 x1性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表:
ug(x)
yf(u)
yf[g(x)]
增 增 减 减 增 减 增 减 增 减 减 增
例1.判断函数ylog2(x1)在定义域内的单调性
一、函数单调性的应用 1.比较大小
例1.若f(x)在R上单调递增,且f2a1f(a3),求a的取值范围
3例2.已知函数f(x)在0,上是减函数,试比较f()与f(a2a1)的大小
42.利用单调性求最值
1例1.求函数yx1的最小值
x
x22xa1例2.已知函数f(x),x1,.当a时,求函数f(x)的最小值
x2
11例3.若函数f(x)的值域为,3,求函数g(x)f(x)的值域
2f(x)
练习:1)求函数yx21x在0,的最大值
112)若函数f(x)的值域为,3,求函数g(x)f(x)的值域
2f(x)
3.求复合函数的单调区间 1)求定义域
2)判断增减区间 3)求交集
12例1.求函数yx2x3的单调区间
2练习:求函数yx22x8的单调增区间
4.求参数取值范围
例1.函数f(x)x22ax3在区间1,2上单调,求a的取值范围
二、奇偶性
1.判断奇偶性的前提条件:定义域关于原点对称 例1.奇函数f(x)定义域是(t,2t3),则t
.2.奇函数的定义:对于函数f(x),其定义域D关于原点对称,如果xD,恒有f(x)f(x),那么函数f(x)为奇函数。
3.奇函数的性质: 1)图像关于原点对称 2)在圆点左右单调性相同
3)若0在定义域内,则必有f(0)0
1奇函数的例子:yx,yx3,yx,ysinx
x4.偶函数的定义:对于函数f(x),其定义域D关于原点对称,如果xD,恒有f(x)f(x),那么函数f(x)为偶函数。
5.偶函数的性质: 1)图像关于y轴对称 2)在圆点左右单调性相反
偶函数的例子:yx2,yx,ycosx
6.结论:奇+奇=奇,偶+偶=偶,奇奇=偶,偶偶=偶,奇偶=奇
四、常见题型: 1.函数奇偶性的判定
4x2例1.判断函数f(x)的奇偶性
x22
例2.判断f(x)(x2)
2x的奇偶性 2x2.奇偶性的应用
例1.已知f(x)x5ax3bx8,f(2)10,则f(2)_______
例2.已知f(x)是奇函数,且当x0时,f(x)x(x2),求x0时,f(x)的解析式
例3.设f(x)是偶函数,g(x)是奇函数,且f(x)g(x)
3.函数单调性与奇偶性的综合应用
例1.设偶函数f(x)在[0,)为减函数,则不等式f(x)f(2x1)的解集是。
例2.已知函数f(x)是定义在实数集R上的函数,若f(x)在区间5,5上是奇函数,在区间0,5上是单调函数,切f(3)f(1),则()
A.f(1)f(3)B.f(0)f(1)C.f(1)f(1)D.f(3)f(5),例3.函数f(x)axb121,1是定义在上的奇函数,且 f()2251x1,求f(x),g(x)x11)求f(x)的解析式
2)判断函数f(x)在1,1上的单调性 3)解不等式f(t1)f(t)0
第三篇:奇偶性与单调性及典型例题
奇偶性与单调性及典型例题
函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.难点磁场
(★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数.案例探究
[例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0 (1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=-y是解题关键;对于(2),判定的范围是焦点.证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f()=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0 ∵0 ∴x2-x1<1-x2x1,∴0<<1,由题意知f()<0, 即f(x2) 结合0 本难点所涉及的问题及解决方法主要有: (1)判断函数的奇偶性与单调性 若为具体函数,严格按照定义判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.歼灭难点训练 一、选择题 1.(★★★★)下列函数中的奇函数是() A.f(x)=(x-1) B.f(x)= C.f(x)= D.f(x)= 2.(★★★★★)函数f(x)=的图象() A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.关于直线x=1对称 二、填空题 3.(★★★★)函数f(x)在R上为增函数,则y=f(|x+1|)的一个单调递减区间是_________.4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0(0 5.(★★★★)已知函数f(x)=ax+(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用反证法证明方程f(x)=0没有负数根.6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数.7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;(ii)存在正常数a使f(a)=1.求证: (1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m)+f(n)-1,且 f(-)=0,当x>-时,f(x)>0.(1)求证:f(x)是单调递增函数; (2)试举出具有这种性质的一个函数,并加以验证.参考答案 难点磁场 (1)解:依题意,对一切x∈R,有f(x)=f(-x),即+aex.整理,得(a-)(ex-)=0.因此,有a-=0,即a2=1,又a>0,∴a=1 (2)证法一:设0<x1<x2,则f(x1)-f(x2)= 由x1>0,x2>0,x2>x1,∴>0,1-e<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2) ∴f(x)在(0,+∞)上是增函数 证法二:由f(x)=ex+e-x,得f′(x)=ex-e-x=e-x·(e2x-1).当x∈(0,+∞)时,e-x>0,e2x-1>0.此时f′(x)>0,所以f(x)在[0,+∞)上是增函数.歼灭难点训练 一、1.解析:f(-x)= =-f(x),故f(x)为奇函数.答案:C 2.解析:f(-x)=-f(x),f(x)是奇函数,图象关于原点对称.答案:C 二、3.解析:令t=|x+1|,则t在(-∞,-1上递减,又y=f(x)在R上单调递增,∴y=f(|x+1|)在(-∞,-1上递减.答案:(-∞,-1 4.解析:∵f(0)=f(x1)=f(x2)=0,∴f(0)=d=0.f(x)=ax(x-x1)(x-x2)=ax3-a(x1+x2)x2+ax1x2x,∴b=-a(x1+x2),又f(x)在[x2,+∞单调递增,故a>0.又知0<x1<x,得x1+x2>0,∴b=-a(x1+x2)<0.答案:(-∞,0) 三、5.证明:(1)设-1<x1<x2<+∞,则x2-x1>0, >1且>0,∴>0,又x1+1>0,x2+1>0 ∴>0,于是f(x2)-f(x1)=+ >0 ∴f(x)在(-1,+∞)上为递增函数.(2)证法一:设存在x0<0(x0≠-1)满足f(x0)=0,则且由0<<1得0<-<1,即<x0<2与x0<0矛盾,故f(x)=0没有负数根.证法二:设存在x0<0(x0≠-1)使f(x0)=0,若-1<x0<0,则<-2,<1,∴f(x0)<-1与f(x0)=0矛盾,若x0<-1,则>0, >0,∴f(x0)>0与f(x0)=0矛盾,故方程f(x)=0没有负数根.6.证明:∵x≠0,∴f(x)=,设1<x1<x2<+∞,则.∴f(x1)>f(x2),故函数f(x)在(1,+∞)上是减函数.(本题也可用求导方法解决) 7.证明:(1)不妨令x=x1-x2,则f(-x)=f(x2-x1)= =-f(x1-x2)=-f(x).∴f(x)是奇函数.(2)要证f(x+4a)=f(x),可先计算f(x+a),f(x+2a).∵f(x+a)=f[x-(-a)]=.∴f(x+4a)=f[(x+2a)+2a]==f(x),故f(x)是以4a为周期的周期函数.8.(1)证明:设x1<x2,则x2-x1->-,由题意f(x2-x1-)>0,∵f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1=f(x2-x1)+f(-)-1=f[(x2-x1)-]>0,∴f(x)是单调递增函数.(2)解:f(x)=2x+1.验证过程略.难点8 奇偶性与单调性(二) 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场 (★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式[flog2(x2+5x+4)]≥0. ●案例探究 [例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤},求函数g(x)=-3x2+3x-4(x∈B)的最大值.命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.解:由且x≠0,故0 当0≤≤1时,即0≤m≤2时,g(m)=-+2m-2>0 4-2 综上,符合题目要求的m的值存在,其取值范围是m>4-2.●锦囊妙计 本难点所涉及的问题以及解决的方法主要有: (1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练 一、选择题 1.(★★★★)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于() A.0.5 B.-0.5 C.1.5 D.-1.5 2.(★★★★)已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是() A.(2,3) B.(3,) C.(2,4) D.(-2,3) 二、填空题 3.(★★★★)若f(x)为奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则xf(x)<0的解集为_________.4.(★★★★)如果函数f(x)在R上为奇函数,在(-1,0)上是增函数,且f(x+2)=-f(x),试比较f(),f(),f(1)的大小关系_________.三、解答题 5.(★★★★★)已知f(x)是偶函数而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f(x)=(a∈R)是R上的奇函数,(1)求a的值; (2)求f(x)的反函数f-1(x); (3)对任意给定的k∈R+,解不等式f-1(x)>lg.7.(★★★★)定义在(-∞,4]上的减函数f(x)满足f(m-sinx)≤f(-+cos2x)对任意x∈R都成立,求实数m的取值范围.8.(★★★★★)已知函数y=f(x)=(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.(1)试求函数f(x)的解析式; (2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案 难点磁场 解:∵f(2)=0,∴原不等式可化为f[log2(x2+5x+4)]≥f(2).又∵f(x)为偶函数,且f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上为减函数且f(-2)=f(2)=0 ∴不等式可化为log2(x2+5x+4)≥2 ① 或log2(x2+5x+4)≤-2 ② 由①得x2+5x+4≥4 ∴x≤-5或x≥0 ③ 由②得0<x2+5x+4≤得≤x<-4或-1<x≤ ④ 由③④得原不等式的解集为 {x|x≤-5或≤x≤-4或-1<x≤或x≥0} 歼灭难点训练 一、1.解析:f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)=-f(-0.5+2)= f(-0.5)=-f(0.5)=-0.5.答案:B 2.解析:∵f(x)是定义在(-1,1)上的奇函数又是减函数,且f(a-3)+f(9-a2)<0.∴f(a-3)<f(a2-9).∴ ∴a∈(2,3).答案:A 二、3.解析:由题意可知:xf(x)<0 ∴x∈(-3,0)∪(0,3) 答案:(-3,0)∪(0,3) 4.解析:∵f(x)为R上的奇函数 ∴f()=-f(-),f()=-f(-),f(1)=-f(-1),又f(x)在(-1,0)上是增函数且-> ->-1.∴f(-)>f(-)>f(-1),∴f()<f()<f(1).答案:f()<f()<f(1) 三、5.解:函数f(x)在(-∞,0)上是增函数,设x1<x2<0,因为f(x)是偶函数,所以 f(-x1)=f(x1),f(-x2)=f(x2),由假设可知-x1>-x2>0,又已知f(x)在(0,+∞)上是减函数,于是有f(-x1)<f(-x2),即f(x1)<f(x2),由此可知,函数f(x)在(-∞,0)上是增函数.6.解:(1)a=1.(2)f(x)=(x∈R)f--1(x)=log2(-1<x<1.(3)由log2>log2log2(1-x)<log2k,∴当0<k<2时,不等式解集为{x|1-k<x<1;当k≥2时,不等式解集为{x|-1<x<1.7.解:,对x∈R恒成立,∴m∈[,3]∪{}.8.解:(1)∵f(x)是奇函数,∴f(-x)=-f(x),即 ∴c=0,∵a>0,b>0,x>0,∴f(x)=≥2,当且仅当x=时等号成立,于是2=2,∴a=b2,由f(1)<得<即<,∴2b2-5b+2<0,解得<b<2,又b∈N,∴b=1,∴a=1,∴f(x)=x+.(2)设存在一点(x0,y0)在y=f(x)的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在y=f(x)图象上,则 消去y0得x02-2x0-1=0,x0=1±.∴y=f(x)图象上存在两点(1+,2),(1-,-2)关于(1,0)对称.函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场 (★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0. ●案例探究 [例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值.命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.解:由 且x≠0,故0 本难点所涉及的问题以及解决的方法主要有: (1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练 一、选择题 1.(★★★★)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于()A.0.5 B.-0.5 C.1.5 D.-1.5 2.(★★★★)已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是()A.(2,3) B.(3,)C.(2,4) D.(-2,3) 二、填空题 3.(★★★★)若f(x)为奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则xf(x)<0的解集为_________.4.(★★★★)如果函数f(x)在R上为奇函数,在(-1,0)上是增函数,且f(x+2)=-f(x),试比较f(),f(),f(1)的大小关系_________.三、解答题 5.(★★★★★)已知f(x)是偶函数而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f(x)=(a∈R)是R上的奇函数,(1)求a的值; (2)求f(x)的反函数f-1(x);(3)对任意给定的k∈R+,解不等式f-1(x)>lg.7.(★★★★)定义在(-∞,4]上的减函数f(x)满足f(m-sinx)≤f(- +cos2x)对任意x∈R都成立,求实数m的取值范围.8.(★★★★★)已知函数y=f(x)=(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.(1)试求函数f(x)的解析式; (2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案 难点磁场 解:∵f(2)=0,∴原不等式可化为f[log2(x2+5x+4)]≥f(2).又∵f(x)为偶函数,且f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上为减函数且f(-2)=f(2)=0 ∴不等式可化为log2(x2+5x+4)≥2 ① 或log2(x2+5x+4)≤-2 ② 由①得x2+5x+4≥4 ∴x≤-5或x≥0 ③ 由②得0<x2+5x+4≤ 得 ≤x<-4或-1<x≤ ④ 由③④得原不等式的解集为 {x|x≤-5或 ≤x≤-4或-1<x≤ 或x≥0} 歼灭难点训练 一、1.解析:f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)=-f(-0.5+2)= f(-0.5)=-f(0.5)=-0.5.答案:B 2.解析:∵f(x)是定义在(-1,1)上的奇函数又是减函数,且f(a-3)+f(9-a2)<0.∴f(a-3)<f(a2-9).∴ ∴a∈(2 ,3).答案:A 二、3.解析:由题意可知:xf(x)<0 ∴x∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3)4.解析:∵f(x)为R上的奇函数 ∴f()=-f(-),f()=-f(-),f(1)=-f(-1),又f(x)在(-1,0)上是增函数且- > - >-1.∴f(-)>f(-)>f(-1),∴f()<f()<f(1).答案:f()<f()<f(1) 三、5.解:函数f(x)在(-∞,0)上是增函数,设x1<x2<0,因为f(x)是偶函数,所以 f(-x1)=f(x1),f(-x2)=f(x2),由假设可知-x1>-x2>0,又已知f(x)在(0,+∞)上是减函数,于是有f(-x1)<f(-x2),即f(x1)<f(x2),由此可知,函数f(x)在(-∞,0)上是增函数.6.解:(1)a=1.(2)f(x)=(x∈R)f--1(x)=log2(-1<x<1.(3)由log2 >log2 log2(1-x)<log2k,∴当0<k<2时,不等式解集为{x|1-k<x<1;当k≥2时,不等式解集为{x|-1<x<1.7.解:,对x∈R恒成立,∴m∈[ ,3]∪{ }.8.解:(1)∵f(x)是奇函数,∴f(-x)=-f(x),即 ∴c=0,∵a>0,b>0,x>0,∴f(x)= ≥2,当且仅当x= 时等号成立,于是2 =2,∴a=b2,由f(1)< 得 < 即 < ,∴2b2-5b+2<0,解得 <b<2,又b∈N,∴b=1,∴a=1,∴f(x)=x+.(2)设存在一点(x0,y0)在y=f(x)的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在y=f(x)图象上,则 消去y0得x02-2x0-1=0,x0=1±.∴y=f(x)图象上存在两点(1+ ,2),(1- ,-2)关于(1,0)对称. 一道函数的奇偶性与单调性定义证明题 ax1f(x)x(a1).a1 ax11ax xf(x),所以f(x)为奇函数。(1)f(x)xa1a1 ax1(ax1)221(2)f(x)x,a1ax1ax1 因为a0,所以a11,所以0 所以f(x)的值域为(1,1).(3)任取x1,x2R,且x1x2,则 xx22,ax1 ax11ax2122f(x1)f(x2)x1x2x2x1 a1a1a1a1 2(ax11)2(ax21)2(ax1ax2) x1(ax11)(ax21)(a1)(ax21) xx因为a1,x1x2,所以a1a2,所以f(x1)f(x2)0,即f(x1)f(x2) 所以f(x)为R上的增函数。 函数的单调性,函数的奇偶性,反函数 [本周教学重点] 掌握函数单调性的定义,会用定义法证明函数的单调性及其步骤。 (1)设x1,x2是定义域上的任意两个值,且x1 (2)作差f(x1)-f(x2)并将其变形为可判断符号的形式; (3)判断f(x1)-f(x2)的正、负; (4)结论 理解函数奇偶性的定义及奇、偶函数定理,能判断、证明一些简单函数的奇偶性,会利用函数奇偶性求解有关函数问题。 (1)函数的定义域在数轴上关于原点对称,是函数具有奇偶性的必要条件。 (2)f(-x)=-f(x)f(-x)+f(x)=0f(x)是奇函数。 f(x)=f(-x)f(-x)-f(x)=0f(x)是偶函数。 由f(-x)=-f(x)或f(-x)=f(x)是侧重于函数解析式的变形去证明f(x)的奇偶性;而f(-x)+f(x)=0或f(-x)-f(x)=0是通过运算去证明f(x)的奇偶性,两种定义形式各具不同优势。 (3)若f(x)是奇函数且允许x=0,则f(0)=0,即f(x)的图象过原点。 (4)若f(x)既是奇函数,又是偶函数,则f(x)=0。 (5)同为奇函数,同为偶函数的两个函数之积是偶函数;一奇一偶两个函数之积是奇函数。 (6)定义在R上的任意一个函数f(x)都可表示为一个奇函数g(x)与一个偶函数h(x)的和。 即f(x)=g(x)+h(x),其中g(x)=[f(x)-f(-x)],h(x)= [f(x)+f(-x)]。 理解反函数的概念,掌握求反函数的方法步骤。 (1)由原函数y=f(x)求出它的值域; (2)由原函数y=f(x)反解出x=f- 1(y); (3)交换x,y改写成y=f-1(x); (4)用f(x)的值域确定f-1(x)的定义域。 [例题分析] 例1.证明函数f(x)= 在定义域上的单调性。 [分析与解答] 函数的单调性必须在定义域内进行考查。由x2+x≥0得f(x)定义域为(-∞,-1][0,+∞)。 函数定义域不是一个连续的区间,应分别考查在每一个区间上的单调性,用定义法证明时,只需任取x1 任取x1 == 当-∞ ∴ f(x1)-f(x2)>0,∴ f(x)是(-∞,-1]上的单调递减函数。 当0≤x1 >0。 ∴ f(x1)-f(x2)<0,∴ f(x)是[0,+∞)上的单调递增函数。 例2.函数f(x)是[0,+∞)上的单调递减函数,f(x)≠0且f(2)=1,证明函数F(x)=f(x)+在[0,2]上的单调性。 [分析与解答]函数f(x)没有给出解析式,因此对F(x)的函数值作差后,需由f(x)的单调性,确定作差后的符号。任取0≤x1 由F(x1)-F(x2)=f(x1)+-f(x2)-=f(x1)-f(x2)+ =[f(x1)-f(x2)]·[1-] ∵ 0≤x1 ∴ f(x1)-f(x2)>0,f(x1)·f(x2)>1,<1,1->0,∴ F(x1)-F(x2)>0,F(x)是[0,2]上的单调递减函数。 例3.证明函数f(x)=的奇偶性。 [分析与解答] 函数的奇偶性必须在其定义域内考查。 由 函数f(x)定义域为[-1,0)(0,1]。 ∴ |x+3|-3=x+3-3=x。即f(x)=,由f(-x)= =-f(x),∴ f(x)是奇函数。 例4.设f(x)是定义在R上的函数,对任意x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2),且f(x)不恒为0,证明 f(x)的奇偶性。 [分析与解答] 函数f(x)没有给出解析式,这就必须从定义域,法则,及f(x)不恒为0去分析,完成奇偶性的证明。由f(x)定义域为R,显然允许x=0,所以f(0)=0是f(x)的奇函数的必要条件。 令x1=x2=0,由f(x1+x2)=f(x1)+f(x2)得f(0+0)=f(0)+f(0),整理得f(0)=0,对任意x∈R,由f(x1+x2)=f(x1)+f(x2)知f(-x)+f(x)=f(-x+x)=f(0)=0,∴ f(-x)=-f(x),∵ f(x)不恒为0,∴f(x)不可能既是奇函数又是偶函数,所以f(x)是R上的奇函数。 例5.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3。 (1)求a,b,c的值;(2)用定义法证明f(x)在(0,1)上的单调性。 [分析与解答](1)∵ f(x)是奇函数,∴f(-x)=-f(x),即 =-,解出c=0,∴ f(x)=,∵ f(1)=2,∴ =2,∴ 2b=a+1。第四篇:一道函数的奇偶性与单调性定义证明题
第五篇:7函数的单调性函数的奇偶性反函数 教案