新课标人教版八年级数学上册第十一章全等三角形全章教案 - 副本

时间:2019-05-12 23:26:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新课标人教版八年级数学上册第十一章全等三角形全章教案 - 副本》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新课标人教版八年级数学上册第十一章全等三角形全章教案 - 副本》。

第一篇:新课标人教版八年级数学上册第十一章全等三角形全章教案 - 副本

13.1全等三角形

教学目标:1了解全等形及全等三角形的的概念;

理解全等三角形的性质 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣

重点:探究全等三角形的性质

难点:掌握两个全等三角形的对应边,对应角 教学过程

这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形 能够完全重合的两个三角形叫做全等三角形 思考:

一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

“全等”用表示,读作“全等于” 两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如ABC和DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作ABCDEF

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合 的角叫做对应角

思考:如上图,13。1-1ABCDEF,对应边有什么关系?对应角呢? 全等三角形性质:

全等三角形的对应边相等; 全等三角形的对应角相等。思考:

(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角

BCAoOADBDCACDBCDA

(2)将ABC沿直线BC平移,得到DEF,说出你得到的结论,说明理由?

ADBBECF

C的(3)如图,ABEACD,AB与AC,AD与AE是对应边,已知:A43,B30,求AD大小。

ADEBC

小结:

作业:P92—1,2,3

课题:13.2 三角形全等的条件(1)

教学目标

①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. ②掌握三角形全等的“边边边”条件,了解三角形的稳定性. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点

三角形全等条件的探索过程.

一、复习过程,引入新知

多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.

二、创设情境,提出问题

根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢? 组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.

三、建立模型,探索发现

出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗? 让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.

(3)三角形的一个角为30°,—条边为3cm.

再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.

出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗? 让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.

四、应用新知,体验成功

实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的. 鼓励学生举出生活中的实例.

给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.

ABDC

让学生独立思考后口头表达理由,由教师板演推理过程.

例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下:

①以A为圆心画弧,分别交角的两边于点B和点C;

②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D; ③画射线AD.

AD就是∠BAC的平分线.你能说明该画法正确的理由吗? 例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.

ABDC

五、巩固练习

教科书第96页的思考及练习.

六、反思小结

回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.

七、布置作业

1.必做题:教科书第103页习题13.2中的第1、2题. 2.选做题:教科书第104页第9题.

课题:13.2 三角形全等的条件(2)

教学目标

①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.

②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点

指导学生分析问题,寻找判定三角形全等的条件. 知识重点

应用“边角边”证明两个三角形全等,进而得出线段或角相等. 教学过程(师生活动)

一、创设情境,引入课题

多媒体出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.

教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC上,观察这两个三角形是否全等.

二、交流对话,探求新知

根据前面的操作,鼓励学生用自己的语言来总结规律:

两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.

三、应用新知,体验成功

出示例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?

让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:

要想证AB=DE,只需证△ABC≌△DEC △ABC与△DEC全等的条件现有„„还需要„„)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.

补充例题:

A1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE 求证: △ABD≌△ACE 证明:∵∠BAC=∠DAE(已知)

B ∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD

CDE

∴∠BAD=∠CAE 在△ABD与△ACE AB=AC(已知)

∠BAD= ∠CAE(已证)AD=AE(已知)

∴△ABD≌△ACE(SAS)思考:

求证:1.BD=CE 2.∠B= ∠C 3.∠ADB= ∠AEC B变式1:已知:如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证: ⑴ △DAC≌△EAB 1.BE=DC AC2.∠B= ∠ C

F3.∠ D= ∠ E M4.BE⊥CD

D

E

四、再次探究,释解疑惑

出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么? 让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.

教师演示:方法(一)教科书98页图13.2-7.

方法(二)通过画图,让学生更直观地获得结论.

五、巩固练习

教科书第99页,练习(1)(2).

六、小结提高

1.判定三角形全等的方法;

2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.

七、布置作业

1.必做题:教科书第104页,习题13.2第3、4题. 2.选做题:教科书第105页第10题. 3.备选题:

(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB=AD,AE=AC,求证BC=DE.

第二篇:全等三角形全章教案

第十二章 全等三角形 12.1 全等三角形

1.了解全等形及全等三角形的概念. 2.理解全等三角形的性质.

重点

探究全等三角形的性质. 难点

掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.

一、情境导入

一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?

二、探究新知 1.动手做

(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?

(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?

得出全等形的概念,进而得出全等三角形的概念.

能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形. 2.观察

观察△ABC与△A′B′C′重合的情况.

总结知识点:

对应顶点、对应角、对应边.

全等的符号:“≌”,读作:“全等于”.

如:△ABC≌△A′B′C′.3.探究

(1)在全等三角形中,有没有相等的角、相等的边呢?

通过以上探索得出结论:全等三角形的性质. 全等三角形的对应边相等,对应角相等.

(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.

得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状. 把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.

三、应用举例

例1 如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.

分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可. 解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).

四、巩固练习教材练习第1题.

教材习题12.1第1题. 补充题:

1.全等三角形是()A.三个角对应相等的三角形 B.周长相等的三角形

C.面积相等的两个三角形 D.能够完全重合的三角形

2.下列说法正确的个数是()①全等三角形的对应边相等; ②全等三角形的对应角相等; ③全等三角形的周长相等; ④全等三角形的面积相等.

A.

1B.

2C.

3D.4 3.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE的度数与DE的长.

补充题答案: 1.D 2.D

3.∠DFE=35°,DE=8

五、小结与作业

1.全等形及全等三角形的概念. 2.全等三角形的性质.

作业:教材习题12.1第2,3,4,5,6题.

本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.

12.2 三角形全等的判定(4课时)

第1课时 “边边边”判定三角形全等

1.掌握“边边边”条件的内容.

2.能初步应用“边边边”条件判定两个三角形全等. 3.会作一个角等于已知角.

重点

“边边边”条件. 难点

探索三角形全等的条件.

一、复习导入

多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.

思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?

二、探究新知

根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?

出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?

(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.

引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.

出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?

让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.

强调在应用时的简写方法:“边边边”或“SSS”. 实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的. 明确:三角形的稳定性.

三、举例分析

例1 如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件. 让学生独立思考后口头表达理由,由教师板演推理过程.

教师引导学生作图.

已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?

教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.

四、巩固练习

教材第37页练习第1,2题. 学生板演.

教师巡视,给出个别指导.

五、小结与作业

回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.

进一步明确:三边分别相等的两个三角形全等. 布置作业:教材习题12.2第1,9题.

本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.

第2课时 “边角边”判定三角形全等

1.掌握“边角边”条件的内容.

2.能初步应用“边角边”条件判定两个三角形全等.

重点

“边角边”条件的理解和应用. 难点

指导学生分析问题,寻找判定三角形全等的条件.

一、复习引入

1.什么是全等三角形? 2.全等三角形有哪些性质? 3.“SSS”具体内容是什么?

二、新知探究

已知△ABC,画一个三角形△A′B′C′,使AB=A′B′∠B=∠B′,BC=B′C′.教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.

操作:

(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?

(2)上面的探究说明什么规律?

总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.

三、举例分析

多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?

分析:如果证明△ABC≌△DEC,就可以得出AB=DE.证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS). ∴AB=DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.

四、课堂练习

如图,已知AB=AC,点D,E分别是AB和AC上的点,且DB=EC.求证:∠B=∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程.

五、小结与作业 1.师生小结:

(1)“边角边”判定两个三角形全等的方法.

(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.

本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.

第3课时 “角边角”和“角角边”判定三角形全等

1.掌握“角边角”及“角角边”条件的内容.

2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.

重点

“角边角”条件及“角角边”条件. 难点

分析问题,寻找判定两个三角形全等的条件.

一、复习导入 1.复习旧知:

(1)三角形中已知三个元素,包括哪几种情况?

三个角、三个边、两边一角、两角一边.

(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?

2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.

二、探究新知

1.[师]三角形中已知两角一边有几种可能?

[生](1)两角和它们的夹边;(2)两角和其中一角的对边. 做一做:

三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?

学生活动:自己动手操作,然后与同伴交流,发现规律. 教师活动:检查指导,帮助有困难的同学.

活动结果展示:

以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等. 提炼规律:

两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”)[师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?

[生]能.

学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解. [生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;

(2)画线段A′B′,使A′B′=AB;

(3)分别以A′,B′为顶点,A′B′为一边作∠DA′B′,∠EB′A′,使∠DA′B′=∠CAB,∠EB′A′=∠CBA;

(4)射线A′D与B′E交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC重叠,发现两三角形全等. [师]

于是我们发现规律:

两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA”)这又是一个判定两个三角形全等的条件. 2.出示探究问题:

如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°,∠A=∠D,∠B=∠E,∴∠A+∠B=∠D+∠E.∴∠C=∠F.在△ABC和△DEF中,∴△ABC≌△DEF(ASA). 于是得规律:

两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS”)例 如下图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AD=AE.[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.

学生写出证明过程.

证明:在△ADC和△AEB中,∴△ADC≌△AEB(ASA). ∴AD=AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.

学生活动:自我回忆总结,然后小组讨论交流、补充.

三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习

图中的两个三角形全等吗?请说明理由.

四、课堂小结

有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS)3.边角边(SAS)4.角边角(ASA)5.角角边(AAS)推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.

五、课后作业

教材习题12.2第5,6,11题.

在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.

第4课时 “斜边、直角边”判定三角形全等

1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.

重点

探究直角三角形全等的条件. 难点

灵活运用直角三角形全等的条件进行证明.

一、情境引入

(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.

(1)你能帮他想个办法吗?

(2)如果他只带了一个卷尺,能完成这个任务吗?

方法一:测量斜边和一个对应的锐角(AAS);

方法二:测量没遮住的一条直角边和一个对应的锐角(ASA或AAS). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?

二、探究新知

多媒体出示教材探究5.任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.把画好的Rt△A′B′C′剪下来,放到Rt△ABC上,它们全等吗?

画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.想一想,怎么样画呢?

按照下面的步骤作一作:(1)作∠MC′N=90°;

(2)在射线C′M上截取线段B′C′=BC;

(3)以B′为圆心,AB为半径画弧,交射线C′N于点A′;

(4)连接A′B′.△A′B′C′就是所求作的三角形吗?

学生把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否全等.

由探究5可以得到判定两个直角三角形全等的一个方法: 斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”. 多媒体出示教材例5 如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.证明:∵AC⊥BC,BD⊥AD,∴∠C与∠D都是直角.

在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL). ∴BC=AD.想一想:

你能够用几种方法判定两个直角三角形全等? 直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.

三、巩固练习

如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.

学生独立思考完成.教师点评.

四、小结与作业

1.判定两个直角三角形全等的方法:斜边、直角边. 2.直角三角形全等的所有判定方法: 定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等? 3.作业:教材习题12.2第7题.

本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.

12.3 角的平分线的性质

掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.

重点

角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题. 难点

灵活运用角的平分线的性质和判定解题.

一、复习导入

1.提问角的平分线的定义.

2.给定一个角,你能不用量角器作出它的平分线吗?

二、探究新知

(一)角的平分线的画法 教师出示:已知∠AOB.求作:∠AOB的平分线.

然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.

(二)角的平分线的性质

试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;

(4)再换一个新的位置看看情况怎样? 归纳总结得到角的平分线的性质. 分析讨论PD=PE的理由.(三)角平分线的判定

教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程. 巩固应用:

解决教材第49页思考

(四)三角形的三个内角的平分线相交于一点 1.例题:教材第50页例题.

2.针对例题的解答,提出:P点在∠A的平分线上吗? 通过例题明确:三角形的三个内角的平分线相交于一点. 练习:教材第50页练习.

三、归纳总结

引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?

四、布置作业

教材习题12.3第1~4题.

教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。发展学生应用数学的意识与能力,增强学生学好数学的愿望和信心.

第三篇:八年级数学上册 11.1全等三角形的教案设计 人教新课标版

全等三角形教案

课题13.1全等三角形

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点正确寻找全等三角形的对应元素

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:教师------课件、三角板、一对全等三角形硬纸版

学生------白纸一张硬纸三角形一个

教学过程设计

一、全等形和全等三角形的概念

(一)导课:教师----(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义

象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]

动手操作1---在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?

[板书:能够完全重合]

命名:给这样的图形起个名称----全等形。[板书:全等形]

刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

(三)全等三角形的定义

动手操作2---制作一个和自己手里的三角形能够完全重合的三角形。

定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:13.1全等三角形,]

(四)出示学习目标

1.知道什么是全等形,什么是全等三角形。

2.能够找出全等三角形的对应元素。

3.会正确表示两个全等三角形。

4.掌握全等三角形的性质。

二、全等三角形的对应元素及表示

(一)自学课本:91页的 内容(时间5分钟)可以在小组内交流。

(二)检测:

1.动手操作

以课本P91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)

思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

2.全等三角形中的对应元素

(以黑板上的图形为例,图

一、图二、三学生独立找,集体交流)

(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)---重合的角

图一(平移)

图二(翻折)图三(旋转)

归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

3.用符号表示全等三角形

抽学生表示图

一、图二、三的全等三角形。

4.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

请写出平移、翻折后两个全等三角形中相等的角,相等的边。

三、课堂训练

1.下面的每对三角形分别全等,观察是怎么变化而成的,说出对应边、对应角。

2.将△ABC沿直线BC平移,得到△DEF(如图)

(1)线段AB、DE是对应线段,有什么关系?线段AC和DF呢?

(2)线段BE和CF有什么关系?为什么?

(3)若∠A=50?,∠B=30?,你知道其他各角的度数吗?为什么?

3.议一议:△ABE≌△ACD,AB与AC,AD与AE是对应边,∠A=40?,∠B=30?,求∠ADC的大小。

四、小结:学生填写《课堂学习评价卡》并交流。

五、作业:课本92页习题13.1第2题、3题、4题。

板书设计:全等三角形对应元素

全等形全等三角形全等三角形性质

课堂学习评价卡

姓名班次时间

学习课题

你的收获是

你的困惑是

你的表现

1、回答问题:

2、独立思考:p;

3、合作交流:

4、课堂练习:

评价等级:A优秀;B:一般;C:还需努力。

你的课外

打算

第四篇:八年级数学上册 11.1全等三角形的教案设计 人教新课标版

全等三角形教案

课题 13.1全等三角形

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点 正确寻找全等三角形的对应元素

教学关键 通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备: 教师------课件、三角板、一对全等三角形硬纸版

学生------白纸一张 硬纸三角形一个

教学过程设计

用心

爱心

专心 1

一、全等形和全等三角形的概念

(一)导课:教师----(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义

象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析] 动手操作1---在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合] 命名:给这样的图形起个名称----全等形。[板书:全等形] 刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

(三)全等三角形的定义

动手操作2---制作一个和自己手里的三角形能够完全重合的三角形。

定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:13.1全等三角形,](四)出示学习目标

1.知道什么是全等形,什么是全等三角形。

2.能够找出全等三角形的对应元素。

3.会正确表示两个全等三角形。

4.掌握全等三角形的性质。

二、全等三角形的对应元素及表示

用心

爱心

专心

(一)自学课本:91页的 内容(时间5分钟)可以在小组内交流。

(二)检测: 1.动手操作

以课本P91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变? 归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

2.全等三角形中的对应元素

(以黑板上的图形为例,图

一、图二、三学生独立找,集体交流)(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)---重合的角

图一(平移)图二(翻折)图三(旋转)归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

3.用符号表示全等三角形

抽学生表示图

一、图二、三的全等三角形。

4.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么? 归纳:全等三角形的对应边相等、对应角相等。

用心

爱心

专心 3

请写出平移、翻折后两个全等三角形中相等的角,相等的边。

三、课堂训练

1.下面的每对三角形分别全等,观察是怎么变化而成的,说出对应边、对应角。

2.将△ABC沿直线BC平移,得到△DEF(如图)(1)线段AB、DE是对应线段,有什么关系?线段AC和DF呢?(2)线段BE和CF有什么关系?为什么?(3)若∠A=50?,∠B=30?,你知道其他各角的度数吗?为什么? 3.议一议:△ABE≌△ACD,AB与AC,AD与AE是对应边,∠A=40?,∠B=30?,求∠ADC的大小。

四、小结:学生填写《课堂学习评价卡》并交流。

五、作业:课本92页习题13.1 第2题、3题、4题。

板书设计: 全等三角形对应元素

全等形 全等三角形 全等三角形性质

课堂学习评价卡

姓名 班次 时间 学习课题 你的收获是

你的困惑是

你的表现

1、回答问题:

2、独立思考: p;

3、合作交流:

4、课堂练习:

评价等级:A优秀;B:一般;C:还需努力。

你的课外

用心

爱心

专心

用心

爱心

专心5 打算

第五篇:山东省临沭县第三初级中学八年级数学上册《全等三角形的判定4》教案 人教新课标版

∵BCB'C'AB ∴Rt△ABC≌Rt△

(5)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法 “ ”、“ ”、“ ”、“ ”、还有直角三角形特殊的判定方法 “ ”

四、精讲精练

1、精讲(多媒体演示过程)

1、、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,你能说明BC与BD相等吗?

2、如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?

2、精练

1、如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC(填“全等”或“不全等”)根据(用简写法)

2、判断两个直角三角形全等的方法不正确的有()

A、两条直角边对应相等 B、斜边和一锐角对应相等 C、斜边和一条直角边对应相等 D、两个锐角对应相等

3、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由 答:AB平行于CD 理由:∵ AF⊥BC,DE⊥BC(已知)

∴ ∠AFB=∠DEC= °(垂直的定义)∵BE=CF,∴BF=CE 在Rt△ 和Rt△ 中12999.com

_______∵________________________CADB∴ ≌

用心

爱心

专心 2

()

∴ =()∴(内错角相等,两直线平行)

4、能力提升:(学有余力的同学完成)

如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,若AB=CD,AF=CE,BD交AC于M点。(1)求证:MB=MD,ME=MF;(2)当E、F两点移动至图2所示的位置时,其余条件不变,上述结论是否成立?若成立,给予证明。

5、如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据

(4)若AC=BD,AE=BF,CE=DF。则△ACE≌△BDF,根据(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据

五、课堂小结

这节课你有什么收获呢?与你的同伴进行交流

判定两个直角三角形全等的方法:一般方法SSS、SAS、ASA、AAS、特殊方法HL

六、作业:第16页习题11.2 7-8 第17页第13题

教后反思:通过对基本图形的基本性质必要的证明,使学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化的思想”,为体现这一目标,在“情景二”探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程。

用心

爱心

专心

下载新课标人教版八年级数学上册第十一章全等三角形全章教案 - 副本word格式文档
下载新课标人教版八年级数学上册第十一章全等三角形全章教案 - 副本.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    八年级数学全等三角形证明题

    中考网 第十三章全等三角形测试卷(测试时间:90分钟总分:100分)班级姓名得分一、选择题(本大题共10题;每小题2分,共20分)1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC......

    【精品教案】八年级上册第十一章三角形全章复习

    讲义 一、检查作业及讲评 二、课前热身 三、内容讲解 知识点一、三角形相关概念 1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条......

    第十三章 全等三角形全章教案(共5则范文)

    www.xiexiebang.com 第13章 全等三角形 13.1 全等三角形 教学目标 ①通过实例理解全等形的概念和特征,并能识别图形的全等. ②知道全等三角形的有关概念,能正确地找出对应顶点......

    八年级数学上册《全等三角形》教学设计(5篇)

    教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。2、能正确表示两个全等三角形,能找出全等三角形的对应元素。二、过程与方法通过观察、拼图以......

    人教新课标八年级地理下册全册教案

    穆圩中学八年级下册地理教学案 第五章 中国的地理差异 主备人:刘成龙 审核人:刘成龙 时间: 第一节四大地理区域的划分 ※教学目标 知识目标 1.初步理解区域划分的原因及相应的......

    苏教版2018-2019学年度八年级数学上册全等三角形课堂作业题

    苏教版2018-2019学年度八年级数学上册 全等三角形课堂作业 周次 班级 姓名 等第 一、选择题 1. 如图,已知AB=AD,那么添加下列一个条件后,能用SAS判定△ABC≌△ADC的是 A.CB=C......

    清华附中第12章全等三角形全章测试

    第12章 《全等三角形》全章测试学号:______________姓名:_____________分数:_____________一、选择题(每题4分,共32分)1.使两个直角三角形全等的条件是A、一锐角对应相等;B、两锐角......

    八年级上册《全等三角形》教材分析(推荐阅读)

    八年级上册《全等三角形》教材分析 八年级上册《全等三角形》教材分析 尊敬的承老师,各位同仁,大家上午好!首先感谢承老师给我锻炼的机会。下面我主要针对八上第一章《全......