第一篇:高二数学探索规律教学设计 教材分析 《探索规律》选自义务教育课程
高二数学探索规律教学设计
教材分析
《探索规律》选自义务教育课程标准实验教科书《数学》(北师大版)七年级上册。
《字母表示数》这一章是开启整个初中阶段代数学习大门的钥匙,《探索规律》作为本章的最后一节,是学生初步学习数学符号语言后在应用方面的升华。首先要使 学生体会到代数式是刻画现实世界的有效数学模型;其次使学生经历探索事物间的数量关系并用字母和代数式表示的过程,建立初步的符号感,发展抽象思维。
根据学生已有的知识基础和认知特点,将原有的一课时改为两课时,分别从直观形象和抽象符号上进行规律探索(本课是第一课时)。对教学内容进行了增减,突出 数学的生活化。给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使之拥有一定的问题解决、课题研究、社会调查的经验。
教学目标
1、经历探索数量关系、运用符号表示规律、通过运算验证规律的过程。拥有一定的问题解决、课题研究、社会调查的经验。
2、会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
3、培养学生面对挑战勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情。
设计理念
教法: 本节的教学结合具体的教学内容采用“问题情景——建立模型——解释应用和拓展”的模式展开。以问题引导思维,内容的呈现突出以下几个特点:
1、把知识的学习置于具体情景之中,通过丰富的例子使学生经历从自然语言到符号语言和图表语言的双向交流过程。关注学生能否用不同的语言(自然语言、符号语言、图表语言)表达,交流自己的想法。
2、通过丰富而有吸引力的探索活动和现实生活中的问题,使学生初步体会数学建模的思想。激发好奇心和主动学习的欲望。
3、根据“回想——联想——猜想”的思维过程,对难点进行层层铺垫,使学生亲自经历探索过程与思维升华的过程,感受自我奋斗后成功的喜悦。
学法:
1、鼓励学生自主探索和合作交流。引导学生自主地从事观察、实验、猜测、验证、推理与交流等数学活动,使学生形成对数学知识的理解和有效的学习策略。
2、鼓励与提倡解决问题策略的多样性,引导学生在与他人交流中,去选择合适的策略,丰富自己的思维方式,获得成功的体验和不同的发展。
3、引导学生体会数学知识之间的联系,感受数学的整体性。不断积累解决问题的策略,提高解决问题的能力。
教学流程
一、问题情景。
一首永远唱不完的儿歌,你能用字母表示这首儿歌吗? 1只青蛙,1张嘴,2只眼睛,4条腿,1声扑通跳下水。2只青蛙,2张嘴,4只眼睛,8条腿,2声扑通跳下水。3只青蛙,3张嘴,6只眼睛,12条腿,3声扑通跳下水。
„„
N只青蛙,N张嘴,2N只眼睛,4N条腿,N声扑通跳下水。
(师生齐读儿歌的这种温馨感觉久违了,这节课就在轻松活泼的气氛中开始了。)[以一首富有童趣的儿歌开始,使学生体会到现实生活的规律性以及用数学式子表示现实规律的可行性与应用性。渗透“利用环境学习”的设计思想。]
二、建立模型。
联体长方形的摆法:(填空)
1、如图,摆N个这样的联体图形需____根火柴棒。
2、如图,摆N个这样的联体图形需____根火柴棒。
3、如图,摆N个这样的联体图形需____根火柴棒。
[由学生比较熟悉的联体长方形开始,鼓励学生自主探索,合作交流,经历观察、比较、归纳、提出猜想的过程。以上的三组题目逐层递进。根据图示的颜色区别, 帮助学生了解探索规律过程中变量和不变量的不同作用。可以使学生初尝成功的喜悦。通过探索变量和常量的关系,初步建立这一类有规律递增问题的数学模型。]
三、应用解释。
1、标准问题。
餐桌的摆法:(填表)若按照上图的摆法摆放餐桌和椅子,完成下表。
桌子张数 1 2 3 „ N
可坐人数
若按照上图的摆法摆放餐桌和椅子,完成下表。
桌子张数 1 2 3 „ N
可坐人数
2、变式问题。
在桌数相同时哪一种摆法容纳的人更多?
3、探索问题。
若你是一家餐厅的大堂经理,由你负责在一个宽敞明亮的大厅里组织一次规模盛大的西式冷餐会,你会选择哪种餐桌的摆法呢?(新颖的问题立刻吸引了学生的眼球,每一名学生都跃跃欲试,热烈的讨论后学生的答案很完美。)[问题2和3之间有一个“问题解决”能力的“最近发展区”,因此要一步步加大题目的开放性,不仅在探索过程中培养了学生的创造能力,也使之对数学的生活化和生活的数学化都有较好的体验,从而突破难点。]
4、辅助练习。
按规律填空,并用字母表示一般规律: ①2,4,6,8,____,12,14,„____
②2,4,8,____,32,64,„____
③1,3,7,____,31,„____
注释:用N表示数的序号。
[为下面的知识拓展做好模型,给出充分的联想空间。]
四、拓展。折纸问题:(填表)①对折次数与所得单层面积的变化关系表: 对折次数 0 1 2 3 4 „ N
单层面积 ②对折次数与所得层数的变化关系表: 对折次数 0 1 2 3 4 „ N
所得层数
③平行对折次数与所得折痕数的变化关系表: 对折次数 0 1 2 3 4 „ N
折痕条数
(简单的道具纸可以使每一名学生都活跃起来,边折,边想,边说,可以充分享受思维带来的快乐。)[以上的三个问题组由浅入深。问题②③与练习中的数列有类比关系,有助于学生的联想和猜想。由数量关系上直接得出规律后,再由教师指引在实际意义上探索得 出规律,从而很好地完成本节课的教学目标。注意研究学生经验中已有的个人的原始观念。应给学生一定的时间和机会来清晰地、充分地讲出自己对这些问题的认识 和理解,展开研讨或辩论,并在教师引导下通过观察或实验进一步研究有关的事实,在此基础上促使学生发现各自原始观念不一致的地方、自相矛盾的地方、解释不 通的地方,从而促使学生在教师的引导和帮助下自己来改变和发展这些观念。]
五、小结。
由学生从以下方面进行总结:
1、在探索规律中遇到挫折,你会怎么办?
2、对自己本节课的学习情况进行评价。(包括所学习到的探索规律的一般方法;探索规律过程中哪些量是重要的;探索规律的一般过程等。)根据学生总结写出板书: [这是一只求知的眼睛,形象地说明了探索规律的过程:问题→猜想→验证→总结→结论。如果验证不合理则进行重新探索,所以此处是一个往复过程。如果验证合理则上升到总结并得出结论的过程。](真的,此时我看到每一名学生眼中有智慧之光在闪烁。)检测题: A组:(填空)1,4,9,16,____,36,49„„
B组:用火柴按下图方式搭图形,按规律填写下表: 梯形个数 1 2 3 4 „ N 火柴根数
作业: A组:课本作业(略)。
B组:(开放性作业)有人说一张普通的报纸连续对折最多不会超过8次。利用今天在折纸问题中对折次数与单层面积以及所折层数的关系的探索,对这一论点进行论证或反驳。
[在开放性作业中添加了活动内容,围绕折纸问题,引导学生进行深入的学习和钻研,关注学生的个性和兴趣,使之得到不同的发展。通过问题解决、课题研究和辅 助的社会调查、加强对观察能力、类比能力、信息获取与加工能力等综合运用能力的培养。培养学生科学的思维方法和习惯,收到了意想不到的良好效果。](绝大多数学生所提交的论文有较严谨的论证,大多数学生能利用表格等方式将实验数据进行整理并得出结论,有一部分同学还针对纸的韧性、厚度等对结果的影响进行了有益探索。其思维的缜密性令人刮目相看。)课后反思
一、教学中的成功体验。
1、通过情感活动把学生与教师紧紧联系在一起,并且贯穿于教育过程的始终。教师努力把握情感诱导的契机,积极参加学生的各项活动,努力使自己成为他们中的 一员,并认真精细地观察学生的情感行为和性格特点,了解学生的爱好和才能。在教育教学的各个环节中,针对学生不同情况,提出不同要求,并善于进行情感诱 导,竭尽全力帮助学生获得成功,使学生自觉地产生奋发上进的内在动力,推动他们不断进步。
2、根据接受美学的观点,把教学内容的新颖度定在“似曾相识又陌生”的感觉尺度上。用信息优化的观点,对教育内容进行筛选,去掉易使学生厌烦的信息,留下学生感兴趣的新颖信息,从而最大限度地激发学生的学习热情。
3、减少教师的活动量,给学生充足的时间发展。教师做好学法指导,做到少讲,少问,少板书,力求做到精而美,使学生有时间和空间进行自我调控,自主发展,自我创造,自我评价,促使学生学会学习。
二、需进一步探索的教学方法。
怎样更好地培养学生的直觉思维能力是我在教学中经常思考的一个问题。我发现不仅应当经常地问学生“为什么”,而且更应努力促进学生由“被动状态”向相应的 “自觉状态”转变,也即由被动地去回答老师关于“为什么”的问题而发展成为经常地向自己提出“为什么”。而这一转化过程的引导还有待进一步的研究和探讨。
三、需进一步提高的能力。
学生方面:在课堂生生交往中,所有学生都应学会如何与同学合作,为趣味和快乐而竞争,自主地进行独立学习。
教师方面:进一步丰富社科知识,提高教育心理学和学习心理学水平。
第二篇:探索规律教学设计
探索规律教学设计
教学目标:
1、使学生结合具体情境,探索并发现简单周期现象中的排列规律,能根据确定某个序号所代表的是什么物体或图形。
2、使学生主动经历自主探索合作交流的过程,体会画图、列举等解决问题的不同策略以及方法逐步优化的过程。
3、使学生在探索规律的过程中体会数学与日常生活的联系,获得成功体验。重点:学生能用语言和其它方式把事物中的规律表示出来,教学具:多媒体课件 教学过程:
一、激趣引入
1)你们喜欢扑克牌吗?老师这里有扑克牌,你们能猜猜这里的第一张是什么 牌吗?(基本上都猜不出来)出示第一张是黑桃A 2)接着猜下一张,请没有把握的同学举手,大多数还是会举手,你们想不想看看接下来是什么牌吗?出示红桃A 3)接着猜,接着出示是草花A,方块A,让学生经历从没有把握到有把握的过程。教师问:为什么刚开始我们猜的时候没有把握。为什么现在这么有把握? 4)按“黑桃A,红桃A,草花A,方块A”的顺序排列的,是有规律的。你们在生活中碰到过这样有律的排列的现象吗?
师:(投影展示未完成的乘法表)这张乘法表中有好多的空白,你们能把它补充完整吗?
2、探索其中的规律
字之间有哪些规律?(展示完整的表)你们可以小组之间互相交流。
2)交流发现 规律?
生:从1这个表格出发,得到的数字都是样的。
师:这是什么规律呢?
生:1和任何数相乘都等于它本身.
师:还有什么规律呢?
(生各抒已见)3、找规律,填一填。
1)811 14 17()23()2)4 9 16 25()49 64 3)1 8 27()125(),4)3 6 9 15 24()63()(学生思考其中的规律,抽生回答,并说明原因)
4、学校计划按图摆放桌子椅子,照这样的方式继续摆放,第5张桌子、第20张桌子分别可以坐多少人呢?
学生认真思考,找出其中的规律,并尝试用字母表示出来。
5、为了迎接“六一”的到来,我班准备按如下的方式为教室挂上气球
红 黄 红 红 黄 红 黄 红 红 黄 那么第20个气球是什么颜色的,第27个呢?
(抽生回答问题,并说明理由)
6、一些小球按下面的方式堆放,你知道第5 堆有多少个?第8堆有多少个,其中的规律是什么?
抽生回答问题,并说明理由
7、学生讨论生活中还有哪些有规律的事情?(激发学生的学习兴趣,体会数学的美)
三、本节小结
今天老师和大家一起探索了许多有趣的规律,同时也运用发现的规律解决了生活中的许多问题,在我们的数学乐园里还有许多更有趣的知识等待我们大家去继续探索,希望大家做有心人,永攀高峰。
第三篇:《探索规律》教学设计
《探索规律》教学设计
学院街小学 穆家宜
教学内容:
北师大版六年级下册P66—P67《探索规律》。
教学目标:
知识与技能:探索给定的事物(数与数、图形与图形)中隐含的规律或变化趋势,并能利用探索出的规律来解决实际的问题。
过程与方法:利用个人分析、小组合作的形式来探索并完整的叙述规律,从而培养学生分析问题和解决问题的能力。
情感态度与价值观:在探索规律的过程中培养面对挑战勇于克服困难的意志,鼓励大胆尝试,从中获得成功的体验,激发学习热情。
教学重点:
探索数与数之间、图形与图形之间的规律,能用语言或运用算式符号描述、表示事物中的规律并利用规律解决问题。
教学难点:
语言或运用算式符号描述、表示事物中的规律。
教学准备:
有关本课内容的电子白板课件。
教学过程:
一、游戏引入,激发兴趣
师:我们一起来做一个数学游戏,请你想好一个数记在心里,现在将它加上5,然后乘以2,再减去4,再除以2,然后减去你记在心里的那个数,结果得到的数是什么?
(不管学生心里想好的数是几,最后的结果始终等于3。)
这是个很有趣的数学题,其实老师是利用了算式中的规律,才算出来的。同学们掌握了这个规律也能办到。规律是客观存在的,今天我们就一起来研究探索事物中的规律。(板书课题:探索规律)
二、探索活动,发现规律
1.探索乘法表中所包含的数学规律。(1)填表。请同学们打开书P66,这张乘法表中有好多的空白,你们能快速的把它补充完整吗?(2)找规律。
你能在一分钟内记住这些数并说出它们的准确位置吗?找学生试一试,可以利用数对的知识来记忆。(多点几位同学回答,尽量说出更多的规律。)(3)引导学生探索出主要规律有:
a.横着看,竖着看,每一行,每一列都是第一个数的倍数。
b.沿对角线斜着的一组数字1,4,9,16,25,36,49,64,81分别是1,2,3,4,5,6,7,8,9,的平方。
c.以对角斜线为对称轴的画,整个乘法表是一幅轴对称图形。
d.如果找出积相等的数,这些数所对应的两个乘数成反比例关系。
小结:通过自己的观察与探索,找出了乘法表中所包含的规律,大家的方法都很好,学会了怎样有序的进行观察。
2、说一说生活中存在的数学规律。
例:每四年中就有一个闰年。一小时每等于60分3600秒。日历中的规律。小明上学如果速度越快,所花的时间会而越少(速度与时间成反比例)……
三、巩固与应用
那下面我们从多种角度来观察数字找规律。第1题:找规律,填一填。(课件出示题目)
(1)8,11,14,17,(),23,();(相邻数之间相差3。)
(2)4,9,16,25,(),49,64;(每个数都是平方数。n的立方)(3)1,8,27,(),125,();(每个数都是立方数。n的立方)(4)3,6,9,15,24,(),63,();(第三个数是前两个数的和。)
学生独立完成后再全班交流。重点还要学生正确的叙述出每题中所包含的规律。
下面探索图形中的规律。
第2题:按下图摆放桌子和椅子。(课件出示题图)
(回答题中提出的问题)
(1)1张桌子可坐6人,2张桌子可坐()人。(2)按照上图方式继续摆桌子,完成下表。
学生试做,完成后点名填写完表格,重点讲解n张桌子可坐6+(n-1)×4人,其实也可以换一种思路,用4n+2来表示n张桌子所坐的人数。利用规律解决问题。
第3题:六(2)班同学按下面规律为教室挂上气球。(课件出示题图)
第20个气球是什么颜色的?第27个呢?
注意本题所包含的规律是5个气球为一个周期,而不是3个。
因为20÷5=4,商后面没有余数,说明最后一个气球是一个周期中的最后一个即黄色气球。同理27÷5=5……2,即一个周期中的第二个,所以也是黄色气球。
4、继续探索规律并解决问题。(课件出示题图)一些小球按下面的方式堆放。
你知道第5堆有多少个小球吗?第8堆呢?
学生独立完成后再分两人小组讨论本题的规律及计算的结果。一般的规律是用求一个等差数列的方法来计算一共有多少个气球。如1+2+3+4+5=15(个)1+2+3+4+5+6+7+8=36(个)
教师在学生回答完后提出,怎样利用一个公式来最快的求出一共有多少个球呢?最好能有学生说出本题的能项公式是(1+n)n÷2。
四、全课小结
今天在探索规律中,你有什么收获? 让学生明确在解决此类问题之前
五、探究活动。
探究日历中存在的规律。(课件出示题图)学生分小组进行探究活动,然后回答后面的问题。
(1)绿色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用含有字母的式子表示这个关系吗?
让学生在充分探索的氛围中了解到日历中存在的数学规律,理解生活的一些事物都是存在一定的规律性的基本哲学思想。
附:板书设计
探索规律
数字中存在的规律
图形中存在的规律 32
52(62)72 82
4n+2 23
33(43)
53(63)
20÷5=4
27÷5=5……2
1+2+3+4+5=15
1+2+3+4+5+6+7+8=36
(1+n)n÷2
第四篇:〈探索规律〉教学探索
〈探索规律〉教学探索
晋江磁灶张林中心小学
张秀霞
2012年3月28日,有幸能再次聆听以前的老同事阿育老师的一节〈探索规律〉,感触颇深,感动的是阿育老师现在虽然身为校长,却还是雄风依旧,依然把课堂教学作为第一生命线。整节课时间安排紧凑,节奏分明,目标明确。
在这节课中,有几点非常值得我学习:
1、教师平时的潜心浇灌:作为一节有一定难度的复习课,从孩子们精彩的互 动中可以看出它们清晰的思路,这和孩子们扎实的基础是分不开的,它都 扎根于老师平时的有效教学。
2、老师备课中心有学生:由于是一节难度较大的复习课,学生的基础怎么
样?怎么在学生已有的基础上进行教学,老师经过精心到舍,制定出了比较适合学生实际的教学目标,而不是纯粹为了哗众取宠。在这个基础上,大部分的学生都能跳一跳摘到果子。
3、教师课堂上精心引导:老师能引导学生从不同的角度来发现同一件事物的不同规律:如1、4、9、16等这一列数的规律。同时,我也觉得有几点还可以这样做的:
1、教学内容的选择应该为教学目标服务:本节课中的“青蛙的只数与眼睛、嘴、腿的关系”以及“猜数游戏”两个环节都可以删掉:一是前者前面早就学过,对于本节课来说一没提升,二是本节课的内容较多,占用了宝贵的时间; 后者与本节课的关系不大,有点画蛇添足的感觉。
2、数学方法的提炼和数学模型的建构:在学生经过观察、比较发现不同的规律后,老师要引导学生发现探索规律的方法并进行适当的提炼和建构探索规律的数学模型,并能应用它去探索新的规律。
3、课堂教学中师生的定位要合理:老师应该给学生更多探索、交流的时间和空间,让学生有更多的机会表达自己的想法。
4、课堂教学中老师的引导要有序:老师引导学生探索知识的时候应该引导学生有序的进行观察和思考,如先从横的角度观察有什么发现,谁有不同的发现,让其它同学进行补充,再进行其它方面的观察。
5、教学内容的选择应该有所取舍:由于复习课的性质和教学内容繁多与教学时间的矛盾,设计时应该选择比较重点的内容,并对选定的内容进行有序地观察、探索。
课无定法,同样的老师,同样的设计,不同的班级,也会有不同的效果,以上仅是个人的一些想法,在教学的生成又可能会产生新的问题,在教学的路上让我们一路探索,不断成长。
第五篇:小学数学探索规律
小学数学探索规律要注意哪些问题
一、要注意为学生创设灵活的教学方法
良好的方法能使我们更好地发挥运用天赋的才能,而拙劣的方法则可能阻碍才能的发挥。
要培养学生的思维,教师必须要研究如何改进教学方法,更要研究根据教学内容和对象,为学生选择恰当的学习活动和方式,把有探索价值的并且学生有能力探索发现的内容,尽量让学生去探索与发现,而那些毫无探索价值与意义的内容,或者即使有探索价值,可学生根本无能力探索的内容,应考虑采用讲授法。要根据不同的课,不同的年级,不同的学生采用不同的教学方法,激发学生学习兴趣,调动学生学习的积极性,引发学生的数学思考,为学生创设灵活的教学方法。
二、要注意重视学生的参与活动
教师首先必须要从数学结论的教学转变为数学过程的教学,把数学每一知识的发生和发展过程充分展示给学生,让他们知道知识的来龙去脉,让他们感受到数学知识不是一堆死东西,而是由一个活生生的问题组成的。让学生了解所学知识的现实背景,感知知识的发生过程,掌握解决问题的思路,了解思考的全过程。为了让小学生更好地参与获取知识的整个过程,教学中:
三、要抓住新旧知识的连接点,以便架设“认知桥梁”要让学生展现自己的建构过程、不仅知其结果,还要了解自己得出结论的过程。
四、要注意重视学生已有的数学基础。深刻理解徐长青教育专家所倡导的,简约教学策略的应用。
小学数学课堂教学中如何培养学生的问题意识。“问题意识”是指在一定的情境中,个体善于发现问题,并驱动其运用已有知识积极探究问题的心理状态。它是“问题解决”的前提和条件。问题是数学的心脏,在数学教学中培养学生的“问题意识”,是造就创新型人才的启动器。如何结合学科特点以及小学生的认知规律培养学生的“问题意识”,提高学生质疑问难的能力呢?
一.转变教学观念是培养学生问题意识的前提
树立与社会发展相适应的新教育观念,是知识经济发展和世界全球化进程对教育提出的新课题。小学数学《课标》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。数学课程的一切都要围绕学生的发展展开,所以学生是当然的“主人”。培养学生的“问题意识”,必须把学生推到主体位置。首先要从思想上转变教师的教学观念,改变师生在课堂上的角色。教师要从一个知识传授者转变为学生发展的促进者;要从教室空间支配者的权威地位,向数学学习活动的组织者、引导者和合作者的角色转换。教师要能与学生平等交往,相信每个学生都有一定的创造潜能以及好奇心所引发的“问题”潜力,正确看待每个学生的提问。教师也要学会倾听,敢于用实事求是的态度面对学生的提问,鼓励学生质疑问难,异想天开,爱护和培养学生的好奇心,引导他们勇于提出各种新奇的数学问题,尊重学生人格和个性差异。要真正把课堂还给学生,教学要“以知识为本”转向“以学生发展为本”,“以教学生学会”转向“教学生会学”,把课堂当成师生生命价值的构成部分。
二.营造学习环境是培养学生问题意识的基础 首先,要创设一种宽松、和谐的学习环境。课堂教学不而且也有情感的交融,没有纯情感的认知,也没有纯认知的情感,二者协调,相互作用。积极的情感因素能激发学生学习动机,促进学生主动求知。教师要通过自己富有童趣的幽默语言、动作和表情传递给学生尊重与信任、宽松与鼓励的情感信息,让学生在一种宽松、和谐的环境中自由发表意见,发现和提出一些有价值的数学问题仅有知识的交流,其次,要创设一种民主、和谐的心理环境。教师与学生、学生与学生之间要平等相处,互相尊重。教师要面向全体,给每个学生的提问以微笑、注视和评价,在教育学生养成尊重别人发言良好习惯的同时,允许他们自由按自己的学习方式参与数学活动,提倡讨论、辩论和争论,让学生在课堂上自由与教师、学生沟通信息。只有这样,才能消除学生的“问题”心理障碍,让每个人在发现和提出问题时都有一种愉悦的心理体验,在一种平等、心理安全的环境中激疑、促思。另外,应注意创设开放的“问题”时空环境,给学生提供充分发现问题的空间和解决问题的时间,努力营造一种宽松、融洽,人人均思进取的课堂教学氛围,让他们真正成为学习的主人。
三.创设问题情境是培养学生问题意识的保证
所谓“问题情境”,是把学生置于研究新的未知的问题氛围之中,使学生在提出问题、思考问题和解决问题的动态过程中学习数学。它是教师传授知识,学生学习知识的载体。教学中,应有意创设有利于学生生动活泼地进行数学学习的问题情境,使学生置身于该情境中,犹如身临其境,从而产生强烈的“问题”需求和迫切的“探究”心理,使他们乐于提出问题,培养学生的问题意识。创设能激发学生兴趣的问题情境 兴趣是最好的老师,它是影响学生学习自觉性、积极性的最直接因素。小学生的兴趣源于好奇。教学中,应注意创设充满趣味性的问题情境,努力把学生的注意力吸引到数学问题情境中,寓抽象的数学问题于新奇而富有情趣的佳境中,在浓厚的兴趣中探究问题,解决问题,掌握新知。如:教学《能被3整除数的特征》时,可设计如下情境:同学们,今天让大家来做小老师,都来考考我。大家随便报一个自然数,老师不用计算就会知道这个数能否被3整除,你们可以用计数器核对。随着学生报出的数,老师都能准确无误的判断,这时学生觉得老师太了不起了,特想知道老师用什么魔法来判断的。老师没什么魔法,也不是神仙,更没有特异功能,只是老师比你们先掌握了能被3整除数的特征,今天我们一起来研究这个规律好不好? 创设贴近学生生活的问题情境。创设有利于学生知识建构的问题情境 数学知识的前后联系非常紧密,常常是前一个知识是后一个知识的基础,后一个知识是前一个知识的发展,就象环环紧扣的链条。学生学习数学是依据已有的知识和经验主动地加以建构的过程。教学中,利用学生已建立的认知结构为基础,在新旧知识的联系点上创设问题情境,启发学生从原来的知识结构中提取相关的知识经验,经过同化或顺应,形成新的认知结构。四.鼓励质疑是培养学生问题意识的核心,质疑是思维的开端,爱因斯坦说过“提出一个问题,往往比解决一个问题更重要。”世界上许多重大发明与新技术的发现都始于发现问题,始于问题所激发出来的探索活动。教学中,教师要鼓励学生大胆质疑,给学生创造质疑的机会,教给学生质疑的方法,让他们在一种和谐的教学情境中善于提出问题,培养学生的问题意识。