第一篇:六年级上册《图形与几何》学案北师大版
六年级上册《图形与几何》学案北师大
版
教学目标:
1.复习整本书所学过的图形与几何的知识,巩固加深对所学知识的理解,沟通各部分知识之间的内在联系。
2.提高学生解决问题的能力和空间想象能力。
3.感受数学与生活的紧密联系,培养学生喜爱数学的情感。
教学重点:
复习整理“图形与几何”部分的知识,巩固对所学知识的理解,提高解决问题的能力。
教学难点:
培养学生的空间观念和想象能力,提高解决问题的能力。
教学过程:
一、导入
师:同学们,今天我们要复习整理的内容与我们的日常生活联系非常密切,首先想一想,在“图形与几何”部分,我们学习了哪些知识?
学生可能会说
我们学过的平面图形有长方形、正方形、三角形、平行四边形和梯形等这些线段围成的图形,还有曲线围成的图——圆,圆形是轴对称图形,有无数条对称轴。
我知道了圆心决定圆的位置,半径决定圆的大小;圆有无数条直径,有无数条半径;同一圆中,所有的直径都相等,所有的半径都相等。
我们还进一步学习了观察物体,能画出从正面、左面和上面看到的图形形状,知道了观察的范围与距离有关。……
师:同学们说得很好,只要你留心观察、认真学习,相信你会有更多新的发现!
【设计意图:引导学生回顾要整理复习的相关知识点,从而使学生形成对这部分内容的感性认识,能在头脑中呈现相关的表象,逐步构建知识系统。】
二、过程
师:我们先来一起谈谈“圆”在生活中的应用吧。
生1:圆在生活中有很多应用。车轮做成圆形的是因为圆心到圆上任意一点的距离都相等,这样车轮在平面上滚动比较平稳。
生2:人们观看表演会自动围成圆形,是因为这样每个观众(圆上的点)距离表演者(圆心)的距离相等。……
师:圆在生活中应用是很广泛的。我们还学习了圆的周长和面积,你们还记得周长公式和面积是怎样得到的吗?在小组里跟同学说说公式的推导过程。
学生在小组里讨论交流圆的周长和面积公式的推导过程,教师巡视了解情况。
师:谁来给大家讲一讲?
学生可能会说
我们测量了一些圆的周长和直径,然后求出周长除以直径的商,发现圆的周长总是直径的3倍多一些,知道了这个固定值就是圆周率,用字母π表示,最后总结出了圆的周长公式c=πd或c=2πr。
在推导圆的面积公式时,我们把圆形纸片平均分成了若干份,然后把这些小扇形拼成了近似的平行四边形。平行四边形的面积相当于圆的面积,平行四边形的底相当于圆的周长的一半,平行四边形的高相当于圆的半径,由平行四边形的面积=底×高得出圆的面积=πr×r,即S=πr2。
师:讲得很好。除了关于圆的知识,我们还学习了观察物体,你能完成下面的练习吗?(出示:教材第100页“独立思考”第3题图)
学生独立解答,教师巡视了解情况。
教师组织学生交流汇报,重点引导学生说说自己的好办法。
师:观察物体时,观察的范围是怎样变化的?
生:观察的范围随着观察点、观察角度的变化而变化。
师:你能结合生活中的观察范围变化的实际例子说一说吗?在小组里交流一下。
学生在小组内交流,教师巡视了解情况。
选取有代表性的学生交流汇报。
【设计意图:在对相关知识点进行复习整理后,及时让学生结合生活举出事例,趁热打铁进行针对性的巩固,随时检查学生的掌握情况,调整下一步教学内容。】
三、总结
师:同学们,今天我们复习了“图形与几何”,但是知识的学习与应用是无止境的,在今后的生活和学习中,只要你们努力,相信就能掌握更多的知识。
【设计意图:以呼吁的口号结束,倡导学生不要死学知识,而应活用。】
板书设计:
北师大版《图形与几何》教案
教学反思:
1.通过结合具体例子能加深学生对观察物体的认识,使数学更贴近学生,让学生用数学的眼光去观察和认识身边的各种事物,让学生们感受到数学与生活的紧密联系,展现数学的魅力。
2.在教学中应注重培养学生观察、思考、倾听、提问等良好的学习习惯;倡导学生自主探究的数学学习方式,关注学生的学习过程,关注学生的发展提高,让每个学生都能在学习的过程中获得成功的体验。
第二篇:六年级下册图形与几何知识点总结
六年级下册数学复习专题 图形与几何图形的认识、测量
量的计量
一、长度单位是用来测量物体的长度的。常用的长度单位有千米、米、分米、厘米、毫米。
二、长度单位:1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1米=100厘米
1米=1000毫米
三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。
六、面积单位:
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)
1立方米=1000立方分米
1立方分米=1000立方厘米
1升=1000毫升
九、常用的质量单位有:吨、千克、克。
十、质量单位:
1吨=1000千克
1千克=1000克
十一、常用的时间单位有:
世纪、年、季度、月、旬、日、时、分、秒。
十二、时间单位:(60)
1世纪=100年
1年=12个月 1年=4个季
1个季度=3个月
1个月=3旬 大月=31天 小月=30天
平年二月=28天
闰年二月=29天
1天=24小时
1小时=60分
1分=60秒
十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:千米:km
米:m
分米:dm
厘米:cm
毫米:mm
吨:t
千克:kg
克:g
升:l
毫升:ml
平面图形【认识、周长、面积】
一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
过一点可以画无数条直线、过两点只能画一条直线。
二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。
三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。
四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。同一平面内的两条直线有两种位置关系:平行和相交(垂直是相交的特殊情况)过直线上(外)一点只能画一条直线和已知直线垂直。五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。三角形有三条高。六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。按边分,可以分为等腰三角形和任意三角形(等边三角形是等腰三角形的特殊情况)。七、三角形的内角和等于180度,四边形的内角和是360°,多边形的内角和=(边数-2)×180°。
八、在一个三角形中,任意两边之和大于第三边。
九、在一个三角形中,最多只有一个直角或最多只有一个钝角,最少有两个锐角。十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。
十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。两个圆,半径比=直径比=周长比,面积比等于它们平方的比。圆周率π是无限不循环小数。圆周率最早是有我国的祖冲之发现的。同圆或等圆中:所有的半径相等、所有的直径相等。周长相等的两个圆,面积相等
周长相等的情况下:圆的面积﹥正方形的面积﹥长方形的面积
长方形和正方形都是特殊的平行四边形,长方形对边相等,正方形四边相等。半径2厘米的圆,周长和面积不相等
圆的半径扩大2倍,周长和直径都分别扩大2倍,面积则扩大4倍。
十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。
正方形有4条对称轴、长方形有2条对称轴、等边三角形有3条对称轴、等腰三角形有一条对称轴、等腰梯形有一条对称轴、圆有无数条对称轴、半圆有1条对称轴,扇形有1条对称轴,平行四边形没有对称轴。
十三、围成一个图形的所有边长的总和就是这个图形的周长。
十四、物体的表面或围成的平面图形的大小,叫做它们的面积。
十五、平面图形的面积计算公式推导: 【1】平行四边形面积公式的推导过程?
①把平行四边形通过剪切、平移可以转化成一个长方形。
②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。
③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。把一个长方形拉成平行四边形,周长不变,面积变小(高变小,底不变)。【2】三角形面积公式的推导过程?
①用两个完全一样的三角形可以拼成一个平行四边形。
②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形 3 面积等于和它等底等高的平行四边形面积的一半
③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。
即:S=ah÷2。
三角形的底=面积×2÷高
三角形的高=面积×2÷底 【3】梯形面积公式的推导过程?
①用两个完全一样的梯形可以拼成一个平行四边形。
②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。
③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。
梯形的高=面积×2÷(上底+下底)
梯形的(上底+下底)=面积×2÷高
【4】画图说明圆面积公式的推导过程
①把圆分成若干等份,剪开后,拼成了一个近似的长方形。②长方形的长相当于圆周长的一半,宽相当于圆的半径。
③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr²。即:S=πr²。
十六、平面图形的周长和面积计算公式:
长方形周长 =(长+宽)× 2
长方形面积 = 长 × 宽 正方形周长 = 边长 × 4
正方形面积 = 边长 × 边平行四边形面积 = 底 × 高
三角形面积 = 底 × 高 ÷ 2 圆的面积,我国的刘徽的《割圆术》
十七、常用数据: 常用π值
2π=6.28
3π=9.42 4π=12.56
5π=15.7
6π=18.84
7π=21.98
8π=25.1 2 9π=28.26
10π=31.4
12π=37.68
15π=47.116π=50.24
18π=56.52
20π=62.8
25π=78.32π=100.48
6.25π=19.625
2.25π=7.065
立体图形【认识、表面积、体积】
一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。
六、圆柱和圆锥三种关系:
1①等底等高,圆锥的体积是圆柱的,圆柱的高是圆锥的3倍。
3②等底等体积:圆锥的高是圆柱高的3倍。③等高等体积:圆锥的底面积是圆柱的3倍。
七、等底等高的圆柱和圆锥:
1①圆锥体积是圆柱的,②圆柱体积是圆锥的3倍,32 ③圆锥体积比圆柱少,④圆柱体积比圆锥多2倍。
3八、等底等高的圆柱和圆锥:锥
1、差
2、柱
3、和4。
九、立体图形公式推导:
【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)
①圆柱的侧面展开后一般得到一个长方形。
②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。④圆柱的侧面展开后还可能得到一个正方形。
正方形的边长=圆柱的底面周长=圆柱的高。
【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?
①把圆柱分成若干等份,切开后拼成了一个近似的长方体。②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。
【3】请画图说明圆锥体积公式的推导过程? ①找来等底等高的空圆锥和空圆柱各一只。
②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。
③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的1体积等于和它等底等高的圆锥体积的三倍。即:V=Sh。
3十、立体图形的棱长总和、表面积、体积计算公式:
长方体棱长总和 =(长+宽+高)× 4
长方体表面积=(长×宽+长×高+宽×高)×2 长方体体积=长×宽×高
正方体棱长总和=棱长×12
正方体表面积=棱长×棱长×6 正方体体积=棱长×棱长×棱长
圆柱体侧面积=底面周长×高
圆柱体表面积=侧面积+底面积×2 圆柱体体积=底面积×高
1圆锥体体积=底面积×高×
3(二)图形与变换
一、变换图形位置的方法有对称、平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。
二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。
三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。
(三)图形与位置
一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。
二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。
第三篇:人教版六年级下册数学教案图形与几何
人教版六年级下册数学教案图形与几何 第1课时图形的认识与测量(1)
【教学内容】平面图形的认识。【教学目标】
1.通过分类、比较、辨析,使学生巩固直线、射线、线段和各种角以及垂线和平行线的有关知识,进一步认识它们之间的联系与区别,能画出相应的图形。
2.进一步培养学生分析判断的能力及空间观念。
3.通过学生自主整理的过程,使学生获得成功的体验,增强学生学好数学的信心。
【重点难点】
将分类、比较、辨析的内容进行整理、归纳,突出概念之间的联系与区别。【教学准备】
多媒体课件,实物投影。
【谈话导入】
教师:从今天起,我们复习图形与几何初步知识。这节课先复习线与角及平面图形的知识(板书课题)。通过复习,我们要进一步认识线段、射线和直线的特征以及它们之间的联系与区别;进一步认识角和角的分类,能比较熟练地用量角器量角和画角,平面图形的分类。
【归纳整理】
1.复习直线、射线、线段。
课件出示问题1:直线、射线和线段有什么区别? 同一平面内的两条直线有几种位置关系?(1)教师组织学生分组讨论。(2)指名学生汇报。(3)教师引导学生总结:
①用直尺把两点连接起来,就得到一条线段;把线段一端无限延长,可以得到一条射线;把线段两端无限延长,可以得到一条直线。
教书板书:②直线、射线、线段的区别与联系:
根据学生的汇报,教师予以板书: ③同一平面内两条直线的位置关系:
根据学生的汇报,教师予以板书。
④组织学生做教材第86页第2题第(Ⅰ)小题。指名学生回答,订正。2.复习角。
课件展示问题2:我们学过的角有哪几种?角的大小和什么有关?(1)组织学生分组讨论、交流。(2)指名学生汇报。(3)教师引导学生总结。
②角的大小要看两边叉开的大小,叉开得越大,角越大。角的大小与角的两边所画出的长短没有联系。
(4)组织学生练习:教材第86页“做一做”。(5)指名学生汇报,订正。3.复习三角形、四边形、圆。
课件出示问题3:说一说什么是三角形和四边形?圆有什么特点? ①学生分组议一议,相互交流。②学生汇报。③教师引导学生总结并板书
教师指名学生说出每种图形的特征。(较差的学生多让他们说)
④还能用其他的方法表示三角形、四边形的分类吗?组织学生议一议,写一写。
指名学生把写的过程予以汇报。
教师加以总结,用课件展示教材第86页第1题的图示。组织学生练习,教材第89页练习十八第1题。指名汇报,订正。【教材释疑】
教师:刚才复习了平面图形的有关知识,想必同学们可能还有些疑难,请同学们互相提问,互相交流。
【课堂作业】 填空。
(1)一个等边三角形,从一个顶点起,用一条线段把它分成大小相等的两个三角形,其中一个三角形的内角和是()。
(2)圆的位置是由()决定的,圆的大小是由()或()决定的。
(3)把一个等边三角形沿一条高分开,分成的直角三角形的两个锐角的度数分别是()度和()度。
(4)在一个等腰三角形中,一个底角是64°,顶角()。(5)在一个等腰三角形中,顶角是50°,两个底角各是()。(6)一个等腰三角形,它的一个底角的度数是顶角的2倍,它的顶角是()。先独立思考,后指名一一回答。答案:(1)180°(2)圆心 半径 直径
(3)30 60(4)52°(5)65°(6)36°
【课堂小结】
通过这节课的学习,你有哪些收获? 【课后作业】
完成练习册中本课时的练习。
第1课时
图形的认识与测量(1)
第四篇:图形与几何小结
硫磺沟小学“图形与几何”练习课研讨活动小结
小学数学几何的教学在《数学课程标准》中属于“图形与几何”的领域,而“图形与几何”作为小学数学四大内容领域之一。其教学内容很丰富,主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。几何知识作为数学基础知识的重要组成部分,一直是基础教育数学课程教学的重要内容。小学几何教学是小学数学创新教学的重要组成部分,是发展学生空间观念的重要途径。儿童时代是空间知觉即形体直观认知能力发展的重要阶段。几何概念的教学对于引发学生思维、发展智力、发展儿童的空间观念和提高教学质量具有重要意义。
一、研讨课活动目的本期来我校数学教研组围绕“图形与几何”教研课题开展一系列活动,旨在培养学生的空间观念,促进学生数学能力发展,进一步提高学习兴趣,唤起学生求知的欲望。让学生主动参与、自主学习,最大限度地提高学生学习的积极性,切实提高学生的创新意识和实践能力。“图形的认识”和“测量”重点研究教学方法的有效性,“图形的运动”和“图形的位置”重点研究教学要求对学生产生的影响。
二、存在问题
1、教师在研究过程中,对集体活动中典型课例、典型问题关注多,研究多,而对自己个案的课例、问题关注不够,研究不够,特别是对自己个案实践的分析、积累资料不够。
2、教师撰写典型教学设计,即使发现了问题,针对性地改进方法比较含糊,缺少可行性措施。有的实验教师在实际教学中教学方法得当、学生反应效果很好,他们有实际做法,但在资料中表述不出自己的意图和方法。
3、教师语言还须简洁、精炼,不能替代学生说。要留充足时间让学生观察、思考、表达,不能操之过急。
乌鲁木齐县硫磺沟小学
2014年4月16日
第五篇:图形与几何心得体会
面积的初步了解
物体的表面或封闭图形的大小,叫做它们的面积。“面积”这一知识属于《数学课程标准》中空间与图形领域的内容。新课标中强调:在教学中,应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换;应注重通过观察物体、认识方向、制作模型、设计图案等活动,发展学生的空间观念。
“面积”的概念是学生学习几何形体的基础,因此要让学生在具体生动的情境中感悟和理解这一概念学习的重要性和必要性。因做到以下几点:
一、数学课堂教学紧密联系生活
《数学课程标准》指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”学习内容来自学生生活实际,在学生已有的经验的基础上学习,可使学习更有效。因为,学习内容贴近学生知识经验,符合学生心理特征,容易形成知识结构,同时也充分体现了学习生活化的理念。面积的概念具有较强的抽象性,学生理解起来会有一定的难度,为了使学生较好地理解和掌握“面积”这个比较抽象的概念,我从生活入手,让学生找生活中物体的面,感知物体的面有大有小,进行物体面的大小比较,通过物体面的大小比较揭示物体表面的面积。这样层层深入,环环相扣,学生在不知不觉中理解了面积的含义,有种水到渠成的感觉。体现了现代教育思想
所倡导的“数学课堂教学应向学生提供与生活实际密切联系的、有价值的、富有趣味的教学内容”这一基本理念。
二、关注估计不规则图形的面积
教材中提供用方格纸估计不规则图形的面积,这些方法容易被教师们忽视,恰恰是这些细节影响学生最深。因为,现实生活中有很多物体并不像教材上那样有规则。让学生学会估计的方法更有价值,更能实现学以至用的目标,同时也是发展学生空间观念的重要途径之一。
从学生的生活经验出发,引导学生把生活中对图形的感受与空间存在的几何图形建立联系,让学生充分感受到数学和生活的联系,体会到数学确实就在我们的身边,更有效地发展学生的空间观念。从而形成应用意识
总之,要准确理解教材的编排意图,联系学生的生活,按照学生的认知规律,合理重构教材,通过多种途径培养学生的空间观念,形成应用意识,让学生在广阔的数学世界中遨游。