第一篇:简单的排列组合教案
二年级上册数学广角《简单的排列问题》教案
课时:第一课时
教材:人教版义务教育课程标准试验教科书二年级上册数学广角《排列和组合》,课本例1。
教学目标:
1、知识与能力:培养学生学习初步的观察、分析能力和有序全面思考问题的意识。
2、过程与方法:通过摆一摆、玩一玩等实践活动,了解有关简单的排列组合的知识。
3、情感、态度与价值观:培养学生大胆猜想、积极思维的学习方法,进一步激发学生学习数学的兴趣。
教学重点:
1、了解简单的排列知识。
2、能应用排列组合的知识解决实际生活中的问题。
教学难点:掌握简单的逻辑推理。
教学准备:数字卡片、课件。
一、创设情境,导入新课
孩子们,你们喜欢看《喜羊羊与灰太狼》吗?
(边出示课件2和3边讲解故事内容)
师:在这一天,灰太狼抓住了美羊羊,把她关在了狼堡里。灰太狼为了阻止喜羊羊去救美羊羊,他设计一扇“超级密码门”,装在自己的狼堡里。喜羊羊
师:那数字1、2、3一共可以摆出几个两位数啊?
生回答。
师:那同学们还有什么办法能够有顺序,不重复,不遗漏的摆出这些数呢?
如果学生不能及时的回答,进行下一步引入,师:刚刚我们采用的是确定十位的方法,我们还可以怎么做呢?
师:真是不错,还想出了一种新方法啊。真是爱动脑筋的小朋友。那好,有哪位同学可以来讲解一下呢? 师点名。
生:个位选1,十位可以选2或3(老师这是一定要听清楚学生的话语,纠正“和”“或”的概念)师引导
师:嗯,说的可真好。个位是1,十位是2,就组成了两位数21;个位是1,十位是3,就组成了两位数31。(板书:21,31)。不错,个位可以接着选几呢?
生:个位选2,十位可以选1或3; 师:哪组成的两位数是什么呢?
生:12,32。(老师板书:12,32)师:那个位还可以选几啊?
生:个位选3,十位可以选1或2;组成了两位数13,或23(老师板书:13,23)
师:同学们的表现可真好,已经想出了两种可以有顺便,不重复,不遗漏的摆法啊?还有同学能想出别的摆法吗?(师引导。在黑板上,将卡片1,2,3依次摆好)
师:老师第一次选数字1和2,我们组成了两位数12,再把12的个位和十位交换就是21啦,(板书12、21)1还可以和数字3组成两位数,那就是13,交换一下就是31了(板书:
13、31)
师:那数字2和3组成的两位数是什么啊? 生:23,32
师:通过刚才的学习,我们知道了数字1、2、3可以摆出几个数呢?
第二篇:排列组合教案
课题:数学广角—搭配
(二)第一课时 简单的排列问题 授课教师:魏亚楠
教学内容:教材101页例1及做一做第1题、第2题、104页练习二十二第1题 教学目标:
1、通过观察、猜测、实验等活动,使学生找出简单事物的排列和组合方式。
2、经历探索简单事物排列组合的过程,培养初步的观察,分析和推理的能力以及有顺序地全面思考问题的意识。
3、在解决实际问题的过程中,体验成功的乐趣,激发学生学习数学的乐趣。教学重点:经历探索简单事物排列组合的过程,学会有序思考的方法。
教学难点:让学生初步感悟简单的排列组合的数学思想方法,用有序思考的方法解决实际问题。
教学过程:
一、探究新知
(一)创设问题情境
师:今天我们要学习的内容是数学广角中的简单排列组合问题。
(二)提出研讨问题
1、回忆下二年级的时候有没有学过两位数的排列组合呢?
要求:无重复、无遗漏
2、现在老师手里有三张卡片1、3、5 请同学们想想怎么将这三个数排列为没有重复的两位数呢?
3、现在老师手里又多了一张卡片“0”请结合刚学过的表示方法,看一看能排列出多少个无重复的两位数呢?
(三)提出研讨要求
师:请大家拿出笔和纸和老师一起验证一下。
(四)暴露学生资源
预设①:01、03、05、10、13、15、30、31、35、50、51、53 共12种 预设②:10、30、50、13、31、15、51、35、53 共9种
预设③:十 个(固定十位法)预设④:十 个(固定个位法)1 0 1 3 1 5 3 0 3 1 3 5 5 0 5 1 5 3 共9种
(五)组织互动研讨 3 5 3 5 1
0 0 0 1 1 3
3 1 5 共9种
同学们我们在上二年级的时候有没有学过两位数的排列组合呢,不记得也没关系,今天老师就带领大家,在回忆一下~
看老师手里有两张卡片,3、5 同学们如果我将这两个数字用“个十”的表示方法进行排列的话,会有几种排列结果呢,在这里老师有一个要求:就是要做到无重复,无遗漏!首先我们可将3放在十位上,那么5就在各位上,这样的组合结果为35。接下来我们将5放在十位上,3放在个位上,那么这样的组合结果为53。通过交换两个数字的位置就可以得到不同的排列结果,这样的方法我们可以将它定义为:交换法。
同学们刚才老师是针对两个数字进行的排列,那同学们想一想如果是三位数字,怎么将他们进行排列,才能做到无重复,无遗漏呢?
现在老师手里有三张卡片 1、3、5,接下来请同学们想想怎么将这三个数排列为没有重复的两位数呢?
我们可以先把其中一个数固定不变,剩下的两个数拿来分别组合。同样我们用“个十”的表示方法进行排列,首先我们可以先将1固定不变,放到十位上,那么就可以将剩下的3、5分别和1进行组合,这样我们就找到了两个十位数13和15。接下来我们再将3固定不变放到十位上,就可以得到31和35两个十位数。最后我们将5固定不变放到十位上也可以得到两个十位数,51和53,这样我们就得到了6个无重复且无遗漏的两位数。分别是13、15、31、35、51、53有没有细心的同学观察到,老师总是将固定不变的数放到十位上呀,那么放到个位上,是不是同样能够得到上面的数字,并且得到的结果是不是一样呢,下面我们就一起来验证一下。综合两种组合结果,我们又可以得到两种排列方法:固定十位法、固定个位。
接下来老师要考考你们了,现在老师手里又多出了一张卡片0 1 3 5 请结合咱们以上学过的三种方法将这四张卡片用“个十”的表示方法,看一看能排列出多少个无重复的两位数呢。
四、课堂小结
同学们,这节课大家一起发现排列组合问题的一些规律。我们在解决此类问题的时候一定要做到有序、全面思考,做到不重复不遗漏。排列的问题在生活中有着广泛的应用,还有更多的规律我们没有发现,老师相信你们,一定会动脑筋找到和解决这些数学问题的规律。
板书设计:
简单的排列问题
0不能作最高位
有序、全面
第三篇:《排列组合》教案
《排列组合》教学设计
上泉小学赵泽旻
一、教学目标
知识目标:通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
能力目标:经历探索简单事物排列与组合规律的过程,培养学生有顺序地、全面思考问题的意识。
情感价值观目标:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。
二、教学重难点
教学重点:经历探索简单事物排列与组合规律的过程。突破方法:通过创设情境,自主探究突破重点。教学难点:初步理解简单事物排列与组合的不同。突破方法:通过合作交流、探讨突破难点。
三、教学准备
课件、数字卡片、数位表格
四、教学方法与手段
1.从生活情景出发,结合学生感兴趣的动画故事为学生创设探究学习的情境。
2.采用观察法、操作法、探究法、讲授法、演示法等教学方法,通过让学生动手操作、独立思考和开展小组合作交流活动,完善自己的想法,努力构建学生独特的学习方式。
3.通过灵活、有趣的练习,如:握手、拍照等游戏,提高学生解决问题的能力,同时寻求解决问题的多种办法。
五、教学过程
(一)创设情境,激发兴趣
1.故事导入:灰太狼抓走了美羊羊,为了阻止喜洋洋来救,设置了门锁密码,要想闯关成功,要了解一个知识—搭配,揭示课题。2.猜一猜 第一关的密码是由1、2两个数字组成的两位数,个位上的数字比十位上的数字大,这个密码可能是多少?
(二)动手操作,探索新知 1.过渡谈话,引出例 1 灰太狼增加了难度,在第二关设置了超级密码锁,密码是 1、2 和 3 组成的两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?”(课件出示例 1)2.尝试学习,自主探究
(1)引导理清题意:你都知道了什么
(2)指导学法:你有什么办法解决这个问题?
(3)动手操作:分发3张数字卡片,任意选取其中两张摆一摆,组成不同的两位数。鼓励学生动脑,找规律去摆,比一比谁摆的数多而不重复。
3.小组交流,展示成果
(1)小组交流:学生自主摆完后,小组交流讨论,探讨排列的方法。
(2)展示成果:指名上黑板展示。4.交流摆法,总结规律
① 交换位置:有顺序的从这 3 个数字中选择 2 个数字,组成两位数,再把位置交换,又组成另外一个两位数
② 固定十位:先确定十位,再将个位变动。③ 固定个位:先确定个位,再将十位变动。小结:以上这些办法很有规律,他们的好处:不重复,不遗漏,有顺序。
5.区分排列和组合
握手游戏:每两个人握一次手,3个人握几次手?
这些与顺序有关的问题,我们叫排列。与顺序无关的问题,我们叫组合。
(三)应用拓展,深化方法 1.任务一:比一比谁最快。
2.任务二:购物小超市,买一个拼音本,可以怎样付钱? 3.任务三:涂颜色(教材 97页“ 做一做”)
学生独立思考,动手完成涂色。4.任务四:搭配衣服。
5.组词:“读、好、书”一共有几种读法?
(四)总结延伸,畅谈感受
今天这节课有趣吗?同学们在数学广角里学到了什么?你有什么收获?以后在解决这类问题时应注意什么?
(五)课后作业
拍照游戏,3个人站一起拍照有几种站法?4个人呢?
六、板书设计
排列与组合 1、2 —— 12 21 1、2、3 ——12 21 23 32 13 31 12 13 21 23 31 32 21 31 12 32 13 23
第四篇:排列组合教案
排列组合
教学内容: 教学目标:
1、结合日常生活中熟悉的事例,能列举3个事物所有的排列组合结果。
2、通过独立思考,合作交流,逐步感悟数学思想,积累数学经验,了解简单的排列组合思想。
3、初步培养学生有顺序地、比较全面地思考问题的意识。教学重点:在学生已有生活经验下,有条理的列举出所有结果。教学难点:由列举具体结果抽象为数学模式。教学过程:
一、谈话导入
你们能猜到老师的年龄吗? 指名猜一猜
提示:老师的年龄是由9和2两个数字组成的。引导学生说出一定是29岁。
目的:两个数排列,可能有两种结果,根据生活经验老师的年龄一定是29岁。培养学生要根据生活经验作出选择,同时为下面的的三个事物的排列组合做铺垫。
二、探究3个事物的排列组合结果
1、这节课我们要玩一个小游戏,不过在玩游戏之前要先把密码输入进去才能知道游戏的名字和规则。
2、出示课件。
密码是由1、2、3这三个数中的两个组成的,你们能猜到吗?
3、猜密码
(1)你认为密码一定是12吗?
多找几名同学猜密码,得到答案只猜到一个或一部分的密码是不一定正确的。
(2)怎么样才能保证密码一定正确呢?
把所有由这三个数组成的两位数全部找出来。
小组合作,用准备好的数字卡片摆一摆,并作好记录(结果可能有找到6个、5个7个……)一一进行比较,发现有漏掉的,有重复的。
(3)如何才能把所有的可能全部写出来,既不漏掉也不重复呢?
按照一定的顺序来写
学生自己整理答案,全班展示交流,学生说出自己的方法。可以先确定十位,也可以确定各位,还可以两个一组,调换两个数的位置。
(4)输入密码
在输入密码时保证不重复不漏掉,要按照一定的顺序输入。
三、由列举具体结果抽象为教学模式
1、出示游戏规则
密码找到了,我们来看看要玩什么游戏吧!(课件出示:石头、剪刀、布)每个小组三名同学玩一次石头剪刀布的游戏,分出第一名、第二名、第三名并做好记录。
汇报结果
2、提问:谁获得了第一名?假如第一名不变,比赛结果会不会有变化? 再次游戏,第一名不变,分出第二名和第三名。结果有两种,第一名不变,第二名和第三名,调换位置。
3、小组讨论
其他人有没有可能获得第一名?(肯定有)
当1号2号3号同学分别获得第一名的时候,结果会有几种,并全部列举出来。
4、展示结果,并根据结果提问。
(1)你获得第一名的时候结果有几种?分别是什么?(2)1号同学第一名时结果有几种?2号、3号呢?
5、建构模式
每个人获得第一名结果都可能有两种,三名同学一共可能有几种结果呢? 结果是3个2--------(师板书:3×2=6(种))
小结:三人比赛,可能有六种结果。我们先确定一个名次,然后把另外的两
个名次调换位置,就会产生两种不同的结果,三个人就是六种结果。
6、比赛结束拍照
三个人拍照调换三人的位置可能照出出几种不同的照片?
7、将名次转换成数位,形成三个数的排列可以组成6个不同的三位数。说说方法:先确定百位,把每个数分别放在百位上,再调换另外两个数的位置。
也可以先确定十位,或个位。
四、列举现实生活中三个事物排列组合的例子
1、【读书好】本意是读书是一件很好的事。
【读好书】意为读一些有利于自己身心健康的书或值得自己读的书。【好读书】意指嗜好读书,爱读书。
板书设计:
不漏掉
不重复× 2 = 6(种)
第五篇:二年级排列组合教案(模版)
教学目标:
1.通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。
2.初步学会从数学的角度发现最简单的排列与组合的规律,培养学生有顺序地、全面地思考问题的意识,解决一些简单的实际问题。
3.感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。使学生在数学活动中养成与人合作的良好习惯。
教学重点:经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。
教学准备:多媒体课件、数字卡片、1角、2角、5角的人民币(复印纸)。教学过程:
一、创设情境,引发探究
1、师:同学们喜欢去公园玩吗? 生:喜欢。
师:今天黄老师带你们去一个很有趣的地方,哪儿呢?我们今天要到“数学广角”城堡里去走一走、看一看。板书:数学广角
2、师:在参观数学广角城堡之前,老师有个小小要求: ①、想一想(怎样搭配)
②、摆一摆(试一试不同的方法)③、记一记(用简单的符号记录)④、说一说(让同学一听就明白)
3、师:(课件出示)去“数学广角”城堡得买门票,儿童票5角钱一张,请大家将准备好的三种分别是5角、2角和1角的钱拿出来。如果你能用这些钱币说出组成5角钱的不种付法,就可免费到数学广角城堡去玩。
4、学生小组合作后,汇报: 生①1张5角,生②2张2角1张1角,生③1张2角3张1角,生④5张1角。)教师点评。
[设计意图]:激趣导入,让学生在游戏中产生兴趣,在活动中找到启示。
二、动手操作、探究新知
1、初步感知排列
①师:(课件出示)小朋友们,现在我们就可以免费进入“数学广角”城堡了。不过,要进去玩,我们又得经过一个小小的密码门,密码是用数字1和2组成的不同的两位数。同学们猜猜看。
学生猜想,操作,之后汇报。
师:你是怎么想的?
板书:12 21 交换位置
②(课件出示)密码门打开了,我们又顺利通过了一关,欢迎大家来到数字乐园。数字乐园里有个很好玩的小游戏:有1、2、3三张数字卡片,可以摆成几个不同的两位数呢?
师:同桌合作,一人摆数字卡片,一人把摆好的数记录下来,先商量一下谁摆放,谁记数,比比哪桌合作得又好又快。学生讨论,操作,记录。
师:谁愿意起来告诉大家,你摆了哪几个两位数?
2、合作探究排列 师:为什么有的同学摆的数多,而有的同学却摆的少呢?有什么好办法能保证既不遗漏、又不重复呢?请每个小组进行讨论,看看有什么规律或方法?再按你们的方法,一边摆,一边记下来。
学生带着问题进行第二次操作。师:哪个小组愿意来汇报?(生汇报,师简要板书)
生①:先摆出12,再交换两个数的位置就是21;再摆23,交换后是32;最后摆13,交换后就是31,这样就不会漏也不会重复了。
生②:先把数字1放在十位,再把数字2和3分别放在个位,分别组成12和13;接着把数字2放在十位,数字1和3分别放在个位,又分别组成了21和23;最后把数字3放在十位,数字1和2分别放在个位,分别组成了31和32,这样也不会遗漏也不会重复了。
生③:先把数字1放在个位,再把数字2和3分别放在十个位,分别组成21和31;接着把数字2放在个位,数字1和3分别放在十位,又分别组成了12和32;最后把数字3放在个位,数字1和2分别放在十位,分别组成了13和23,这样也不会漏也不会重复了!根据学生回答。板书:先定位,再交换位置。方法一、二、三。
师:同学们采用了不同的方法都摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就要这样按照一定的规律排列。
师小结规律:两个数字的排列,调换两个数字的位置;三个数字的排列,先拿这3个数字分别定位,再调换另外两个数字的位置。
[设计意图]:让学生在体验中感受,在操作活动中成功,在交流中找到方法,在学习中应用。初步培养学生有顺序地、全面的思考问题的意识。3.了解感知组合
师:同学们,你们用自己的聪明才智赢来了免费游玩数学广角的门票,也在数字乐园里挑战了一个有趣的摆数字游戏,老师祝贺你们(教师不自主的一边走一边伸手和同学握手)。提到握手,老师又有一个问题想请大家帮忙,愿意吗?问题是:如果三个人在一起握手,每两个人握一次,一共要握多少次呢?
学生猜想。小组表演,并汇报。板书:每两人组合一次
师:老师现在有一个疑问,刚才握手时3个人在一起一共只要握3次,而排数字卡片时用3个数却可以摆出6个数,都是3,为什么出现的结果会不一样呢? 板书:简单的排列与组合
规律小结:摆数是一种排列,与位置有关。握手是一种组合,与位置无关。摆数要交换两个数的位置,而握手交换位置就重复了。
三、应用拓展,深化探究
1、搭配衣服(应用练习)
师:在数字乐园里,我们一边玩,一边学到了简单的排列与组合,现在我们去哪里玩呢?我们一起来看看!
师(出示课件):欢迎到时装乐园观看时装表演,这里有两件不同颜色的上衣,一条牛仔裤和一条裙子,有几种不同的搭配穿法呢? 学生在课本上连一连,画一画。之后汇报。教师点评。
2、乒乓球馆(变式练习)
师(出示课件):同学们,欣赏完时装表演,我们到乒乓球馆里来锻炼一下。乒乓球台旁有三个人,每两个人打一场比赛,一共要打几场比赛? 学生猜想,汇报。教师点评。
[设计意图]:用实践活动培养学生的实践意识和应用意识,同时使学生享受到学习的乐趣。并通过不同形式的练习,不但联系学生的生活实际,而且巩固了所学的知识。
四、总结延伸,畅谈感受
师:同学们,由于时间关系,我们该回家了!刚才,我们去哪里玩了?数学广角好玩吗,有趣吗,大家都看到了什么?有什么收获吗?
师:课后调查,生活中哪里用到了今天学到的知识?