第一篇:比的意义优秀教案
比的意义
教学目标
1.理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。2.理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。教学重点和难点
掌握比的意义,建立比的概念,能准确地求出比值。教学过程
老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。(一)准备题
(事先板书)口头列式解答。
1.一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?
2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?
板书:
100÷2=50(千米)师:观察上面的两道题,它们有什么共同特点?(都用除法)(二)讲授新课:比的意义 1.观察练习1。
问:3÷2表示什么?(3是2的几倍。)谁和谁比?(长和宽比。)2÷3表示什么?(2是3的几分之几。)谁和谁比?(宽和长比。)师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。
板书:长和宽的比是3比2。宽和长的比是2比3。
也就是说,3÷2可以说成3比2,2÷3也可以说成2比3。提问:3分米、2分米都表示什么?(长度)师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。2.观察练习2。
提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?
师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即 100∶2可以说成 100比2。)路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度。)3.归纳总结。
师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上“比”。)什么叫做比?(学生讨论后,老师归纳并板书。)板书:两个数相除又叫做这两个数的比。4.练一练。(投影)(1)书法小组有男生6人,女生5人,男女生人数的比是()比(),女生人数和男生人数的比是()比()。
(2)小红3小时走11千米,小红所行路程和时间的比是()比(),这个比表示()。提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)(三)比的写法和各部分名称
师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)3比2 记作3∶2 2比3 记作2∶3 100比5 记作100∶5 “∶”叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。
提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)比值可以是哪些数?(分数、小数、整数)练习:你会求比值吗?(板书)
100∶2=100÷2=50(老师说明:求比值和解答应用题不同,不写单位名称。)(四)比、除法、分数之间的关系
师:两个数相除又叫做两个数的比,比和除法到底有什么关系?
学生讨论,老师出示投影。
生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。师:为什么要用“相当于”这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。
提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成
成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。
提问:比和分数有什么关系?
生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)师:分数是一个数,所以比同分数也是“相当于”的关系。(五)反馈练习
1.第56页的“做一做”,学生动笔在本上做。2.(投影)把下面的比写成分数形式。
3.选择答案。
航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是
[
]
4.判断正误:(举反馈牌)(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的
()()
(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。
()师:写比要注意比的顺序,前、后项不能颠倒。(六)课堂总结
今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?(七)布置作业(略)课堂教学设计说明
本节课是在学生学过分数与除法的关系、分数乘除法的意义和计算方法以及分数乘除法应用题的基础上进行的,因此本课从除法应用题入手,通过复习同类量相除,不同类量相除的内容,引出“比”的概念,培养了知识迁移能力。在理解比的意义过程中,让学生通过观察、分析归纳出比的意义,体现了概念教学的特点,使学生不仅获取了新知识,也培养了学生自学能力和分析归纳能力。课后练习,重在加强学生对概念的理解,及时反馈了学生掌握概念的情况。
第二篇:比的意义教案
课时1 比的意义
教学内容:教科书第48~49页的内容
教学目标:
1、使学生理解比的意义,会读,写比,认识比的各个部分名称:掌握求比值的方法,能准确地求出比值。
2、使学生理解比、分数、除法之间的联系与区别,通过观察和思考,理解数学知识之间是互相联系的,体会变中有不变的思想。
教学重点:理解比的意义。
教学难点:理解比和分数。
教学过程:
一、创设情景,导入新课
1.六
(一)班有男生25人,女生20人。男生人数是女生人数的几倍?女生人数是男生人数的几分之几?
2.甲地到乙地的路程是160km,汽车行驶的速度是多少? 3.张老师买10kg苹果花了70元钱,每千克苹果多少钱?
二、探索交流,解决问题
(一)、1、创设情境激发兴趣。
播放“天宫一号”发射过程视频。
师:看完这段视频,你的心情是怎么样?
师:2011年9月29日21时16分3秒,中国第一个目标飞行器天宫一号在酒泉卫星发射中心成功发射,它的发射标志着中国迈入中国航天“三步走”战略的第二部第二阶段,发射短期有人照料空间实验室,铸就了中国航天事业的里程碑。我国第一位乘坐宇宙飞船登上太空的航天英雄是谁,你知道吗?
(出示教材情境图:杨利伟在飞船 展示国旗)
师:2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。宇航员杨利伟叔叔在飞船了向人们展示了联合国和我国国旗。
2、提出问题,引发思考。
师:这面国旗,长15cm,宽10cm,比较这面国旗长和宽的关系,你会提出怎样的问题?
(根据学生回答情况板书)
3、导入新知,揭示课题。师:关于长和宽之间的倍数关系,除了用除法表示之外,还有一种表示方法。那就是今天这节课我们要学习的一种新的数学比较方法———“比”
(板书课题:比的意义)
(二)1、引导学生理解比的前项和后项顺序不能随便调换。
师:刚才我们用15÷10来表示长是宽的几倍,我们又可以把它们之间的关系说成长和宽的比是15比10.请同学们想一想,10÷15表示宽是长的几分之几又可以怎么说呢?
师:15比10和10比15一样吗?能随便调换两个数字的顺序吗?(引导学生理解前后项互换后表示的意义不一样)
2、教学不同类量相除也可以用比来表示。
师:“神舟”五号进入轨道后,在距地350km的高空做圆周运动,平均90分钟饶地球一周,大约运行42252km。那么飞船进入轨道平均每分钟飞行多少千米?
生列式:师板书:42252÷90
师:我们也可以用比来表示路程和时间的关系,路程和时间的比是42252比70.3、引导归纳比的意义。
师:比较一下上面两个例子,有什么相同点和不同点?
引导学生说出:相同点,都用除法,又都能说成几比几;不同点,第一个例子中的比是同类量的比,第二个例子中的比是不同类量的比,不同类量的比得到的是一种新的量,如路程和时间的比表示的是速度。
师:现在谁能归纳一下,两个数的比表示什么意思?(两个数的比表示两个数相除。)
4.让学生把课前练习的几个算式变成“比”的形式。5.自学材料,掌握比的相关知识。
师:关于“比”,你还想知道些什么?
出示自学提纲,学生自学材料教科书第44页内容,同桌讨论交流,全班反馈交流。
(三)沟通交流,探究“比”
1.通过具体生活情境,比较、辨析,加深学生对“比”的理解。
师:大家现在对“比”已经有了一定的了解,谁能举几个生活中“比”的例子?
(屏幕出示足球比赛场景图片,比分为2:0)
师:这是比分,这里的2:0是什么意思?你们觉得这个“比”想说明的意思和我们今天学的“比”一样吗?
师:其实,这个2:0本身就提醒了我们它不是表示相除关系的,哪里提醒我们了?
引导学生发现比的后项相当于除法中的除数,分数中的分母,不能为0.师:这里只是用比的样子记录各自进球个数或所得分数,并不是表示两数相除的关系。大家可要注意
2.小组合作,探究除法,比三者之间的关系
师:比的后项相当于除法、分数中的分母,那前向呢?比号呢?
课件出示除法、分数比三者关系表。小组相互讨论并填写卡片,全班交流。
三、巩固应用,内化提高 1、5÷9=():()
a÷b=():()2、讨论题
小杰爸爸的身高师175cm,他的身高是1m,小杰说他和他爸爸和他爸爸的身高是1:175对不对?如果不对、你认为是多少呢?
四、回顾整理,反思提升
是;这节课我们一起研究了比,回顾一下你有什么收获。
第三篇:比的意义教案
比的意义教学设计
泸州市纳溪区丰乐镇中心小学 梁静
教学内容:教科书第68页例1及相关练习。教学目标:
1、经历从具体情境中抽象出比的过程,理解比的意义,掌握比的各部分名称。
2、能正确地读、写比,会求比值,理解比、分数和除法之间的关系,同时懂得事物之间是相互联系的。
3、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。
教学重点:理解比的意义和求比值。
教学难点:理解比、分数和除法之间的关系。教学准备:多媒体课件。教学过程:
一、复习铺垫,引入新课
1、填空。
速度=()÷()单价=()÷()工作效率=()÷()
2、除不尽的用分数表示。
3÷4=()5÷9=()42÷21=()5÷13=()在日常生活和和工农业生产中,常常需要对两个数量进行比较。比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比。(板书:比的意义)
二、学习新知
1、出示例1图表:
姓名 从家到学校的路程(m)从家到学校的时间(分)张丽 240 5 李兰 200 4 教师引导学生观察表格后提问:你从表格中了解到什么信息?每两个数量之间有怎样的关系?你都会用哪些方法表示它们之间的关系?学生可能找到每两
个数量之间各种各样的关系,针对学生所答,及时作出引导评价。
2、小结:我们会用加法表示两个量之间的合并关系。会用减法表示两个量之间的相差关系也会用分数或除法表示两个量之间的倍数关系。今天,我们再来学习一种新的表示两个量间数量关系的方法。
(一)教学比的意义
1、教学同类量的比。
教师举例:比如张丽用的时间是李兰的几倍? 5÷4=4 :5我们就说,张丽
5和李兰所用时间的比是“5比4”,可以写成5 :4 或,读作:5比4。
4教师提问:5分钟、4分钟都表示什么?(时间)教师小结:5分钟、4分钟都表示时间,它们是同一种量,我们就说这两个数量的比是同类量的比。
2、不同类量的比。
教师举例:张丽从家到学校每分钟走多少米?
教师提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁? 教师:我们也可以用比来表示路程和时间的关系。路程除以时间可以说成什么?(可以说成路程和时间的比)路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度)师生共同小结:两个数量的比可以是同类量的比,也可以是不同类量的比。
3、归纳比的意义。
从上面的例子可以看出,对两个数量的比,既可以用除法表示,又可以有比的方法。那什么叫做比呢?(同学试说,交流、汇报)
教师总结:像这样两个数相除又叫做两个数的比。(板书:比的意义)
(二)比的读、写方法和各部分名称。
1、比的写法各部分名称是什么?
2、你都知道了关于比的哪些知识? 3、5比4是哪个数量与哪个数量的比?那4比5呢?学生自学后根据问题谈自己的收获。
4、试一试
提问:你能用刚才所学的知识解决“试一试”中的问题吗?组织学生独立思考,解决问题,然后集体订正,评价。
教师追问:为什么张丽与李兰所用时间的比中5是比的前项,而在李兰与张丽所用时间的比中5又是比的后项呢?学生回答后,教师指出:两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是一个数量与另一个数量的比,不能颠倒两个数的位置。
2、求比值。思考:5∶4表示什么?4∶5表示什么?
说明:比的前项除以比的后项得到的商就是比值。你知道怎么求比值吗?
3、比与除法、分数之间的关系。
分组讨论,议一议:比、分数和除法之间有什么关系? 学生讨论后汇报,根据汇报情况师生共同完成下表。相应部分区别
比 前项 ∶(比号)后项 比值 一种关系
除法 被除数 ÷(除号)除数 商 一种运算 分数 分子-(分数线)分母 分数值 一种数
4、议一议:比的后项可以为0吗?
三、课堂活动
1、说出每个比的前项和后项,并求出比值。
2、下面哪一杯糖水甜一些?
3、你知道吗?
四、全课总结
教师:同学们,这一节课你学得愉快吗?你有什么收获?(指名说一说)教师总结。(略)
五、课外作业
板书设计: 比的意义
同类量的比 不同量的比 5÷4 =5:4 240÷5=240:5 像这样两个数相除又叫做两个数的比。5 : 4 = 5 ÷ 4 = 前项 比号 后项 比值
第四篇:比的意义教案
比的意义教案
比的意义教案1
教学目标:
1、理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、通过自主学习,让学生经经历探究的过程,体验成功的快乐。
教学重、难点:
重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学准备:CAI课件
教学过程:
一、复习、导入
1、谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
2、课件显示:算出下面每组中两个比的比值
⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]
二、认识比例的意义
(一)认识意义
1、指名口答上题每组中两个比的比值,课件依次显示答案。
师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。
(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)
最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
数学中规定,像这样的一些式子就叫做比例。(板书:比例)
[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]
3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
5、那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]
(二)练习
1、出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次
第二次
买练习本的钱数(元)
1.2
2
买的本数
3
5
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第一题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1) 课件出示: 3 : 5
前项 后项
(2) 课件出示:3 : 5 = 18 : 30
内项
外项
(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
三、探究比例的基本性质
1、课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
2、独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
四、综合练习
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判断下面哪一个比能与 1/5:4组成比例。
①5:4 ② 20:1
③1:20 ④5:1/4
4、在( )里填上合适的数。
1.5:3=( ):4
=
12:( )=( ):5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、全课总结(略)
比的意义教案2
一、教学目标:
1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。
2、掌握求比值的方法,并能正确求出比的比值。
3、培养学生抽象、概括能力。
二、教学重点:
理解比的意义,掌握求比值的方法。
三、教学难点:
理解比的意义,建立比的概念。
四、教学过程:
一、谈话引入
在日常生活和和工农业生产中,常常需要对两个数量进行比较。比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比。(板书:比的意义)
二、讲授新课
(一)比的意义
1、出示例题:一面红旗,长3分米,宽2分米。长是宽的几倍?宽是长的几分之几?
板书:3÷2= = 2÷3=
(1)3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?
(2)2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?
小结:
a、长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几。
b、3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比。
(3)练习:有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?
通过上面的例子,可以看出:比较两个数量之间的倍数,可以用两个数相除的方法,有时也可以说成这两个数的比是几比几。
2、出示例题(扩展比的概念,进一步理解比的意义)
一辆汽车,2小时行驶100千米,每小时行驶多少千米?
(1)求的是什么?谁除以谁?也就是谁和谁进行比较?
(2)汽车行驶路程和时间的比是100比2表示什么?
(3)思考:单价可以说成是谁和谁的比?
工作效率可以说成是谁和谁的比?
商可以说成是谁和谁的比?
(4)小结:通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比。
3、归纳总结
板书:两个数相除又叫做两个数的比。
4、练习、
(1)学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是( ),柳树和杨树棵树的比是( )
(2)小华用2分钟口算了50道题,小华口算的题量和所用时间的比是( )。
(3)学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是( ),青菜和萝卜单价的比是( )。
(二)比的各部分名称和求比值的方法(演示课件“比的意义”)下载
1、两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了。
例如: 3比2 记作:3∶2
2比3 记作:2∶3
100比2 记作:100 ∶ 2
“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(三)、比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)下载
提问:两个数相除又叫做两个数的比,比和除法到底有什么关系?
学生观察板书,小组讨论。
生:比的前项相当于除法中的被除数,比号相当于除法中的除号,比的后项相当于除法中的除数,比值相当于除法中的商
提问:(1)为什么要用“相当于”这个词?能不能用“是”?(比与除法既有联系,也有区别,除法是一种运算,比则表示两个数之间相除的关系,所以只能用“相当于”这个词)
(2)在除法中,除数不能是零,那比的后项呢?
师:比还有一种表示方法,就是分数形式。例如:
板书:3 ∶ 2可以写成 ,仍读作“3比2”
2 ∶ 3可以写成 ,仍读作“2比3”
提问:比和分数有什么关系?
生::比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。
三、巩固练习
1、填空
两辆汽车,甲车4小时行驶200千米,乙车3小时行驶180千米
甲车的速度可以说成( )和( )的比,是( )∶( ),比值是( )。
乙车的速度可以说成( )和( )的比,是( )∶( ),比值是( )。
甲、乙两车所行路程的比是( )
甲、乙两车所用时间的比是( )
甲、乙两车所行速度的比是( )
2、选择
(1) 大卡车载重量是5吨,小卡车载重量是2吨,大小卡车的载重量比是 。( )
(2)如果a是b的3倍,那么a和b的比是1∶3。( )
(3)小强的身高是1米,爸爸的身高是173厘米,小强和爸爸身高的比是1∶173。( )
3、思考题:
(1)甲乙两队比赛结果是3 ∶ 2,是指这节课所学的比吗?
(2)根据男、女生人数的比是4∶5,你可以知道男女生的具体人数吗?
4、一台机器上有大小两个齿轮,大齿轮有100个齿,每分钟25转;小齿轮有40个齿,每分钟120转。根据所给条件,你可以写出哪些比?
四、课堂小结
今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?
五、课后作业:
练习十二、1、2、9
六、板书设计
比的意义教案3
本节课的教学内容是人教版义务教育课程标准实验教科书六年级上册第五单元《百分数》的第一课时。是在学生学过整数、小数、特别是分数和比的概念,以及用分数和比解决实际问题的基础上进行教学的,这部分内容又是后续学习用百分数解决问题,更好地理解折扣、利率、税率、统计与概率等实际问题的基础。百分数在生活中有着广泛的应用,所以本节内容是小学数学中重要的基础知识之一。
1、学生的基础资源。生活中学生通过各种渠道已接触过很多的百分数,并且学生有学习分数和比的知识基础,以及利用分数和比的知识解决问题的经验,这一切都是学生学习本课时非常宝贵的基础资源。
2、学生可能会遇到的困难。对百分数意义的表述、关于百分数与分数的区别以及百分数的正确写法这些问题都是我在教学中要充分注意的。
1、知识与技能目标:让学生理解百分数的意义,学会正确地读、写百分数。
2、过程与方法目标:通过观察思考、比较分析、抽象概括等活动,让学生经历百分数意义的探究过程,学会自主学习、合作交流。
3、情感态度与价值观目标:使学生体会百分数与生活的密切联系,并结合具体实例对学生进行思想教育。
教学重点:
百分数的意义和读、写法。
教学难点:
百分数与分数的区别。
学具准备:
收集生活中的百分数。
教具准备:
课件
本节课我坚持“学生为主体,教师为主导”的教学原则,让学生在看书、讨论的基础上,在教师的启发引导下,通过观察、比较、联想、概括等活动,使学生主动参与学习的全过程,从而达到掌握新知和发展能力的目的。教学中做到三个注重:
一是注重学生自主建构;
二是注重小组合作和集体交流;
三是注重学习方法的指导。
(一)创设情境,导入新知
1、师生谈话:课前老师让大家收集生活中的百分数,都找到了吗?说说你是在哪儿找到的?
师:老师从我们的班级中也收集了一些信息,找找看其中有没有百分数。
(课件出示):
(1)我们班男生人数占59,女生人数占49。
(2)全班同学的平均身高是147.76厘米,平均体重是40920千克。
(3)喜欢乐器的同学约占全班人数的37%,喜欢绘画的约占24.1%,喜欢舞蹈的约占20.4%,喜欢体育的约占18.5%。
2、揭示课题
师指出:像37%、24.1%、20.4%、18.5%这样的数叫做百分数。今天我们就一起来认识百分数。(板书课题)
3、确立研究目标
关于百分数你想了解哪些知识?
【设计意图:从贴近学生生活的班级信息入手引出百分数,目的`是使学生直接感受到数学来源于生活,就在我们身边。让学生自己确立研究目标,是帮助学生从内心体会到我是学习的主人,要学我的数学。另外提供的信息中特别涉及到不同的分数和百分数,是为后面探究埋下伏笔。】
(二)自主学习,探究新知
这个环节是本节课的重点,我设计了两个教学活动来引导学生展开对新知的探究。
活动一:学生独立学习,自主建构。
课件出示方法提示:
1、找出书中小学生、初中生近视率的例子,任选一个想一想:在这个例子中,有几个量,分别是什么,这个百分数表示什么意思。
2、照着例子说一说自己找到的、班级信息中的百分数表示什么含义。
3、举例说明如何读写百分数。
4、试比较百分数与分数、比的异同。
5、根据班级信息比较班内喜欢哪项活动的人数最多,喜欢哪项活动的人数最少。
【设计意图:培养学生的自学能力是时代和社会发展的需要。本活动就是充分让学生主动、独立地学习,让全员参与学习过程。但自主并不意味着教师的放手,我设计了方法提示来帮助理清知识的脉络,体现教师的主导作用。】
活动二:班内展示交流。
学生依照研究目标逐个汇报,教师作为参与者与学生一起倾听、评价,肯定正确,纠正错误,补充遗漏,强调重点。例如:
1、百分数的意义。
要求学生举例说明百分数表示的含义,重在感受百分数表示的是两个量之间的关系。并从具体事例中抽象概括出百分数的意义。
2、百分数的读写。
明确百分数的读写方法,特别是百分数的书写顺序。
3、与分数的不同。
除了读法、写法表面形式的不同外,结合实例对比,着重理解意义上的不同。
4、百分数的好处。
体验到百分数分母相同,易于比较的优越性。
【设计意图:班内交流是一个较大范围的交流,汇聚了更多人的智慧。它将个人的内部建构汇成了群体资源作为共享,让每个学生从不同的角度,以不同的思维态势获得对问题较全面的认识。】
(三)巩固练习,应用新知
1、看信息,说意义,谈想法。
(1)勤劳智慧的中国人用占世界7%的耕地养活了占世界22%的人口。
(2)在某市学校附近小摊中,合格的食品仅占30%。
2、写出成语中的百分数。
百里挑一 一箭双雕 百发百中 十拿九稳
【设计意图:新课标指出通过数学活动使学生形成丰富的情感、积极的态度和正确的价值观,这同样是学生学习生存发展的重要基础。基于此理念我设计了知识性练习与思想教育融为一体的第1题。第2题,看成语写百分数,不仅增加练习的兴趣,落实的训练目标,也与语文学科相互渗透,增添了本节课的文化氛围。】
(四)回顾反思,总结提升
1、这一节课你有什么收获?
2、你是如何取得这些收获的?
最后教师送大家一句名言,与大家共勉。
比的意义教案4
教学目标:
1、呈现生活情境让学生认识百分数。通过自主、合作探究,充分理解百分数意义。正确读、写百分数。明白百分数和分数在意义上有哪些不同。会用百分数解决简单的实际问题。
2、通过收集、分析、处理信息,培养学生观察、比较和综合概括的能力。让学生逐步学会交流与合作,初步建立自我反思与创新意识。促进学生的个性发展。
3、让学生体会数学源于生活用于生活,激发学好数学的情感。
教学重点:
理解百分数的意义。
教学难点:
理解百分数与分数之间的联系和区别。
《数学课程标准》强调从学生的生活经验和已有的知识背景出发,为学生提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识、数学思想和方法,同时获得广泛的数学活动经验。本节课我在教学中主要体现以下的教学方法:
1、选择与学生生活背景有关的情境导入新课,为学生发现数学问题、探索数学问题提供丰富、生动、有趣的资源。新课开始,联系学生生活的具体实例引出百分数,再让学生试着找出日常生活中见到的百分数,使学生感受到数学与日常生活的密切联系,感悟到数学于生活,生活中处处有数学,并在以上的教学过程中,顺势引导出百分数的读法,从而建立对百分数的初步感知。
2、自主探究、合作讨论、引导学生积极思维,体现学生的主体作用。这节课主要通过图片中的几条信息让学生探索、发现规律,理解这几个具体百分数的含义,进而概括百分数的意义,然后通过一组题,让学生讨论分数与百分数的区别和联系,进一步深化百分数的意义。接着问怎样把上题中能改写成百分数的两个分数表示成百分数的形式,引出百分数的写法,让学生试写,并提出在写百分数时要注意什么事项,最后阅读第78页百分数的写法,发挥教科书的示范作用。学习了百分数这些相关的知识,再通过讨论和比较突现出百分数在生活中被广泛应用的原因,是便于比较,从而说明了运用百分数的优点。这样教学循序渐进,不仅使学生获得知识与技能,同时关注学生的数学思考、解决问题、情感态度与价值观。
1、通过学生自主探索、独立学习、合作交流,逐步理解百分数的意义,培养学生初步的概括能力和自学能力。
2、利用所学的知识去探索解决实际问题,培养学生运用知识的能力、分析解决问题的能力和初步的创新能力。
(一)、创设情境,引入课题
1、幻灯片出示第77页的四幅图:
师:同学们看这四幅图,你能读出上面的数学信息吗?
问:在日常生活中,你还在什么地方见过上面这样的数?(出示和交流课前收集的百分数)
2、师:像18%、50%、64、2%……,这样的数叫做百分数。
3、引导出百分数的读法。
4、出示做一做的第二小题。
师(引语):在生产、工作和生活中,到处都有百分数,人们为什么这么喜欢运用百分数?用百分数有什么好处?百分数代表什么含义呢?今天这节课,我们就一起研究它。(板书:百分数)
(二)、自主探究,解读百分数意义。
1、探究百分数的意义
(1)出示四幅图中的第一幅图,说一说图中百分数的具体含义是什么?
师:近视率中的三个数据,说明了什么问题?
(2)交流自己收集到的百分数及它表示的具体含义。
师:现在请同学们拿出课前收集的百分数,结合自己对百分数的理解,说一说它们具体表示什么含义?(学生之间相互交流)
(3)归纳总结百分数的意义。
总结:百分数表示一个数是另一个数的百分之几,
师:看来百分数表示的是两个数之间的一种比的关系,所以百分数又叫百分率或百分比。(板书:百分数表示一个数是另一个数的百分之几,又叫做百分率或百分比)。
2、百分数与分数的联系和区别
(1)(投影出示):下面哪个分数能用百分数表示?
⑴一堆煤97/100吨,用去了它的75/100、
⑵47/100米是94/100米的50/100、
学生先观察,再汇报交流。
(2)能不能就你的理解,来说一说百分数与分数究竟有什么区别呢?
学生先讨论,再汇报交流。
3、教学百分数的写法
主要分三个层次:
(1)试写:将上面两个分母是100的分数改写成百分数的形式。(指名上黑板改写)
问:那你能说一说在写百分数时要注意些什么呢?
(2)阅读教材第78页。
这个符号“%”叫什么?(百分号),我们写百分数时注意先写分子,再写百分号(%)。
(3)练习:写出下列各数。(投影出示)
4、运用百分数的好处。
形式:讨论三名运动员的投篮命中率来说明运用百分数表示便于比较。
(三)、应用实践
1、判断。主要考查学生对百分数的理解,和分数的区别,读法。
(1)、分母是100的分数叫做百分数。
(2)、小红的身高是147%米。()
(3)、34%读作百分之三四。()
(4)、女生人数是全班人数的45%。()
2、阅兵材料。主要培养学生的爱国情感,为祖国强大的自豪感。
师:今年是祖国60华诞,在国庆阅兵仪式上,老师收集到了这样的一些信息:
(1)、铁流滚滚,气势如虹,30个装备方队以崭新阵容即将接受检阅。受阅装备全部由中国自主研制和生产,90%的装备是首次亮相,集中反映了国家科技进步和技术创新的最新成果,充分展现了中国国防和军队现代化建设的巨大成就。
(2)、农业是国民经济的基础,中国依靠自己的力量,用不到世界9%的耕地,成功解决了世界近21%人口的吃饭问题,这是中国对人类发展做出的巨大贡献。
看到这些信息,你对此有什么想法?
3、游戏激趣
师:百分数在我们的生活中无处不在,现在我们来轻松一下,领大家玩一个“你猜我猜大家猜”的游戏。
(1)猜百分数:
百发百中(100%);十拿九稳(90%);百里挑一(1%);一举两得(200%)
(2)猜成语:
100%的命中率(百发百中);生还的可能性只有10%(九死一生)
1、百分数的意义和写法;
2、百分数的应用;
3、与分数区别和联系。
比的意义教案5
【教材分析】
苏教版国标本小学数学第十册第36例1、“试一试”、“练一练”和练习六相关习题。这部分内容是在学生初步认识分数的基础上教学的,在三年级上册,学生已经学习把一个物体、一个图形平均分成几份,用几分之一、几分之几表示其中的一份或几份;在三年级下册,学生有学习了把由若干个物体组成的一个整体平均分成几份,用几分之一、几分之几表示其中的一份或几份。本堂课主要引导学生抽象出单位“1”的概念,概括分数的意义,认识分数单位。例1中首先让学生看图写分数,激活学生对分数的已有认识。然后分两个层次:1、让学生认识到这里分别是把一个物体、一个图形、一个计量单位、一些物体组成的整体平均分的,抽象出单位“1”的概念;2、再让学生认识到分数是把单位“1”平均分成了几份,表示这样的几份?完整的概括出分数的意义。最后让学生认识分数单位的含义。
【教学目标】
1、使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进
一步理解分数的意义。
2、使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
【教学重点】理解分数的意义,认识分数单位。
【教学难点】理解、抽象出单位“1”。
【教学准备】课件
【教学过程】
一、导入:
谈话:在三年级,我们曾经分两次认识分数。你能举例说说什么是分数吗?
二、新课
1、教学例1
(1)出示例1组图
提问:你能用分数表示各图中的涂色部分?
(学生独立完成在书上)
追问:你能说说每个分数各表示什么?
(同桌交流后班内汇报)
教师根据学生回答,用课件逐渐展示板书。
提问:第四个图与前三个图有什么不同吗?
引导学生明确:一个饼可以称为一个物体、一个长方形是一个图形、1米是一个计量单位,而第四幅图是把6个圆看作一个整体。
出示2/3
提问:把( )平均分成3份,表示这样2份的数?
学生讨论交流,班内汇报。
猜测:可能是一个物体、一个图形、一个计量单位或许多物体组成的一个整体。
说明:一个物体、一个图形、一个计量单位或许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
追问:在这几个图里,分别是把什么看作单位“1”,平均分成了几份?表示这样的几份?
提问:你能试着说说什么是分数吗?
教师引导概括分数意义。
(2)操作:铅笔、硬币、钟面、桃子图案
提问:你能用手中的物品表示2/3吗?你是怎样想的?
学生小组合作用提供的物品表示并交流想法。
【设计意图】学生在概括单位“1”后,通过操作丰富单位“1”的表象,理解单位“1”不同,所表示的意义、数量都不同。
(3)出示练习六(3)
学生先按书上的说法,说说第1题中是把哪个数量看作单位“1”平均分成了几份,三好生有这样的几份;再参照第1题说说后两题中分数的意义。
(4)出示练习六(4)
先引导学生明确单位“1”,再依次出现平均分的点,让学生用分数表示并说说想法。
(5)出示练习六(5)
学生独立完成后交流所填分数有什么不同。
2认识分数单位
(1)谈话:整数、小数都有计数单位,例如:整数9的计数单位是1,9里面有9个1,0.9的计数单位是0.1,0.9里面有9个0.1。分数也有分数单位。例如:5/8里有5个1/8,5/8的分数单位是1/8,3/7、1/5、1/2呢?
提问:你能说说什么是分数单位吗?
学生讨论交流,教师引导揭示。
【设计意图】联系整数、小数的计数单位,有助于学生正确理解分数单位。
(2)完成“试一试”
学生独立思考,同桌互说后班内交流。
(3)完成“练一练”
学生独立完成,班内交流订正。
(4)完成练习六(1)
同桌读一读,并说说每个分数的分数单位。
提问:每个分数的分母与分数单位有什么关系?
课堂小结:
这节课,我们认识了是什么?生活还有哪些事物能用分数来表示,她们又是分别把谁看作单位“1”。找一找,和同学说一说。
比的意义教案6
教学目标:
1、使学生理解小数的意义。
2、使学生认识数学知识源于实际生活,用于实际生活。
3、通过分析、对比、概括培养学生的思维能力。初步渗透对应思想和分类思想。
4、激发学生大胆质疑、问答,培养创新意识。
教学重点:
理解小数的意义
教学难点:
理解三位小数的意义
教学准备:
直尺、课件
教学过程:
课前谈话:同学们,你们逛过超市吗?大家在挑选商品的时候,一般看些什么?
一、看价签,引出小数
1、课前我知道了你们都挺爱逛超市的,在超市里买过食品、衣服,那么,你们买学习用品吗?我发现有一家文具店,那里的文具又好又便宜,你们想去看看吗?一会大家认真看,挑一件你们最喜欢或最需要的文具的价钱记下来,好吗?
2、看课件。
3、说说你记得都是什么?这些都是什么数?这些都是用小数表示的价钱,还能用别的方法表示吗?试一试。
4、和小组里的同学说一说自己是怎样想的?如果组里有什么解决不了的困难,一会儿告诉全班同学我们一起来研究。
5、汇报:(师选择板书)
6、刚才,我们一起研究了这么多小数,还把他们用分数表示出来了,请你们仔细观察一下,小声读读,你们有什么发现吗?(独立思考)有想法了吗?快跟组里同学说一说。
7、汇报:生发现小数与分数之间的关系
二、解决实际问题
1、我们初步认识了小数,除了在价签上见过小数,你还在哪见过小数?举个例子说一说。你能说一说它是什么意思吗?
2、测量。以小组为单位:
(1)测量身边物体的长度。
(2)以米为单位用小数表示出来。
(3)把测量结果写在记录单上
(主要解决三位小数)
三、小结
1、有关小数你还知道些什么?你是怎样知道的?
2、小数还有许多有趣的知识,你们还想继续了解吗?你们有什么办法能学到这些知识呢?
比的意义教案7
课题名称 小数的意义
课标要求 结合具体情景理解小数的意义,会进行小数、分数的转化。
学习目标
1.通过动手操作,学生明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
2.知道小数的计数单位和每相邻两个计数单位之间的进率。
教学重点 理解一位、两位、三位小数的意义,知道每相邻两个计数单位之间的进率是10。
教学难点 理解一位、两位、三位小数的意义。
学习过程
一、谈话导入
师:同学们,我们在三年级的时候已经对小数有了初步的认识,今天我们继续学习小数的意义。那同学们还记得小数长什么样子?你能举个例子说一说吗?
预设:0.3
师:谁能说一个和他不一样的?
预设1:0.47
预设2:0.356
师:同学们说了这么多,那老师说几个,我说,你们来读(1.8、2.75、4.702)你能将这些小数分分类吗?并且说一说你分类的依据是什么?
预设:(0.3、1.8)(0.47、2.75)(0.356、4.702)我是这样分的,看小数点后面,有一位的分在一起,有两位的分在一起,有三位的分在一起。
师:我们把第一组给他起个名字,叫一位小数,第二组叫两位小数,第三组叫三位小数。
二、探究新知
(一)0.1表示什么
师:今天学习小数的意义,要想知道0.3表示什么?我们得从研究0.1表示什么开始。
1.请同学们拿出准备好的正方形纸,如果把这张纸看作“1”,怎样表示出0.1呢?完成学习单第一题。
学生操作。
汇报:将这张纸平均分成10份,取其中的1份是,用小数表示就是0.1。也就是0.1就表示,可以用等号连接。(板书)
2.谁能借助你手中的正方形纸说一说,0.3表示什么?
预设:将这张纸平均分成10份,取其中的3份是,用小数表示就是0.3。也就是0.3就表示。(追问:0.5里有几个0.1?)
3.你还想表示哪个小数?
预设:我还想表示0.8。将这张纸平均分成10份,取其中的8份是,用小数表示就是0.8。也就是0.8就表示。
4.观察这三组,你发现一位小数和分数有什么关系?
预设:一位小数都表示十分之几。
(二)0.01表示什么
师:现在我们探究出一位小数表示十分之几,那么两位小数、三位小数又表示什么?按照这个思路,完成导学单第二题。
小组讨论。
汇报:
1.两位小数表示什么,应先从研究0.01开始,我们把这张纸平均分成100份,取其中的1份是,用小数表示就是0.01。也就是0.01就表示。
2.0.06表示,它里面有6个0.01。
3.我还想表示0.73。我们把这张纸平均分成100份,取其中的73份是,用小数表示就是0.73。也就是0.73就表示。
4.小结:我们发现两位小数都表示百分之几。
(三)0.001表示什么
预设:0.001表示。我们把这张纸平均分成1000份,取其中的1份是,用小数表示就是0.001。也就是0.001就表示。
师:平均分成1000份是不不好分呀,我们找电脑帮帮忙。(ppt出示正方体)
师:现在从这1000份中取出365份,用分数怎么表示?写成小数呢?里面有多少个0.001?你还能写出哪些小数?
观察算式,你发现了什么?
预设:三位小数都表示千分之几。
(四)认识计数单位
ppt出示:十分之一、百分之一、千分之一…….都是小数的计数单位。通过ppt演示,学生发现每相邻两个计数单位之间的进率是10。
三、课堂检测
1.写出下面图形所表示的分数和小数。
2.哪两只手套是一副,用线连一连。
3.填空
0.8里面有( )个0.1
0.32里面有( )个 0.01
0.620里面有( )个0.001
0.1235里面有( )个0.0001
4.在直线上标出下面各数的位置。
0.4 2.6 1.3 3.85
四、课堂小结
师:请同学说一说,这节课你都收获了哪些知识?
五、板书设计
板书设计:小数的意义
一位小数 两位小数 三位小数
十分之几 百分之几 千分之几
0.1= 0.01= 0.001=
0.3= 0.06= 0.365=
0.8= 0.73= 0 .798=
比的意义教案8
一、教学目标:
1、了解分数的产生过程,理解分数和分数单位的意义,能对具体情境中分数的意义作出解释;
2、感受数学知识是在人类生产和实践中产生的,体会数学在实际生活中的运用,培养学生对数学的兴趣和利用所学数学知识解决实际问题的能力。
二、教学重难点:
1、理解分数的意义;
2、了解分数单位,并会找分数单位;
三、教具学具:
多媒体课件、小棒、一米长的绳子、小正方体、长方形纸等。
四、教法学法
讲授法、小组合作探究法等。
五、教学过程:
(一)复习导入
师:三年级的时候我们已经学过分数的初步认识,板书出示,这个分数读作?你能说一说它各部分的名称吗?今天这节课我们继续学习分数的相关知识,板书“分数的意义”。
(二)课堂新授
1、介绍分数的产生
生活中,在测量、分物或计算时往往不能得到整数的结果,这时我们可以用分数来表示。
2、初步感知:
PPT出示,把一个饼平均分成四份,其中的一份可以用哪个分数来表示?如果这样把一个饼分成4份,其中的一份可以用表示吗?为什么不可以?因为没有平均分,板书“平均分”,强调在谈到分数的时候我们要考虑到平均分。
3、活动一、动手操作,再认识
(1)准备。老师给每个小组准备了不同的学具,(出示学具)你能利用你手中的学具通过折一折、分一分、摆一摆等方法,表示出吗?找同学为大家朗读活动要求。
(2)小组活动。小组合作,动手操作,教师巡视。
(3)汇报展示。你能表示出一张纸的吗?4跟小棒的应该如何表示?你还用什么表示了?
(4)总结,认识单位“1”。刚才我们都是把哪些物体平均分的?像把一张纸平均分我们可以说成把一个物体平均分;把一米长的绳子平均分我们可以说成把一个计量单位平均分;把4根小棒、八个小立方体平均分,我们可以说成把一些物体平均分。一个物体、一个计量单位、一些物体都可以看做一个整体,一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。板书单位“1”。介绍这个单位“1”同我们之前学过的1不一样所以要加引号。
4、活动二、联系实际,加深对单位“1”的理解。
(1)你举出用单位“1”表示一个物体的例子吗?你能举出用单位“1”表示一个计量单位的例子吗?你能举出用单位“1”表示一些物体的例子吗?总结,单位“1”可小可大,自然界中小到一粒尘埃,大到整个宇宙都可以用单位“1”表示。
(2)动手操作,加深理解。老师这里也有一个表示的作品,露出来的部分占一个整体的,你能画一画,并说一说整体是怎样的吗?说一说,你能说一说你是如何画的?这里的把谁当做单位“1”?你画的部分应该用哪个分数表示?
5、活动三、理解分数的意义
(1)大家都理解、的含义了,你能用自己的话说一说什么是分数吗?PPT出示:把单位“1”平均分成若干份,其中的一份或几份都可以用分数表示。分数,简言之,先分后数,分什么?数什么?我们一起来感受下吧。把十个圆看做单位“1”,平均分成5份,其中的2份可以用哪个分数来表示?
(2)活动。你能任意写一个分数,并和同桌说一说你写的这个分数表示的意义吗?抽签决定第几小组给大家分享自己写的分数。教师板书。
6、认识分数单位
整数有计数单位个、十、百、千等,分数也有计数单位,分数的计数单位是什么呢?请看大屏幕,“把单位‘1’平均分成若干份,表示其中一份的数就是分数单位”。以为例,把单位“1”平均分成5分,表示其中一份的数是,所以的分数单位是。举例练习。
(三)生活中的分数
分数在我们的生活中随处可见,PPT出示:据统计五三班女生人数占全班人数的,你能说一说这里的所表示的意义吗?五三班在午托班吃饭的人数占全班人数的,你能说一说这里的所表示的意义吗?人从小到大,身体的比例一直在变化,新生儿的头长占身长的,5岁时头长占身长的,成年人的头长占身体的。
(四)课堂小结
通过这节课的学习,你已经知道了什么?你还有什么不明白的地方吗?你有什么问题要问吗?
(五)练习巩固
接下来我们来检测下大家的知识掌握情况。
1、填空
(1)表示把x平均分成x份,取其中的x份。
(2)说出下面各数的分数单位。
xxx
(3)在括号里填上合适的分数。
xmxm
二、判断。
(1)把一堆苹果平均分成4份,每份占这堆苹果的。x
(2)把5米长的绳子平均分成7份,每份占全长的。x
(五)课堂小结
通过这节课的学习,你学到了什么?你还有什么疑惑?你有什么问题要问?
六、板书设计
比的意义教案9
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:
认识反比例关系的意义。
教学难点:
掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例1。
出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨) 10 20 30 40 50
所需的天数 30 15 10 7.5
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答 讨论结果得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例2
出示例2
请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3) 判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。
比的意义教案10
学习目标:
1、能应用正负数表示生活中具有相反意义的量。
2、能说出有理数的意义,能正确对有理数进行分类。
重难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
学习时数:1课时
学习过程:
一、快乐自学(8分钟)
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上-号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
二、合作探究
1、某地2月18日凌晨1点的温度是0℃,凌晨4点的温度是-2℃,哪个时刻温度低?
2、吐鲁番盆地艾丁湖湖面的海拔高度为-154m,海平面高度为0m,哪个地方低?
3、通常把水结冰时的温度规定为0℃,那么比水结冰时的温度低5℃应记作什么?
4、如果在东西向马路上,把向东走的路程记作正数,那么走-50m是什么意思?
5、粮库把运进的粮食吨数记作正数,在某星期的5天中,进出粮食的记录如下:
星期 一 二 三 四 五
吨数 25 -10 -15 40 -30
说出该粮库在这个星期中粮食进出记录的实际意义。
25表示:_________________________________________________________________
-10表示:_________________________________________________________________
-15表示:_________________________________________________________________
40表示:_________________________________________________________________
-30表示:_________________________________________________________________
6、有下列8个数:3.6 , ,-78 ,0 ,-0.37 ,9 , -5.14 ,-1 。其中正数有:
_______________________________,负数有:_______________________________。
三、小结:(3分钟)
通过本节课的学习,你知道了什么?
______________________________________________________________________________
______________________________________________________________________________
四、达标训练
必做题(2分钟)
1、正数是____________0的数,负数就是在正数前面加上-号的数,负数__________0。__________________既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
2、把下列各数填在相应的横线上:
-14 ,2.8 ,45 , ,-0.25 ,0 , ,2.07 ,-7.1 ,181 , ,3 。
选做题(8分钟)
在书上完成P7B组习题1题,2题。
五、学后反思
1、通过本节课的学习我知道了
数学知识:________________________________________________________
学习数学的经验:__________________________________________________
2、我还存在的疑问是:
______________________________________________________________________________
3、我对老师的建议是:
______________________________________________________________________________
比的意义教案11
教学内容:P50例一,P51“做一做”及练习十一的1-4题
教学目的
1、知识与能力
2、生进一步理解整除的意义。
2、使学生知道约数、倍数的含义,以及它们之间的相互依存关系。
3、使学生知道研究约数和倍数时所说的数,一般指自然数。
教学重点:理解整数、约数和倍数的概念。
教学难点:整数、约数和倍数的联系。
教学过程:
一、复习
1、师:谁能说说整数的含义?
出示:23÷7=3...26÷5=1.2
15÷3=524÷2=12
教师:这4个算式中,哪个算式中第一个数能被第二个数整除?
为什么前两个算式中的第一个数不能被第二个数整除?
让学生观察算式,说说式中被除数、除数和商各有什么特点?
教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?
让学生P49页的结语。
教师:a的约数还可以叫做什么?
让学生用两种说法说说:15÷3=5和24÷2=12
教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
(1)被除数和除数必须是整数,而且除数不等于0。
(2)商必须是整数。
(3)商的后面没有余数。
师:以上三个条件,缺一不可。
2、区别“除尽”与“整除”
师:像6÷5=1.2这样的除法,一般说6能被5除尽。
被除数和除数
商
整除
都是整数,除数不等于0
商是整数,而且没有余数
除尽
不一定是整数,除数不等于0
商是有限小数,没有余数
二、新课
1、教学约数和倍数的意义。
在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)
让学生看50页关于约数和倍数。
教师:两个数在什么情况下才能说有约数和倍数关系?(整除)
能单独说一个数是约数或一个数是倍数吗?
“倍数和约数是相互依存的”是什么意思?
:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。
2、教学例1
(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。
教师:15能被3整除吗?
15是3的什么数?
3是15的什么数?
教师指出:这里所说的数一般是指自然数,不包括0。
(2)“倍数”与“倍”的区别
1、基本练习P51做一做
三、巩固练习
1、独立完成练习十一的1、2、3题。
2、第四题
教师:要判断哪些数是60的约数,只要看那哪些数能整除60。
要判断哪些数是6的倍数,就要看哪些数能被6整除。
四、:略
比的意义教案12
教学内容:九年义务教育六年制小学数学教科书人教版五年级下册第60-62页。
教学目标:
1、在具体的情境中进一步认识分数,发展数感,体会数学与生活的密切联系。
2、理解有关单位 “1” 的数学内涵,进而揭示分数的意义,认识分数单位的含义。
教学重点:分数意义的归纳与单位“1”的抽象。
教学难点:把多个物体组成的一个整体看作单位“1”。
课前谈话:
同学们猜一猜,在课堂上,老师最喜欢什么样的学生?(用心听讲的学生;踊跃发言,并且敢于表达和坚持自己的观点;)老师会不会批评回答错误的学生?(孩子是什么?错误中成长的天使。)
教学过程:
一、创设情境,引入新课
老师想考考同学们,看看同学们能不能从现实生活中发现数学问题,敢接受老师的挑战吗?同学们一定要认真听啊。星期天,亮亮妈妈去逛商场了,商场里的沙发坐垫正在打折,亮亮妈妈想买一套。但是,她遇到麻烦了,她不知道家里沙发的长和宽呀。亮亮妈妈就给家里打了个电话:亮亮,量一量家里沙发的长和宽,好吗?遗憾的是亮亮找不到的尺子。亮亮呀可聪明了,他想了一个绝妙的办法。他说,妈妈,家里还有一条丝巾,和你戴的丝巾一模一样,我用丝巾量好吗?用丝巾量,这个办法很好啊。亮亮开始量沙发了:沙发的长正好是两个丝巾的长,沙发的宽么,哦,沙发的宽比丝巾的长度短许多,亮亮把丝巾对折后再量,沙发的宽比对折后的丝巾短一些,亮亮把丝巾折了三次后再量,这时沙发的宽正好是三折后丝巾的长。
板书课题:分数的意义
二、导学导探,建构分数
1、整体感知
①请同学们思考,你们能结合下面的图形说说1/4的含义吗?
②请看第5副图,老师有点纳闷,2个面包和1/4是什么关系?
③这5个图形的形状、大小、数量都不一样,为什么都能用1/4来表示呢?
师总结:上面的这些物体都可以看做一个整体,都平均分成了4份,都取出了其中的一份,所以都可以用1/4来表示。
④一个整体还可以用什么来表示呢?下面老师告诉同学们一个知识点,谁来念一遍:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
强调:一个圆形的面积、长方形的面积、香蕉的个数、一条线段、8个面包都可以用单位“1”来表示。这里的1不仅可以表示一个物体,还可以表示多个物体,它的含义非常特殊,所以1的上面需加上双引号。
谁来举一个单位“1”的例子。
改写板书:1/4的意义该怎么修改呢:把一个整体改为单位“1”,即把单位“1”平均分成4份,表示这样一份的数就是1/4。
2、抽象概括
①1/4的意义明白了,谁来说说5/7的意义(把4和1擦掉)
②师:出示5/,让学生说把单位 “1”平均分成……(这里有几种不同的声音出现),表示这样5份的数。
③师:出示()/(),谁又能说说它表示的意义。
出示自学提纲
板书:5/6分数单位1/6
三、拓展延伸,加深理解
今天。我们学习了分数的意义,你们学得怎么样,老师要检验一下:
1、图中的涂色部分表示几分之几?(糖块)(挑几个说分数的意义和分数单位)
2、3、书上的题
4、判断
5、写出合适的分数:
四、自我小结,升华认识
师:今天我们进一步学习了分数的意义,分数的意义是:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。马上下课了,老师想说一句含有一个分数的话:今天我们班有3/4的学生发言积极,有4/5的学生语言流畅,有5/6的学生思维敏捷,如果老师有机会再来上课的话,老师希望100%的学生都是好样的。中午回家给爸爸妈妈说一句话,让这一句话里含有一个分数。
板书设计
分数的意义
分数:把单位“1”平均分成若干份,表示这样的一份或者几份的数。
分数单位
比的意义教案13
教学目标:
知识与技能:使学生初步了解什么是美术鉴赏、美术鉴赏的一般过程和特征,以及学习美术鉴赏的意义,由此掌握美术鉴赏的方法,培养学生“审美的眼睛”。
过程与方法:本节课主要采用教师引导学生,学生自主学习与合作学习相结合的方式,使学生充分展现自我,体现自我现有发展水平。
情感、态度与价值观:使学生认识美术鉴赏对于个人未来人生发展的重要价值和意义。
教学重点:
教学重点在于培养审美的眼睛,使学生掌握美术鉴赏的一般方法,认识美术鉴赏的价值与意义。 教学难点主要是如何结合实例,让学生初步了解与学习美术的主要分类方法、美术鉴赏的概念和美术鉴赏的一般过程或方法。
教学过程:
一、导入新课
由法国雕塑家罗丹的一句话“生活中不是没有美,而是缺少发现美的眼睛”,引出本节课课题——培养审美的眼睛 美术鉴赏及其意义。
二、学习新知
1、师生共同探究美术鉴赏的概念
⑴从“美术鉴赏”的字面意思进行分析:“美术”:视觉艺术,可视形象,平面空间,以供欣赏;“鉴赏”:“鉴”鉴别、鉴定,“赏”欣赏、观看。“美术鉴赏”即鉴赏视觉艺术。
⑵规范的概念:运用我们的视觉感知、视觉经验和相关知识对美
术作品进行归类、分析、判断、体验、联想和评价,从而获得审美享受,它是一个综合的审美活动。(美术鉴赏教材中P4,第2、3段)
2、小组合作学习,鉴赏两幅作品,总结美术鉴赏的一般过程与方法
⑴合作学习时间为10分钟左右。学习提示:观看两幅作品《捣练图》和《拾穗》(哪种美术?画的是?他们在做?构图?色彩??);对比两幅作品,体会感受(通过对比,带给你什么不一样的感受???)。
⑵教师引导学生进行学习成果展示。
⑶总结美术鉴赏的一般过程与方法。在美术鉴赏中,“鉴”是手段、是基础,“赏”才是目的,“鉴”是为“赏”服务的。
3、看图说话,归纳出美术作品的分类
⑴出示相关图片,让学生分别指出有哪些大的分类:依据其艺术门类划分为绘画、雕塑、建筑、设计(工艺)、书法(篆刻)、摄影等六大类;按照形式语言分为具象艺术、意象艺术、抽象艺术。
⑵选择教材中的一些美术作品,让学生辨别其门类。
4、思考与讨论出美术鉴赏的意义
阅读教材内容,思考与讨论美术鉴赏的价值与意义,用自己的语言进行复述,并提炼出其社会、教育和审美功能。
三、课堂小结
关于美术鉴赏及其意义,你们懂了吗?还有什么不明白的?尝试鉴赏你喜欢的美术作品。
板书设计:
培养审美的眼睛——美术鉴赏及其意义
一、美术鉴赏的概念:字面意思,教材中定义
二、美术鉴赏的分门别类:依据艺术门类分为:绘、雕、建、设、书、摄等。形式语言:具象、意象、抽象
三、美术鉴赏的意义:社会、教育、审美功能
比的意义教案14
教学内容:
教材第48-49页的内容及相应的“做一做”。
教学目标:
1、理解比的意义,掌握比的读、写及各部分的名称。
2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。
教学重点:
理解比的意义,求比值。
教学难点:
理解比和分数、除法之间的关系。
教学过程:
一、创设情境
1、播放“神舟”五号顺利升空课件。
播报:20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)
2、提问:我们可以怎样表示它们长和宽的关系呢?
(1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。
(2)用倍数关系来表示:长是宽的3/2,宽是长的2/3。
3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)
二、自学互动,适时点拨
【活动一】比的意义
学习方式:独立自学、汇报交流
学习任务
1、同类量的比。
(1)启发:除了用已经学过的这些方法来表示长和宽的关系外,我们还可以怎样表示这两个数量之间的关系?
(2)自学课本第48页的内容。
(3)长和宽的比是15比10,宽和长的比10比15。
(4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,这样的两个比我们称为同类的比。
2、不同类量的比。
(1)出示数据,列式求飞船的速度:42252÷90。
(2)用比来表示路程和时间的关系。
提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)
(3)提问:路程和时间是不是同类的量?
(4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。
3、概括比的意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。
【活动二】比的读写方法和各部分的名称
学习方式:独立自学、汇报交流
学习任务
1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?
2、汇报交流:15 : 10 =15÷10 =3/2
前项 比号 后项 比值
3、比值。
(1)什么是比值?怎么求比值?
(2)比值可以怎样表示?(分数、小数、整数)
(3)讨论:比值和比有什么联系和区别?
【活动三】比与除法、分数的关系
学习方式:小组讨论、汇报交流
学习任务
1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?
区别:除法是一种运算,分数是一种数,比表示两个数的关系。
2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)
三、达标测评
1、完成课本第49页的“做一做”,集体订正。
2、完成第52页练习十一的第1题。
四、课堂小结
这节课我们一起研究了比,回顾一下你有什么收获。
比的意义教案15
教学内容
教科书第96~98页的内容,完成练习二十四的第1~5题.
教学目的
使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤.
教具准备
简易天平、砝码、标有“20”、“30”和“?”的方木块,画有教科书第12页上图的挂图,小黑板或投影片.
教学过程
一、新课
1.方程的意义.
(1)教学第1个例子.
教师将简易天平、砝码摆在讲台上,然后,提出问题指名让学生回答.
教师:讲台上摆着的是什么仪器?(天平.)
它是用来做什么的?(用来称物品的重量的.)
怎样用它来称物品的重量呢?(在天平的左面盘内放置所称的物品,右面盘内放置砝码.当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等.砝码上所标的重量就是所称物品的重量.)
教师一边提问,一边根据学生的回答演示如何用天平称物品.(称出的物品同教科书第11页上图.)
教师:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等.)
教师:对!天平两边放上重量相等的物品时,天平就平衡,反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等.那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!
先让学生自由地说一说,根据学生的发言,教师写出算式:20+30=50
教师:20+30=50是一个什么式子?(等式.)对!这是一个等式.
(2)教学第2个例子.
教师改变天平上所放的物品和砝码,使之同教科书第11页下图.
教师:现在天平也保持着平衡,这说明了什么?(说明天平左、右两边的重量相等.)那么,怎么用式子来表示这种平衡的情况呢?再试试看!
指名让学生试着写等式,如果学生写出20+?=100,可以提示学生:“?”是不是要求的未知数?我们以前学习过,一般用什么字母表示未知数?
教师和学生共同把等式20+?=100改写成20+x=100.
教师:20+x=100是一个什么式子?
学生:这也是一个等式.
教师:对!这也是一个等式.但是,这一个等式与20+30=50有什么不同?
学生:这是一个含有未知数的等式.
教师:左盘中的这个标有“?”的方木块应该是多少克,才能使天平保持平衡呢?也就是这个等式中的x是多少才能使等号左右两边正好相等呢?可以是一个随便的重量吗?
让学生自由地说一说,教师总结.
教师:对!这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左右两边正好相等.同学们观察一下天平,想一想x应该代表什么数呢?
让同桌的学生讨论一下,然后指名说一说.启发学生说出,因为左盘中未知的方木块重80克才能使天平平衡,所以只有x等于80的时候,才能使等式中的等号左右两边正好相等.
教师在20+x=100的右边板书:x=80
(3)教学第3个例子.
教师出示挂图(教科书第12页上图.)
教师:我们再来看这个例子.大家先认真观察,想一想,这幅图的图意是什么.同桌的两个同学说一说.
指名让学生说图意.
学生:这幅图告诉我们:这里的每个篮球的价钱是x元,3个篮球的总价是186元.
教师:每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?
学生:每个篮球的价钱是x元,3个篮球的总价还可以表示为3x元.
教师:谁能根据图意写出一个等式来?
学生:3x=186
教师:想一想,这个等式有什么特点?
学生:这也是一个含有未知数的等式.
教师:当x等于多少时,这个等式中的等号左右两边正好相等?
第五篇:比的意义教案(精选12篇)
篇1:比的意义教案
(一)呈现例1挂图:妈妈早晨准备了2杯果汁和3杯牛奶。
1、利用旧知进行比较:
(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)
相差关系{牛奶比果汁多1杯 倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯 牛奶的杯数相当于果汁的3/2
(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。
2、“比”的教学:
(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)
3、“比”的读写:
(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)
(2)指导学生写:3比2怎么写呢?谁来写一写?
(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项 后项)
(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?
4、比是有序概念
(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?
(2)对!颠倒两个数量的.位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。
设计意图:
例1的教学首先抓住了两个环节:首先通过已有知识与经验使学生认识到用减法可以表示两个数量的相差关系,用分数或除法可以表示两个数量之间的倍数关系,而这里认识的比则专门框定于后一种情况,这样可使教学建立在一个清晰的前提条件下。其次又重点引导学生认识比,使学生体会到比是对两个数量进行比较的又一种数学方法。在介绍比的各部分名称后,结合两个比的前后项的“不同”巧妙帮助学生明确比是一个有序的概念,这样的教学安排符合学生的认知规律,也显得层次清晰,条理有序。
(二)完成试一试
(出示安利瓶)在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)
(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?
(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?
(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)
设计意图:
通过引导学生参与讨论洗洁液与水体积之间关系的表示方法,使学生初步体会到比与除法、分数之间的内在联系。既利于后面教学比、分数、除法三者之间的关系,也有利于加深学生对比的意义的认识。
篇2:比的意义教案
教材简析:
这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的意义,并主动探索比与分数、除法的关系。
练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。
可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
重点:理解比的意义
难点:理解比与分数、除法的关系
教学准备:多媒体课件、挂图、小黑板
教学过程:
一、谈话导入
1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)
2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?
设计意图:
开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。
篇3:比的意义教案
(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)
1、想一想,我们怎样求两人的速度?
2、学生计算答案,汇报填表。
3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)
4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)
(二)理解比的意义
1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比 两个数相除)
2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)
设计意图:
例2通过教学两个不同类量的比,使学生进一步完善对比的认识。一方面通过题中的填表,使学生初步体会到速度是路程与时间比较的结果,再通过用比表示这一关系重点启发学生用自己的话来说一说,在描述比的意义时重点强调了比与除法的关系,在通过学生与教师的互动互说,共同领悟中使学生对比的意义有一个本质的理解。
(三)认识“比值”、及与“比”的区别:
1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?
2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?
3、你能说出例1中的各个比的比值分别是多少吗?
4、讨论:同学们觉得比与比值的区别在哪里?
(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)
设计意图:
比与比值是互相联系而又有区别的两个概念,在学生初步认识比值后就对这两个概念进行比较既有利于学生对两个概念的的理解和掌握,又为后继教学区分两种容易混淆的题型“化简比”和“求比值”奠定了基础。
篇4:比的意义教案
教学目标:
1、理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。
2、理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。
教学重点和难点:
掌握比的意义,建立比的概念,能准确地求出比值。
教学过程:
老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)
导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。
(一)准备题
(事先板书)口头列式解答。
1、一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?
2、一辆汽车,2小时行驶100千米,每小时行驶多少千米?
板书: 1002=50(千米)
师:观察上面的两道题,它们有什么共同特点?(都用除法)
(二)讲授新课:比的意义
1、观察练习1。
问:32表示什么?(3是2的几倍。)
谁和谁比?(长和宽比。)
23表示什么?(2是3的几分之几。)
谁和谁比?(宽和长比。)
师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。
板书:长和宽的比是3比2。宽和长的比是2比3。
也就是说,32可以说成3比2,23也可以说成2比3。
提问:3分米、2分米都表示什么?(长度)
师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。
2、观察练习2。
提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?
师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即 100∶2可以说成 100比2。)
路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度。)
3、归纳总结。
师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上比。)什么叫做比?(学生讨论后,老师归纳并板书。)
板书:两个数相除又叫做这两个数的比。
4、练一练。(投影)
(1)书法小组有男生6人,女生5人,男女生人数的比是( )比( ),女生人数和男生人数的比是( )比( )。
(2)小红3小时走11千米,小红所行路程和时间的比是( )比( ),这个比表示( )。
提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)
(三)比的写法和各部分名称
师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)
3比2 记作3∶2
2比3 记作2∶3
100比5 记作100∶5
∶叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。
提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)
比值可以是哪些数?(分数、小数、整数)
练习:你会求比值吗?(板书)
100∶2=1002=50
(老师说明:求比值和解答应用题不同,不写单位名称。)
(四)比、除法、分数之间的关系
师:两个数相除又叫做两个数的比,比和除法到底有什么关系?
学生讨论,老师出示投影。
生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。
师:为什么要用相当于这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。
提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)
师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成
成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。
提问:比和分数有什么关系?
生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)
师:分数是一个数,所以比同分数也是相当于的关系。
(五)反馈练习
1、第56页的做一做,学生动笔在本上做。
2、(投影)把下面的比写成分数形式。
3、选择答案。
航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是
4、判断正误:(举反馈牌)
(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的
(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。
师:写比要注意比的顺序,前、后项不能颠倒。
(六)课堂总结
今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?
(七)布置作业
(略)
篇5:比的意义教案
教学内容:
书第68-69页例1、例2,试一试、练一练和练习十三的1―5题。
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学重点:
理解比的意义。
教学难点:
理解比与分数、除法的关系。
教学准备:
多媒体课件。
教学过程:
一、谈话导入
1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)
2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?
二、教学例1
(一)、呈现例1:
1、利用旧知进行比较:
(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)
相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2
(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。
2、“比”的教学:
(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)
3、“比”的读写:
(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)
(2)指导学生写:3比2怎么写呢?谁来写一写?
(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项
后项)
(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?
4、比是有序概念
(1)同学们看一看,刚才的比的`前项是2,这儿的2怎么又是比的后项了呢?
(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。
(二)、完成试一试
(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?
(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?
(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)
三、教学例2
(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。
1、想一想,我们怎样求两人的速度?
2、2、学生计算答案,汇报填表。
3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)
4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)
(二)、理解比的意义
1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比两个数相除)
2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)
(三)、认识“比值”、及与“比”的区别:
1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?
2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?
3、你能说出例1中的各个比的比值分别是多少吗?
4、讨论:同学们觉得比与比值的区别在哪里?
(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)
(四)、“试一试”
1、完成“试一试”:(学生独立完成,指名板演)
2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)
(五)、比、除法和分数的关系
1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)
相互关系区别
比前项比号(:)后项比值
除法
分数
2、比的后项为什么不能是0?
四、巩固练习
1、完成“练一练”的1、2、3小题。
2、判断题。
(1)3/4只能读作四分之三。()
(2)比的后项不能是零。()
(3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。()
3、完成练习十三的第3、4题。
4、糖水的甜度
(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)
你知道哪一杯水更甜吗?为什么?
(2)(出示第三杯糖水,标出糖4克,水100克。)
你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?
(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?
5、知识介绍:
同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”
五、总结:
今天我们学习了什么?你们有什么收获吗?还有什么问题吗?
六、布置作业:
P72练习十三的1、2、3、5
板书设计
相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2
2比3记作2∶3分数形式
篇6:教案:比的意义
教学目标
1、理解比的意义,了解比的各部分名称;
2、理解比值的概念,能正确地求出比值;
教学重点
教学难点
理解比的意义;
沟通比和除法的关系。
教学准备
教
学
过
程
一、复习导入:
1、六(1)班电脑兴趣小组有男生5人,女生4人。男生人数是女生人数的几倍?女生人数是男生人数的几分之几?
2、一辆汽车3小时行驶180千米,每小时行多少千米?
导入:两个数进行比较,除了用除法算以外,在生产实践与生活中还有一种新的比较方法,这就是“比”,那么比的意义是什么?比的读法和写法怎样?比的'各部分名称叫什么?这就是本节课我们要学习研究的内容。(揭题)
二、展开:
篇7:教案:比的意义
复习题中男生人数是女生人数的1倍,女生人数是男生人数的,也可以说成男生人数和女生人数的比是5
比4,女生人数和男生人数的比是4比5;汽车每小时行60千米,也可说成汽车行驶路程和所用时间的比是18比3。→两个数相除,又叫两个数的比。
2、学课本,思考:比的读法、写法、比各部分名称,什么叫比值?如何求比值?
修改意见
教
学
过
程
3、班级交流,落实上述知识点。
4、完成试一试1、2。
三、完成练一练1、2、5;
完成练一练3:大小两个齿轮,大齿轮每分转25转,小齿轮每分转92转。找出两个数的比,想一想,还可以找出哪些比?
练一练4同上。
四、作业:《作业本》。
教
后
反
思
篇8:小学数学《比的意义》教案
教学内容:九年义务教育六年制小学数学教科书人教版五年级下册第60-62页。
教学目标:
1、在具体的情境中进一步认识分数,发展数感,体会数学与生活的密切联系。
2、理解有关单位 “1” 的数学内涵,进而揭示分数的意义,认识分数单位的含义。
教学重点:分数意义的归纳与单位“1”的抽象。
教学难点:把多个物体组成的一个整体看作单位“1”。
课前谈话:
同学们猜一猜,在课堂上,老师最喜欢什么样的学生?(用心听讲的学生;踊跃发言,并且敢于表达和坚持自己的观点;)老师会不会批评回答错误的学生?(孩子是什么?错误中成长的天使。)
教学过程:
一、创设情境,引入新课
老师想考考同学们,看看同学们能不能从现实生活中发现数学问题,敢接受老师的挑战吗?同学们一定要认真听啊。星期天,亮亮妈妈去逛商场了,商场里的沙发坐垫正在打折,亮亮妈妈想买一套。但是,她遇到麻烦了,她不知道家里沙发的长和宽呀。亮亮妈妈就给家里打了个电话:亮亮,量一量家里沙发的长和宽,好吗?遗憾的是亮亮找不到的尺子。亮亮呀可聪明了,他想了一个绝妙的办法。他说,妈妈,家里还有一条丝巾,和你戴的丝巾一模一样,我用丝巾量好吗?用丝巾量,这个办法很好啊。亮亮开始量沙发了:沙发的长正好是两个丝巾的长,沙发的宽么,哦,沙发的宽比丝巾的长度短许多,亮亮把丝巾对折后再量,沙发的宽比对折后的丝巾短一些,亮亮把丝巾折了三次后再量,这时沙发的宽正好是三折后丝巾的长。
板书课题:分数的意义
二、导学导探,建构分数
1、整体感知
①请同学们思考,你们能结合下面的图形说说1/4的含义吗?
②请看第5副图,老师有点纳闷,2个面包和1/4是什么关系?
③这5个图形的形状、大小、数量都不一样,为什么都能用1/4来表示呢?
师总结:上面的这些物体都可以看做一个整体,都平均分成了4份,都取出了其中的一份,所以都可以用1/4来表示。
④一个整体还可以用什么来表示呢?下面老师告诉同学们一个知识点,谁来念一遍:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
强调:一个圆形的面积、长方形的面积、香蕉的个数、一条线段、8个面包都可以用单位“1”来表示。这里的1不仅可以表示一个物体,还可以表示多个物体,它的含义非常特殊,所以1的上面需加上双引号。
谁来举一个单位“1”的例子。
改写板书:1/4的意义该怎么修改呢:把一个整体改为单位“1”,即把单位“1”平均分成4份,表示这样一份的数就是1/4。
2、抽象概括
①1/4的意义明白了,谁来说说5/7的意义(把4和1擦掉)
②师:出示5/(),让学生说把单位 “1”平均分成……(这里有几种不同的声音出现),表示这样5份的数。
③师:出示()/(),谁又能说说它表示的意义。
出示自学提纲
板书:5/6分数单位1/6
三、拓展延伸,加深理解
今天。我们学习了分数的意义,你们学得怎么样,老师要检验一下:
1、图中的涂色部分表示几分之几?(糖块)(挑几个说分数的意义和分数单位)
2、3、书上的题
4、判断
5、写出合适的分数:
四、自我小结,升华认识
师:今天我们进一步学习了分数的意义,分数的意义是:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。马上下课了,老师想说一句含有一个分数的话:今天我们班有3/4的学生发言积极,有4/5的学生语言流畅,有5/6的学生思维敏捷,如果老师有机会再来上课的话,老师希望100%的学生都是好样的。中午回家给爸爸妈妈说一句话,让这一句话里含有一个分数。
板书设计
分数的意义
分数:把单位“1”平均分成若干份,表示这样的一份或者几份的数。
分数单位
篇9:小学数学《比的意义》教案
教学内容:
人教版九年制义务教育五年制小学数学第十册第125-129页。
教学目的:
1、使学生进一步理解整数、分数、小数等概念的意义,沟通知识之间的联系和区别。
2、通过自主探索和合作学习使学生在整理复习中形成知识网络学会均提高综合运用能力。
3、结合教学,渗透人文主义教育和事物之间是互相联系的辩证唯物启蒙教育。
教学重、难点:
进一步理解整数、分数、小数等概念的意义,沟通联系,形成知识网络。
教具准备:
多媒体课件,练习纸等。
教学过程:
一、联系实际,引入课题
1、课件展示信息报道)据统计,去年我国城镇居民人均可支配收入为6280元,实际增长6.4%;全国基本普及九年义务教育通过验收的人口地区覆盖率达到85%;国有及国有控股企业实现利润为比去年增加1.4倍。人均公共绿地面积从3又9/20平方米提高到6又13/25平方米。第五次全国人口普查统计公布,我国总人口数为1295330000人,平均每个家庭的人口为3.44人,我国计划生育政策取得明显成效。
2、从这组信息报道中,同学们主能感受到什么?你是怎么看出的?
3、揭示课题:数学在我们生活中应用非常广泛,我们的生产、生活都离不开数,这节课我们就来整理和复习数的意义、
二、复习整理,形成网络
1、分组合作,根据以前学过的知识,把信息中的数据分分类。(用展示台展示反馈)
2、分类整理,沟通联系。
(1)整数。
①请同学们举几个用整数表示的例子。
②哪些数属于整数呢?(自然数、0、…、、)
③自然数的意义和单位是怎样的?请同学们看书回顾。(师板书复习步骤)
④介绍自然数的产生,引入我国著名数学家华罗庚爷爷的名言--数起源于数
(2)分数、小数。
①现在请同学们自己来整理复习分数和小数,看看你们打算从哪几方面来整理?(分组讨论)
②根据同学们讨论的结果,请同学们带着问题,看书回顾、分类整理。
③小组分类汇报结果,并围绕整理结果提几个问题,随意点同学回答并作出评价。
(3)百分数
①现在我们还有什么数没有复习?
②百分数的意义是怎样的?
③请同学们举几个用百分数表示的例子。
④介绍几个百分数实际应用的例子。(课件展示)
胶东乡粮食产量比去年增加三成。
百货大楼的帽子按八五折出售。
某针织厂抽查了50件针织内有衣,其中49件为合格产品,合格率为xx%。
20xx年我国人口自然增长率控制在1%以内。
⑤分组讨论:百分数和分数之间有什么联系和区别?
3、形成网络。(课件)意义(略)
(2)复习计数单位、数位、进率等概念。
(3)让学生自由看数位顺序表提问质疑。
5、小结板书
三、综合运用,拓展提高
(课件展示)
篇10:小学数学《比的意义》教案
教学内容:分数的意义、分子、分母、分数单位
教学要求:
1、使学生理解掌握分数、分子、分母的意义和分数单位,进一步学会读写分数。
2、通过分数意义的教学,培养学生分析、综合、抽象、概括能力。
教学重点:单位1和分数单位
教学准备:电脑软件、实物投影仪、正方形纸、围棋子若干
教学过程:
一、复习引进
1、出示分数,它们是什么数?
同学们在三年级时已初步认识了分数,那么分数是怎么产生的呢?
(1)把一个苹果平均分给两个同学,每人得多少?
(2)请两组同学量一量课桌的宽是多少厘米?
(3)请一位同学量一量数学书的长是多少厘米?
(得到的结果都不是整数)
在实际生产和生活中,人们在测量和计算时,往往不能得到整数的结果,这时就需要用一种新的数─分数来表示,这样就产生了分数。
什么是分数?分数的意义是什么呢?这就是我们这节课要学习的内容。
出示课题:分数的意义
二、理解概念:
1、理解单位1的概念
(1)出示一块蛋糕:它可以用1来表示。
(2)出示一个正方形:它可以用1来表示吗?为什么?
(3)出示一条线段:它可以用1表示吗?为什么?
小结:一块蛋糕,一个正方形,一条线段都是一个物体,都可以用1表示。
(4)出示四个苹果:这是几个苹果?可以用1表示吗?为什么?
用圆圈把四个苹果圈起:现在可以用1来表示这些苹果吗?为什么?
(5)把这6只熊猫看作一个整体,用1来表示行吗?为什么?
(6)我们全班同学可以用1表示吗?为什么?一组同学呢?
(7)你能举出一些把许多物体看作一个整体,用1来表示的例子吗?
小结:1不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的一个整体。这个1很特殊,我们给它加上引号,把它称为单位1。
说说你是怎么理解单位1的?能举出例子吗?
2、理解分数意义:
(1)把这块蛋糕平均分成2份,每份是它的几分之几?
(2)把正方形纸平均折成4份,并用阴影部分表示出它的三份,用分数表示是多少?
(3)
这条线段怎么表示它的呢?这一段是几分之几?有几个这样的?
(4)把这些苹果平均分成4份,每份是几只苹果?每份是整体的几分之几?把什么看成单位1?
(5)把4个苹果看成一个整体,还可以平均分成多少份?每份是这个整体的几分之几?
(6)把6只熊猫来平均分,有几种分法?同桌讨论一下,并告诉大家,你分的每一份占整体的几分之几?每份是几只熊猫?
(7)每人拿出围棋子8颗,把它平均分,你想怎么分?
请大家观察,刚才这些分数都是怎么得到的?能自己概括出分数的意义吗?
小结:把单位1平均分成若干份,表示这样的一份或者几份的数,叫做分数。
练习:练习十八13
3、理解分子、分母的意义:
说说这个分数表示什么意义?请你回忆一下分数各部分的名称。
3分子
分数线
5分母
分母5表示什么意义?看到分母你就知道什么?分子3呢?
小结:在分数里表示把1平均分成多少份的数叫分母,表示取了多少份的数叫分子。
4、理解分数单位的意义:
自然数有单位,每个自然数都是由若干个1组成的,因此自然数的单位是几?分数也是由若干个分数单位组成的,所以分数也有分数单位,比如:是由3个组成,就是它的分数单位,的分数单位是,想一想,的分数单位是几?为什么?的分数单位呢?
你能概括一下分数单位的意义吗?
小结:在分数里,把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。
练习:
读出下面的分数,并说出每个分数的分数单位。
5、学习用直线上的点表示分数:
分数可以用直线上的点来表示。
直线上相应的这一点应该用几分之几来表示?
这一点用来表示,为什么?这一点用来表示,为什么?同样都是把单位1平均分,为什么两个分数的分数单位不相同?
三、看书质疑:
今天学习的是课本p84p86的内容,请把p86的做一做练习一下,看看有什么不理解的地方,提出来,我们大家一起讨论、解决。
四、综合练习:
(一)判断:
1、把单位1分成若干份,表示这样的一份或几份的数,叫做分数。
2、把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。
(二)口答:
1、把一条2米长的绳子平均分成5份,把什么看作单位1?每份占全长的几分之几?
2、把12支铅笔平均分成4份,把什么看作一个整体?3份占这个整体的几分之几?
(三)说出下面各题把什么看作1?各题中的分数各表示什么意义?
1、男生人数占全班人数的
2、一袋大米,吃了它的
3、一本书30页,小华已看了总数的
(四)填空:
5个是()是()个
是3个()()个是是()个()
(五)说出下列各分数的意义、分数单位、各有几个这样的分数单位?
(六)下图中阴影部分各占全图的几分之几?(备用)
五、作业:
篇11:小学数学《比的意义》教案
【教学内容】
课本第49页例3课堂活动第2题及练习十三。
【教学目标】
1、进一步认识小数及小数的计数单位,让学生会读小数。
2、进一步体会小数在日常生活中的作用。
3、通过对现实生活中一些自然、人文景观的数据的读写,受到爱国主义的熏陶。
【教学重点】
进一步认识小数及小数的计数单位;会读、写小数。
【教学难点】
小数部分的读法、写法。
【教学过程】
一、复习引入
教师:上节课我们认识了小数,什么叫小数呢?一位小数表示几分之几?两位小数呢?三位小数呢?学生回忆整数读法并在全班交流。
揭示课题:同学们你们会读小数吗?今天我们就来探讨小数的读法。
二、自由讨论、学习新知
1、教师用卡片出示例
0.7,0.19
2、学生先自由读一读,再抽读。
3、议一议:读小数时要注意什么?
4、教师根据学生的回答再归纳小结小数的读法,强调整数部分与小数部分读法的不同。
三、巩固新知
1、同桌相互读数。(课堂活动第2题)
2、练习十三第4题。
让学生独立看题后,再把自己从题中获得的信息告诉同桌或全班同学。
3、练习十三第5题。
教师先引导学生认识表格,并向学生简介表中一些名称的含义。
再让学生看表分组接龙游戏。
4、练习十三第6题学生自己看图写数,三人板演,集体订正。
5、指导练习。
(1)第9题。
教师:5.6与5.7之间相差多少?让学生数一数,5.6与5.7之间平均分成了多少份?从而认识到把0.1平均分成10份,即比0.1更小的计数单位是0.01。因此,第1小题应该填两位小数。
同理,比0.01更小的计数单位是0.001,第2小题应该填三位小数。
填完后,让学生说一说是怎样想的?
(2)第10题。
学生自己独立完成。明白每个小数位上的数代表着什么。
四、拓展提高
1、练习十三第1、2、3、7、8题。
让学生独立完成,集体订正。
2、思考题:第12题用2,5和3个0写小数。
(1)1个0都不读出来的一位小数。
(2)3个0都读出来的小数。
让学生独立思考,完成后读一读。
3、课后作业:第11题和第13题。
回家请父母帮忙,与父母共同完成。
五、课后小结
今天学习了什么?你有哪些收获?
板书设计:
小数的读写
0.7读作:零点七
0.19读作:零点一九
3.08读作:三点零八
103.503读作:一百零三点五零三
读整数部分时按整数读法来读,读小数部分时顺次读出每一个数位上的数字。
教学反思:
篇12:小学数学《比的意义》教案
教学内容:
教材第73到74页分数的意义,“练一练”,练习十三1到4题。
教学目标:
1、了解分数的产生,理解分数的意义,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。
2、培养学生抽象概括能力。
3、感受“知识来源于实践,又服务于实践”的观点。
教学重点:
理解分数的意义。
教学难点:
单位“1”的感知。
教学准备:
多媒体,实物投影仪
教学内容和过程:
一、创设情境
1、同学们,这是几?(板书“1”)
这里有1位老师,1位同学,1还可以表示什么吗?
我相信你们学了今天这节课以后,对1将会有一个更深刻地认识。
2、揭示课题
我们在四年级的时候学过分数,今天我们要继续来学习“分数的意义”。[板书]
[从学生身边熟悉的1引导学生对1的认识,使学生对所学知识有一个整体的感知,并对学习新的知识产生亲切感]
二、新授
1、这里有三幅图,我们一起来看一下。
出示书P73的三副图。(引导学生说出把……平均分成……,每份是它的……。)
(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?( )
(2)出示长方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的5份呢?
(3)出示线段图提问:把1米平均分成10份,这样的1份是几分之几米?9份呢?
三、探索研究
1、现在请同学把目光集中到课桌上,看看老师给你们准备了什么啊?
一张白纸,一根1米长的绳子。
2、你们带了写什么材料呢?
(一堆物体)
3、这些材料能不能通过平均分,得到一些分数呢?
4、学生小组交流,分一分并汇报。
[从生活中挑选了一些实物,作为寻找分数的材料,首先引导学生观察这些材料并猜想能不能用平均分的方法得到分数,然后动手操作寻找分数。展示时重点展示平均分多个物体得到分数的操作过程,让学生感受可以把许多物体看作一个整体,把这个整体平均分成不同的份数,其中的一份或几份也可以用分数表示的过程。为抽象分数的意义做好铺垫,感悟分数就在生活之中。]
5、小结:
以前我们都是把一个物体,一个计量单位平均分,得到了一些分数,刚才你们在分的时候,还可以把许多个物体看成一个整体平均分得到分数。象这样一个物体,一个计量单位和多个物体组成的一个整体,都可以用自然数“1”表示,通常我们把它叫做单位“1”。(板书:单位“1”)
6、讲授例题(多媒体出示)
出示5个桃子提问:这是什么?
把5个桃子看作(一个整体),平均分成5份,每份有几个桃子?占这个整体的几分之几?
2个桃子呢?
7、出示8片枫叶问:把8片枫叶看作一个整体,平均分成4份,每份几个泥人?占这个整体的几分之几?
6片枫叶呢?
8、结合前面分得的分数,揭示分数的意义。(板书)
9、复习分数各部分的名称及表示的含义。(小组讨论)
9、看书P74的概念。
10、做书上练一练。请两位学生回答。
11、总结,评价。
[学生通过自己动手找分数,在已经建立直观认识的基础上,归纳分数的意义,不强调死记硬背,让学生能用自己的语言归纳,接着引导学生看书进一步理解分数的意义。]
三、课堂实践
现在我们一起来闯三关。(网络教学)
1、第一关,用分数表示下面各图中的涂色部分。
2、第二关,用下面的分数表示图中的涂色部分,对不对?
3、第三关,根据给出的分数在下面各图中画出阴影部分。
4、勇闯三关后,我们一起来进行自我检测。
请同学和你的同桌之间说一说这个分数在句子里所表达的意思,需要帮助的同学可以寻求电脑的帮助。
5、下面我们要来继续冲关,请你来看一看,哪些话中存在错误呢?
6、同学们做得都不错,下面我们一起来玩一个游戏。请你们拿出10粒棋子。
请你摆出它的1/2,是多少粒?12粒棋子的1/2,是多少粒?为什么同样是1/2,而你们有不同的答案呢?(单位“1”不同)
请你们表示出12粒棋子的1/2,1/3,1/4,1/6,是多少粒棋子?为什么单位“1”相同了,而你们的结果不同呢?(平均分的份数不同)
[让学生体会分数的意义,学生与学生,教师与学生之间互动交流,体现学生主体,教师主导的地位。]
四、课堂小结
今天这节课我们学习了分数的意义,下一节课我们继续来深入研究。
五、课堂作业
练习十三第4题。
六、回家作业
练习册
七、板书设计
分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。