动量守恒定律教案

时间:2019-05-12 23:01:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《动量守恒定律教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《动量守恒定律教案》。

第一篇:动量守恒定律教案

动量守恒定律

一、动量守恒定律

1.定律内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.

说明:(1)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来.

(2)相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统.2.动量守恒定律的适用条件

(1)系统不受外力或系统所受外力的合力为零.

(2)系统所受外力的合力虽不为零,但F内》F外,亦即外力作用于系统中的物体导致的动量的改变较内力作用所导致的动量改变小得多,则此时可忽略外力作用,系统动量近似守恒.例如:碰撞中的摩擦力和空中爆炸时的重力,较相互作用的内力小的多,可忽略不计.(3)系统所受合外力虽不为零,但系统在某一方向所受合力为零,则系统此方向的动量守恒,例图6�8,光滑水平面的小车和小球所构成的系统,在小球由小车顶端滚下的过程中,系统水平方向的动量守恒.3.动量守恒的数学表述形式:

(1)p=p′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量.

(2)Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和)(3)Δp1=-Δp2

即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变.

4.应用动量守恒定律的解题步骤(1)分析题意,明确研究对象(系统).

(2)对系统内的物体进行受力分析,明确内力、外力,判断是否满足动量守恒的条件.(3)明确研究系统的相互作用过程,确定过程的初、末状态,对一维相互作用问题,先规定正方向,再确认各状态物体的动量或动量表述.

(4)利用守恒定律列方程,代入已知量求解.(5)依据求解结果,按题目的要求回答问题.

二、碰撞

1.碰撞是指物体间相互作用时间极短,而相互作用力很大的现象.

在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰,中学物理只研究正碰(正碰即两物体质心的连线与碰撞前后的速度都在同一直线上).

2.按碰撞过程中动能的损失情况区分,碰撞可分为二种:

a.弹性碰撞:碰撞前后系统的总动能不变,对两个物体组成的系统满足: m1v1+m2v2=m1v1′+m2v2′

1/2m1v1+1/2m2v2′=1/2m1v1′+1/2m2v2′ 两式联立可得: 2

2v1′=

v2′=

b.完全非弹性碰撞,该碰撞中动能的损失最大,对两个物体组成的系统满足: m1v1+m2v2=(m1+m2)v

c.非弹性碰撞,碰撞的动能介于前两者碰撞之间.

三、反冲现象

系统在内力作用下,当一部分向某一方向的动量发生变化时,剩余部分沿相反方向的动量发生同样大小变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.若系统由两部分组成,且相互作用前总动量为零,则0=m1v1+m2v2,v1、v2方向相反

动量守恒定律

教案示例

一、教学目标

1.知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。

2.学会沿同一直线相互作用的两个物体的动量守恒定律的推导。3.知道动量守恒定律是自然界普遍适用的基本规律之一。

二、重点、难点分析

1.重点是动量守恒定律及其守恒条件的判定。2.难点是动量守恒定律的矢量性。

三、教具

1.气垫导轨、光门和光电计时器,已称量好质量的两个滑块(附有弹簧圈和尼龙拉扣)。

2.计算机(程序已输入)。

四、教学过程

(一)引入新课

前面已经学习了动量定理,下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何?

(二)教学过程设计

1.以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。画图:

设想水平桌面上有两个匀速运动的球,它们的质量分别是m1和m2,速度分别是v1和v2,而且v1>v2。则它们的总动量(动量的矢量和)p=p1+p2=m1v1+m2v2。经过一定时间m1追上m2,并与之发生碰撞,设碰后二者的速度分别为v1'和v2',此时它们的动量的矢量和,即总动量p'=p1'+p2'=m1v1'+m2v2'。

板书:p=p1+p2=m1v1+m2v2 p'=p1'+p2'=m1v1'+m2v2'

下面从动量定理和牛顿第三定律出发讨论p和p'有什么关系。设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是t。根据动量定理,m1球受到的冲量是F1t=m1v1'-m1v1;m2球受到的冲量是

F2t=m2v2'-m2v2。

根据牛顿第三定律,F1和F2大小相等,方向相反,即F1t=(m2v2'-m2v2)整理后可得

板书:m1v1'+m2v2'=m1v1+m2v2 或写成p1'+p2'=p1+p2

就是p'=p 这表明两球碰撞前后系统的总动量是相等的。分析得到上述结论的条件:

两球碰撞时除了它们相互间的作用力(这是系统的内力)外,还受到各自的重力和支持力的作用,但它们彼此平衡.桌面与两球间的滚动摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。2.结论:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零。则系统的总动量保持不变。这个结论叫做动量守恒定律。

做此结论时引导学生阅读课文。并板书。

∑F外=0时

p'=p 3.利用气垫导轨上两滑块相撞过程演示动量守恒的规律。(1)两滑块弹性对撞(将弹簧圈卡在一个滑块上对撞)

光电门测定滑块m1和m2第一次(碰撞前)通过A、B光门的时间t1和t2以及第二次(碰撞后)通过光门的时间t1'和t2'。光电计时器记录下这四

个时间。

将t1、t2和t1'、t2'输入计算机,由编好的程序计算出v1、v2和v1'、v2'。将已测出的滑块质量m1和m2输入计算机,进一步计算出碰撞前后的动量p1、p2和p1'、p2'以及前后的总动量p和p'。

由此演示出动量守恒。

注意:在此演示过程中必须向学生说明动量和动量守恒的矢量性问题。因为v1和v2以及v1'和v2'方向均相反,所以p1+p2实际上是|p1|-|p2|=0,同理p1'+p2'实际上是|p1'|-|p2'|。

(2)两滑块完全非弹性碰撞(将弹簧圈取下,两滑块相对面各安装尼龙子母扣)

为简单明了起见,可让滑块m2静止在两光电门之间不动(p2=0),滑块m1通过光门A后与滑块m2相撞,二者粘合在一起后通过光门B。

光门A测出碰前m1通过A时的时间t,光门B测出碰后m1+m2通过B时的时间t'。将t和t'输出计算机,计算出p1和p1'+p2'以及碰前的总动量p(=p1)和碰后的总动量p'。由此验证在完全非弹性碰撞中动量守恒。

(3)两滑块反弹(将尼龙拉扣换下,两滑块间挤压一弹簧片)将两滑块置于两光电门中间,二者间挤压一弯成∩形的弹簧片(铜片)。同时松开两手,钢簧片将两滑块弹开分别通过光电门A和B,测定出时间t1和t2。

将t1和t2输入计算机,计算出v1和v2以及p1和p2。

引导学生认识到弹开前系统的总动量p0=0,弹开后系统的总动量pt=|p1|-|p2|=0。总动量守恒,其数值为零。

4.例题

甲、乙两物体沿同一直线相向运动,甲的速度是3m/s,乙物体的速度是1m/s。碰撞后甲、乙两物体都沿各自原方向的反方向运动,速度的大小都是2m/s。求甲、乙两物体的质量之比是多少?

引导学生分析:对甲、乙两物体组成的系统来说,由于其不受外力,所以系统的动量守恒,即碰撞前后的总动量大小、方向均一样。

由于动量是矢量,具有方向性,在讨论动量守恒时必须注意到其方向性。为此首先规定一个正方向,然后在此基础上进行研究。

板书解题过程,并边讲边写。板书:

讲解:规定甲物体初速度方向为正方向。则v1=+3m/s,v2=1m/s。碰后v1'=-2m/s,v2'=2m/s 根据动量守恒定律应有m1v1+m2v2=m1v1'+m2v2'移项整理后可得m1比m2为

代入数值后可得m1/m2=3/5,即甲、乙两物体的质量比为3∶5。5.练习题

质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量是80kg,求小孩跳上车后他们共同的速度。

分析:对于小孩和平板车系统,由于车轮和轨道间的滚动摩擦很小,可以不予考虑,所以可以认为系统不受外力,即对人、车系统动量守恒。

板书解题过程:

跳上车前系统的总动量

p=mv 跳上车后系统的总动量

p'=(m+M)V 由动量守恒定律有mv=(m+M)V 解得

6.小结

(1)动量守恒的条件:系统不受外力或合外力为零时系统的动量守恒。

(2)动量守恒定律适用的范围:适用于两个或两个以上物体组成的系统。动量守恒定律是自然界普遍适用的基本规律,对高速或低速运动的物体系统,对宏观或微观系统它都是适用的。

第二篇:动量守恒定律 教案

《动量守恒定律》

——教案

刘希乾

三维目标:

(一)知识与技能

1、理解动量守恒定律的确切含义和表达式

2、知道定律的适用条件和适用范围;

3、掌握运用动量守恒定律的一般步骤

(二)过程与方法

知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。

(三)情感、态度与价值观

学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。教学重点:

1、动量的概念和动量守恒定律。

2、运用动量守恒定律的一般步骤。

教学难点:动量的变化和动量守恒的条件、应用。引入新课:

通过以前的学习,我们已经会描述一些简单的典型的运动。知道速度、位移、加速度都是用来描述物体运动的物理量,而通过上一节课的学习,我们又认识到动量也可以描述物体的运动状态,而且我们通过动能定理也建立起了力与动量的联系,知道动量是力对时间积累的效果。正如力在空间中的积累存在着自然普遍定则一样,力对时间的积累是否也存在着某种守恒的普适关系? 进行新课: 【小组讨论交流】

一、牛顿第一定律的内容及实质

内容:一切物体总有保持静止或匀速直线运动状态的性质,除非有外力迫使它改变这一状态。

实质:力不是维持物体运动状态的原因,而是改变物体运动状态的原因。

二、牛顿第二定律的内容及实质

内容:物体的加速度与作用力成正比,与物体的质量成反比。实质:力是产生加速度的原因,加速度改变了物体的运动状态。

三、牛顿第三定律的内容及实质

内容:物体间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。

实质:物体间的相互作用总是等大反向。

四、如果是两个物体,如何区分它们之间的相互作用和其它物体对它们的作用力呢?

系统:可以把两个或两个以上物体看做一个力学系统。内力:系统内物体间作用力称为内力。

外力:外界物体对系统内物体的作用力称为外力。教师总结:

我们把两个物体看作一个系统,那么两个物体间的相互作用就属于系统的内力,外界其它物体对系统中任何一物体的作用就是系统所受的外力。根据牛顿运动定律可知:不论外力还是内力都会改变物体的运动状态,而内力起的作用就像人民内部矛盾,外力起的作用则为外在矛盾。前者可以相互抵消达到和谐,但是后者必然破坏这种和谐关系。而现实生活中诸如此类的守恒随处可见。

比如:甲乙各有500元现金,相互交换甲乙两者共有财富值不变。但甲又别处得到500元,这必然使两者共有财富值增加。相反,丙强行从甲手中拿走500元,两者共有财富值较少。

再有:一个绝热系统中两个物体相互吸热放热,系统温度必然升高;而外界对系统加热,系统温度必然升高。

与我们所学更近的例子:比如机械能守恒定律。系统中仅有保守力做功,机械能守恒。但是若有外力对系统内任何物体做功,这种守恒必然打破。【创设情境,理论推理】

现实生活中,这种守恒随处可见。为此我们创设一个物理情境:

光滑水平桌面上有一质量为m1的物体以速度v1向右运动,质量为m2的物体以速度v2向右运动。且v1>v2,那么经过一定时间后,必然追上m1且发生碰撞。设碰撞后m1的速度为v1’,m2速度为v2’

碰撞过程中m2对m1的作用力为F1,m1对m2的作用力为F2 【教师引导,学生自主推理:】

两物体各自所受重力和支持力虽为外力,但是合力为零,不改变物体的的运动状态。F1和F2是两物体组成的系统内力。

推导1:根据牛顿第二定律,碰撞过程中两球的加速度分别为:

F1F2a1,a2

m1m2根据牛顿第三定律,F1与F2的大小相等方向相反,即

F1F2

所以:m1am2a2

碰撞时两小球之间的作用时间很-短,用t表示。这样加速度与速度前后的关系就是

'v2v2v1'v1a1,a2

tt把加速度的表达式带入m1am2a2,移项后得到

''m1v1m2v2m1v1m2v

2(1)

推导2:根据牛顿第三定律,F1与F2的大小相等方向相反,即

F1F2

碰撞时两小球之间的作用时间很短,用t表示。取向右为正,则系统内内力冲量关系为

F1tF2t

根据动量定理可知:

'F1tm1v1'm1v1,F2tm2v2m2v2

那么

''(m1v1m1v1)m2v2m2v2

整理得到

''m1v1m2v2m1v1m2v2

(1)

【教师总结】

我们通过不同的策略,得出相同的结论(1)。而且的实验探究中我们也得到了一样的结论。实验是检验理论的唯一标准。可见,物体相互碰撞过程中确实存在着这种守恒关系。

(1)式的物理意义是:两球碰撞前的动量之和等于碰撞后的动量之和。因为碰撞过程中的任意时刻牛顿第三定律、动量定理的结论都是成立的,因此(1)式对过程中的任意两时刻的状态都是适用的,也就是说系统在整个过程中一直保持不变。因此我们可以说这个过程中动量是守恒的。

历史上通过几代物理学家在实验上和理论上的分析、探索与斗争,人们在18世纪形成这样的共识:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。这就是动量守恒定律。【教师指导,学生总结】

动量守恒定律的条件:(1)系统不受外力,(2)系统所受外力矢量和为零 动量守恒定律的表达式:

(1)动量定理指出,系统的总动量保持不变。那么碰撞前和碰撞后系统的动量应该相等。即pp'

(2)如果是相互作用的两个物体组成的系统,总动量不变。那么系统内一个物体增加的动量跟另一个物体减少的动量也相等。即p1p2(3)系统总动量不变,那就是说对于系统动量变化量应该为零。即p0(4)相互作用的两个物体组成的系统,作用前动量之和等于作用后的动量之

'和。即m1v1m2v2m1v1'm2v2

板书设计

一、系统 内力和外力

1、系统:

2、内力:

3、外力:

二、动量守恒定律

1、推导过程

2、内容

3、成立条件

4、表达式 课堂小结

本节课通过理论推导得出了和实验相同的结论。推导过程中我们体会到了科学的严密性,体会到物理来源于生活,是解决生活中实际问题的科学。通过对动量守恒定律的理解归纳总结出动量守恒定律不同的表达式,进一步理解了这一普遍真确的守恒定律。作业设计

第三篇:《动量守恒定律》说课稿

《动量守恒定律》说课稿

庄儒波

一、说教材

力对空间和时间的积累,是力对物体作用的两种基本表现形式。在《物理》选修本中,先介绍描述力的时间积累效应――动量定理,之后深入介绍了物体相互相互作用过程中所遵循的基本规律――动量守恒定律,这是高中学生所学习的自然界中四个基本守恒定律之一,因而它具有特殊的地位。

教材选取两体问题中的碰撞模型,依据牛顿第二定律导出了动量守恒定律的一维表达式,再将结论拓展为多体、两维情况,较全面地介绍了动量守恒定律的适用范围要广泛得多,它不仅和牛顿第二定律一样适用于宏观低速系统,也适用于牛顿第二定律不成立的宏观高速系统及微观系统。教材还详尽地介绍了动量守恒的条件,指出在系统不受外力或所受外力的合力为零时,系统的动量保持不变。

前节教材讲述的冲量动量及动量定理是全章的基础知识,在中学物理中用动量定理处理的对象一般是单体,本节则将研究对象拓展到系统,在动量定理的基础上概括出动量守恒定律,因此,本节内容是上节内容的深化和延伸,定律对众多的研究对象,用更为复杂的数学表述形式,深入地概括了封闭系统中的一般规律,动量守恒定律不仅是本章的核心内容,也是整个高中物理的重点.学好本节内容,对今后综合处理物理问题以及学习新的物理知识都是至关重要的.本节的重点是理解动量守恒的条件,难点是理解动量守恒定律的物理内涵;动量的矢量性`动量的相对性以及研究对象的系统性、物理状态的同时性。

应当指出,教材中推导一维动量守恒定律的数学表达时,所借助的是在光滑平面上的两体碰撞模型。这个模型虽然简单,也便于学生接受,但因力学环境较简单,对揭示动量守恒的条件,特别是阐述在系统受到合外力为零时动量守恒、系统内相互作用的内力远大于其所受合外力时系统动量近似守恒,显得论述不够充分。学生常在确定动量守恒定律成立条件时发生错误,不能认识认为这为是原因之一。有鉴于此,可另选受力较为复杂的两体模型

二、教学目标

根据教学大纲的要求、教材的具体内容和高中学生的认知特征,拟确定下列教学目标:

1、知识目标 能用一维、两体模型推导动量守恒定律,理解并掌握动量守恒定律的内容,了解动量守恒定律几种不同的数学表达式。

2、能力目标 理解动量守恒定律的成立条件,能够在具体问题中判定动量是否守恒;能熟练应用动量守恒定律解决问题,知道应用动量守恒定解决实际问题的基本思路和方法。在具体应用中,能注意守恒方程的“四性”:系统性、相对性、同时性、矢量性。

3、科学思维品质目标

使学生认识到,研究物理量的守恒关系是一种科学思维方法。物理学中的许多重要定理、定律,其本质上都是表达了一定的守恒关系。动量守恒、是自然中质量守恒、能量守恒、动量守恒、电荷守恒这四大基本守恒定律之一,它具有广泛的适用范围。

三、说教法

1、引导探索式

物理教学大纲指出,学习物理,重在理解。为使学生理解动量 守恒的概念及其守恒条件,宜采用引导探索式教学方法。由教师在关键步骤上作恰当引导,师生共同对给出一维、两 体模型中的每个单体及系统由两者构成的系统进行受力分析,确定单体及系统所受的合冲量;确定单体及系统的动量变化。在对单体应用动量定理的基础上,引出系统动量守恒的概念,进而探索系统动量守恒的条件。在探索的过

程中,充分利用分析、推理的方法,通过演译论证,环环相扣地得出结论,以便培养学生的分析能力及综合概括能力。

2、讲练结合式

在讨论动量守恒定律应用中应注意的几个问题时,让学生分析具体问题,教师注意随时发现学生中出现的错误,或有意给出错误解答,及时组织学生分析产生错误的原因,把教师的主导作用与学生的主动性有机地结合起来,及时强化有关知识。

四、说教学程序

1、利用一维、两体模型导出动量守恒定律

如图1所示,质量分别为m1m2的A、B两物体叠放在水平面上,所有接触面均 粗糙,两物体具有水平速度且分别为v1、v2(设v1>v2)。在水平拉力F作用下,//经时间t,两者速度分别为v1、v2。

(1)由学生分析两物体的受力情况(图中竖直方向为平衡态,所受重力、弹力未画出),指出其中的一对作用力与反作用力(图中均用f1表示)。

(2)在教师指导下,由学生分别以A、B为对象,利用动量定理导出下列方程:

A:(F-f1)t=m1v1-m1v1,/

B:(f1-f)t=m2v2-m2v2。

(3)教师提出将上述两方程相加,可得:

//(F-f)t=(m1v1+m2v2)-(m1v1+m2v2)

教师结合模型介绍系统、内力、外力及动量守恒的概念,并进一步指出:1 将前述两式相加的物理意义是,把研究对象由单体扩展为系统;2 内力(一对f1)只能在v系统内的物体间传递动量,不能改变系统的总动量;3 外力(F及f)可以改变系统的总动量,且合外力的冲量等于系统动量的增量(系统动量定理,不要求全体学生掌握)。

(4)师生共同分析系统动量守恒的条件:先由学生分组讨论,再由各组代表发言,教师最后总结,若使下述守恒方程成立,即有

////

2m1v1+m2v2=m1v1+m2v2

其必要且充分条件是:

A.F=f=0,即系统不受外力.(可将系统视为竖直方向不受外力,理想条件).

B.F-f=0,即系统虽受外力但所受外力的合力为零. 2、讨论例1(使用投影仪出示):木块A和B用一只弹簧连接起来放在光滑水平面上,A紧靠墙壁,在B上施加向左的水平力F使弹簧压缩如图2所示.当撤去外力F后,问:(1)A尚未离开墙壁前,A、B系统动量是否守恒?

(2)A离开墙壁后,A、B系统动量是否守恒?

(3)A离开墙壁后,A、B及地球系统动量是否守恒?

重点引导学生分析:外界对系统在水平方向是否存在有作用力.答案;(1)墙壁对系统的冲量不为零,不守恒;(2)守恒;(3)守恒.

师生共同小结 注意系统性.动量守恒定律描述的对象是由两个以上物体构成的系统,选取某一系统动量可能守恒,而选取另一系统动量可能不守恒;当选取两个不同的系统动量虽均守恒时,但可能选取其中一个解题较简捷.

提问(投影出示问题)若设想图1中两叠放物体在竖直方向有相同的加速度和瞬时速度,系统在竖直方向处于不平衡状态,图中的各摩擦力仍存在,其它条件不变.问:1吗?2.2吗?1.能得到方程○在满足充要条件A或条件B时,能得到方程○(答案:均能得到)

教师进一步拓展 据上述提问可得:某一方向上动量守恒的条件:相互作用的系

统所受的外力矢量和不为零,但在该方向上不受外力或外力在该方向上的分量和为零.

3.讨论例2(投影出示例2):如图3所示,质量均为M的A、B两木块从同一高度自由下落.当A木块落至某一位置时被以速度v0水平飞来的质量为m的子弹击中(设子弹未穿出),则A、B两木块在空中运动的时间tA、tB的关系是

A.tA=tB B.tA>tB C.tA<tB D.无法比较

重点分析A与子弹构成的系统:(1)水平方向不受外力,动量守恒.(2)竖直方向:子弹击中瞬间A在竖直方向的速度v1,击中后共同速度为v2,击中经历的时

2有(m+M)gt=(M+m)v2-Mv1.由于重力(m间为t,则依方程○+M)g为有限量,且t极小,重力的冲量趋于零,故有(M+m)v2=Mv1,即竖直方向动量近似守恒.依v2<v1知选项B正确,据此有:动量近似守恒的条件:系统所受外力的矢量和不为零,但为有限量,且相互作用的时间极短(t0),则外力的总冲量近似为零,系统的动量近似守恒。

4、讨论例3(投影出示例3):如图4所示,在光滑的水平上,一辆平板车载 着一人以速度v0=6m/s水平向左匀速运动。已知车的质量M=100㎏,人的质量m=60㎏。某一时刻,人突然相对于车以u=5m/s的速度向右奔跑。求人奔跑时车的速度多大?

请4名学生板演,师生共同分析可能出现的错误(或由教师给出):

错解一:

1(M+m)v0=Mv+mu

错解二:(M+m)v0=Mv0+m(v0-u)

1式中v为车相对地的速度,u为人相对车的速度.违反了动量守恒要 学生分析 ○选取同一参考系的原则.教师小结

注意相对性。由于动量的大小和方向与参照系的选择有关,因此应用动量守恒定律时应注意参考系的选取,必须选择地球或相对地球做匀速百直线运动的物体为参考系。如果题设条件中各物体的速度不是相对同一参考系的必须将它们转换成相对同一参考系的速度是。

2式中 学生讨论后分析 ○(v0-u)不是人奔跑时相对于地的速度.人奔跑时相对于地的速度应该是人对车发生作用后的速度,而不是人相对作用前车的速度.

教师小结 注意同时性.动量守恒定律方程两边的动量分别是系统在初、末态的总动量.初态动量中的速度都应该是相互作用前同一时刻的瞬时速度,末态动量中的速度都必须是相互作用后同一时刻的瞬时速度.学生给出正确答案:(M+m)v0=Mv+m(v-u).(M+m)v0=Mv+m(u-v).解得

v=7.88m/s 教师提问 上述两式右端第二项不同表述形式的物理意义是什么?答:两式中均取正方向水平向右,(v-u)表示人速方向向右,(u-v)表示人速方向向左.

5.教师小结:注意矢量性。动量守恒定律的表达式是矢量方程,对于系统内部各物体相互作用前后均在同一直线上运动的问题,应首先选定正方向,凡与正方向相同的动量取正,反之取负;对于方向未知的动量一般先假设为正,根据求得的结果再判断假设的真伪。

6.小结本节内容,布置作业。

第四篇:动量守恒定律 说课稿

动量守恒定律

(一)说课稿

尊敬的各位评委,大家好。我是——,我所说课的内容是动量守恒定律

(一),我所使用的教材人民教育出版社2005年审核通过的高中物理选修3—5,十六章动量守恒定律第二节动量守恒定律

(一)。由于课改及教材改编,动量守恒定律不同于从牛顿第二定律和第三定律推导出动量守恒定律,不利于学生顺利地去认识现象,建立概念与规律的传统讲法,事实上动量守恒定律本身就具有实验基础独立的物理定律,我的教学设计基于改造实验案例二的 “实验演示”教学模式实践活动突出了体现学习中的探究精神,强调物理学中“不变量”的思想,设置情景、问题与学生交流探讨,纠正对事物的理解产生错误的所在,加深学生对知识的理解与掌握,发展对学科的兴趣与热情,培养交流协作能力的教学设计思想。

正因为如此,根据《普通高中物理课程标准》对本节课教学内容的要求及教材知识板块构成,本节在第一节“实验:探究碰撞中的不变量”的基础上提出动量概念,并从物理学史角度加以认识。通过例题提出动量的变化,加深对动量是矢量的认识,并在计算动量的变化时注意它的矢量性、动量的概念与力学系统、内力、外力的基础上导出动量守恒定律,提出动量守恒定律成立的条件是一个系统不受外力或者系统所受外力的矢量和为零。由于应用动量守恒定律解决实际问题,只需考虑物体相互作用前后的动量,不考虑相互作用过程中各个细节的瞬间,即使在牛顿定律适用范围内,它也能解决许多由于相互作用难以确定而不能直接应用牛顿定律解决的问题。这正是动量守恒定律的优点和特点,同时为我们解决力学问题提供了一种新的方法和思路。在整个物理教材的知识体系中,该节与运动学、机械能守恒定律、原子物理等各模块有着紧密的联系,是各知识的交汇点与穿插点,以及是各个知识点的思维拓宽处,所以在整个物理知识体系中站有比较重要的位置。

我所面临的学生通过前面模块的学习,已经具备了知道物体通过相互作用而产生的运动类型,初步的实验设计、操作与分析能力。同时碰撞相互作用而产生的运动类型也有生活感知,且在必修2中《机械能及其守恒定律》一章中有类似的模型;并通过第一节的学习对碰撞不变量有所探讨的知识基础;已经形成自己的思想,对事物有一定的理解并能运用所学知识解释自己的观点的年龄阶段情感特点;但存在对动量的方向性的确定不透彻,对前期所学习的一些物理基本概念不是分得很清楚,对动量守恒定律成立条件的掌握的学习障碍,为应对这些问题所采用的教学设计由浅入深,设计符合学生认知能力的情景,分组讨论与归纳的教学策略,形成“一 + 一 =3”模式的教学特点,即学生占主体,教师设置问题与情景,学生分组交流讨论,发表自己的观点,与全班交流,由教师总结得出知识点;最后留3分钟解决学生前次课或该次课提出的不清晰点。

根据《普通高中物理课程标准》及对教材分析和学情分析确定了:

一、知识目标:

1、掌握动量的表达式及其物理符号的含义;

2、知道关于动量的物理学史;

3、知道与塑造“力学系统”这一物理模型;

4、掌握动量守恒定律的确切含义与表达,知道定律的成立的条件和适用范围;

5、会用动量守恒定律解决简单的实际问题。

二、过程与方法:

1、通过对动量概念及动量守恒定律的学习,了解归纳与演绎两种思维方法的应用;

2、参加小组探讨、师生互动经过思考发表自己的见解;

3、经历实验探究过程,发现规律,具备分析、解决问题能力和交流、合作能力;

三、情感与价值:

1、主动与他人合作的团队精神,有将自己的见解与他人交流的愿望;

2、培养学生将物理知识、物理规律进行分析比较与联系,养成自主构建知识体系的意识;

3、培养实事求是、具体问题具体分析的科学态度; 的三维教学目标。

根据《普通高中物理课程标准》、《教学大纲》及教学目标确定这节教学重点:

1、掌握动量的表达式及式中各物理符号的含义;

2、知道“力学系统”这一物理模型,理解外力与内力;

3、掌握动量守恒定律,会用动量守恒定律解决实际问题;

根据《普通高中物理课程标准》、学情分析及教学目标确定这节教学难点:

1、知道动量为矢量,掌握其方向的判定;

2、明确q=mv式中v表示瞬时速度;

3、掌握动量守恒定律成立满足的条件;

基于学情分析、教学目标、教学重难点,我所采用的教学方法是:运用物理的“实验探究”、“类比推理”相结合的教学模式,而使用了演示法、设问法、对比法;采用演示实验引导、分组讨论、问题设置和情景模拟相结合,多媒体辅助的教学手段。

课前准备:

1、认真研习《物理课标》、《教师用书》及《学科教学指导意见》;

2、仔细揣摩教材该章节,分析其“隐藏”知识点,找出本节与整套物理知识模块的交汇点;

3、分析学生所掌握的知识点和已具备的分析探索能力及已具备的认知特点;

4、准备演示实验器材(在课前放置于讲桌下);

教学环境:多媒体教室;所使用的教学用具:多媒体课件(视频)、自制半定量研究一维碰撞实验装置(四枚象棋子)、牛顿摆、小车。

教学过程图:

我所说课内容到此结束„„.

第五篇:高二物理动量守恒定律教案

§8·3 动量守恒定律

教学目标:1.理解动量守恒定律的确切含义和表达式

2.能用动量定理和牛顿第三定律推导出动量守恒定律 3.知道动量守恒定律的适用条件和适用范围

教学重点:掌握动量守恒定律的推导、表达式、适用范围和守恒条件 教学难点:正确判断系统在所研究的过程中动量是否守恒 教学方法:实验法、推理归纳法、举例讲授法

教学用具:投影仪,投影片,课件,两个质量相等的小车,细线、弹簧、砝码、气垫导轨

教学过程:

【引入新课】

我们在上几节课,学习了动量和冲量以及动量定理,动量定理已经把一个物体的动量变化跟物体所受外力作用一段时间紧密联系起来了,但是根据牛顿第三定律我们可以知道这个受到作用力的物体也一定会施加一个反作用力,也就是说力的作用是相互的,因此,我们就十分有必要研究一下有相互作用的物体系的动量变化规律

【讲授新课】

(一)动量守恒定律的推导

例:如图,在光滑水平面上做匀速运动的两个小球,质量分别是m1 和m2,沿着同一直线向相同的方向运动,速度分别是v1和v2,且v2>v1,经过一段时间后,m2追上了m1,两球发生碰撞,碰撞后的速度分别是v1′和v2′.试分析碰撞中两球动量的变化量有何关系。

①第一个小球和第二个小球在碰撞中所受的平均作用力F1和F2是一对相互作用力,大小相等,方向相反,作用在同一直线上,作用在两个物体上;

②第一个小球受到的冲量是: F1t=m1v1′-m1v1 第二个小球受到的冲量是:F2t=m2v2′-m2v2

③又F1和F2大小相等,方向相反。所以F1t=-F2t ∴m1v1′-m1v1=-(m2v2′-m2v2)由此得:m1v1+m2v2=m1v1′+m2v2′

即:p1+p2=p1′+p2′ 表达式的含义:两个小球碰撞前的总动量等于碰撞后的总动量.

1.系统:有相互作用的物体构成一个系统.例如实验中的两辆小车或推导实例中碰撞的两个小球;

2.内力:系统中相互作用的各物体之间的相互作用力叫做内力.例如:实验中两小车通过弹簧施加给对方的弹力;两小球在碰撞中施加给对方的平均作用力.

3.外力:外部其他物体对系统的作用力叫做外力.例如实验和推导实例中的重力和支持力.

(二)动量守恒定律的条件和内容

1.动量守恒定律的条件:系统不受外力或者所受外力之和为0。

2.动量守恒定律的内容:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变这个结论叫动量守恒定律.

3.动量守恒定律的表达式:p1+p2=p1′+p2′动量守恒定律的几种表达式为: ①p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′)②Δp=0(系统总动量增量为0)

③Δp'=-Δp2(相互作用的两个物体构成系统)两物体动量增量大小相等、方向相反. ④m1v1+m2v2=m1v1′+m2v2′(相互作用两个物体组成系统,前动量和等于后动量和)

(三)动量守恒定律的适用范围:动量守恒定律不但能解决低速运动问题,而且能解决高速运动问题,不但适用于宏观物体,而且适用于电子、质子、中子等微观粒子.

(四)典型例题评讲

例1:甲、乙两物体沿同一直线相向运动,甲的速度是3m/s,乙物体的速度是1m/s。碰撞后甲、乙两物体都沿各自原方向的反方向运动,速度的大小都是2m/s。求甲、乙两物体的质量之比是多少?

分析与解:规定甲物体初速度方向为正方向。则v1=+3m/s,v2=1m/s。

碰后v1'=-2m/s,v2'=2m/s 根据动量守恒定律应有m1v1+m2v2=m1v1'+m2v2' 移项整理后可得m1比m2为

代入数值后可得m1/m2=3/5,即甲、乙两物体的质量比为3∶5。

例2:质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量是80kg,求小孩跳上车后他们共同的速度。

分析与解:对于小孩和平板车系统,由于车轮和轨道间的滚动摩擦很小,可以不予考虑,所以可以认为系统不受外力,即对人、车系统动量守恒。

跳上车前系统的总动量 p=mv 跳上车后系统的总动量 p'=(m+M)V 由动量守恒定律有mv=(m+M)V 解得

小结:动量守恒定律的解题步骤:

1、分析系统由多少个物体组成,受力情况怎样,判断动量是否守恒;

2、规定正方向(一般以原速度方向为正),确定相互作用前后的各物体的动量大小,正负;

3、由动量守恒定律列式求解.巩固练习

一、选择题

1.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹和车的下列说法正确的有()A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.枪、子弹和车组成的系统动量守恒

D.若忽略不计子弹和枪筒之间的摩擦,枪和车组成的系统动量守恒

2.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前两球()A.质量相等

B.速度大小相等

C.动量大小相等

D.以上都不能判定 3.在下列几种现象中,动量守恒的有()A.原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统 B.运动员将铅球从肩窝开始加速推出,以运动员和球为一系统

C.从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统

D.光滑水平面上放一斜面,斜面光滑,一物体沿斜面滑下,以重物和斜面为一系统 4.两物体组成的系统总动量守恒,这个系统中()A.一个物体增加的速度等于另一个物体减少的速度 B.一物体受的冲量与另一物体所受的冲量相等 C.两个物体的动量变化总是大小相等、方向相反 D.系统总动量的变化为零

5.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法中正确的是()A.人在小船上行走,人对船的冲量比船对人的冲量小,所以人向前运动得快,小船后退得慢

B.人在小船上行走,人的质量小,它们受的冲量大小是相等的,所以人向前运动得快,小船后退得慢 C.当人停止走动时,因为小船惯性大,所在小船要继续向后退 D.当人停止走动时.因为总动量守恒,所以小船也停止后退

6.物体A的质量是物体B的质量的2倍,中间压缩一轻质弹簧,放在光滑的水平面上,由静止同时放开两手后一小段时间内()A.A的速率是B的一半

B.A的动量大于B的动量 C.A受的力大于B受的力

D.总动量为零

7.如图所示,F1、F2等大反向,同时作用于静止在光滑水平面上的A、B两物体上,已知MA>MB,经过相同时间后撤去两力.以后两物体相碰并粘成一体,这时A、B将()A.停止运动

B.向右运动

C.向左运动

D.仍运动但方向不能确定

二、填空题

8.在光滑的水平面上,质量分别为2kg和1kg的两个小球分别以0.5m/s和2m/s的速度相向运动,碰撞后两物体粘在一起,则它们的共同速度大小为______m/s,方向______.9.质量为M=2kg的木块静止在光滑的水平面上,一颗质量为m=20g的子弹以v0=100m/s的速度水平飞来,射穿木块后以80m/s的速度飞去,则木块速度大小为______m/s.10.质量是80kg的人,以10m/s的水平速度跳上一辆迎面驶来的质量为200kg、速度为5m/s的车上,则此后车的速度是______m/s,方向______.三、计算题

11.用细绳悬挂一质量为M的木块处于静止,现有一质量为m的子弹自左方水平射穿此木块,穿透前后子弹的速度分别为v0和v,求:(1)子弹穿过后,木块的速度大小;(2)子弹穿过后瞬间,细绳所受拉力大小

12.甲、乙两个溜冰者相对而立,质量分别为m甲=60kg,m乙=70kg,甲手中另持有m=10kg的球,如果甲以相对地面的水平速度v0=4m/s把球抛给乙,求:(1)甲抛出球后的速度;(2)乙接球后的速度

13.在光滑水平面上,质量为m的小球A以速率v0向静止的质量为3m的B球运动,发生正碰后,A球的速度为

v0,求碰后B球的速率 414.一辆总质量为M的列车,在平直轨道上以v匀速行驶,突然后一节质量为m的车厢脱钩,假设列车受到的阻力与质量成正比,牵引力恒定,则当后一节车厢刚好静止的瞬间,前面列车的速率为多大?

15.两只小船在平静的水面上相向匀速运动如图所示,船和船上的麻袋总质量分别为m甲=500kg,m乙=1000kg,当它们首尾相齐时,由每一只船上各投质量m=50kg的麻袋到另一只船上去(投掷方向垂直船身,且麻袋的纵向速度可不计),结果甲船停了下来,乙船以v=8.5m/s的速度沿原方向继续航行,求交换麻袋前两只船的速率各为多少?(不计水的阻力)

1C2 C

3A

4CD

5BD

6AD

7A 8答案:m/s;方向跟1kg小球原来的方向相同 9答案:0.2

10答案:0.71;与原来的方向相同 13m(v0v)m2(v0v)211答案:(1)(2)Mg

MML12答案:(1)v甲13答案:2m/s,与抛球的方向相反(2)v乙0.5m/s,与球的运动方向相同 315v0或v0 412MV14答案:

Mm15答案:以甲船和乙船及其中的麻袋为研究对象,以甲船原来的运动方向为正方向.麻袋与船发生相互作用后获得共同速度.由动量守恒定律有(相互作用后甲船速度v′甲=0)

0①(m甲m)v甲mv乙m甲v甲以乙船和甲船中的麻袋为研究对象,有(相互作用后乙船速度v′乙=0)

0② (m乙m)v乙mv甲m乙v乙由①、②两式解得

mm乙v乙5010008.5v甲m/s21m/s 22(m乙m)(m甲m)m(100050)(50050)50v乙m甲mmv甲500501m/s9m/s 50

下载动量守恒定律教案word格式文档
下载动量守恒定律教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    1.2探究动量守恒定律教案(精选五篇)

    §1.2探究动量守恒定律 一、三维目标 A 知识与技能: ①通过实验探究得出物体碰撞似的动量变化规律; ②会推导动量守恒定律,理解其含义和表达式; ③知道动量守恒定律的适用条件和......

    动量守恒定律说课

    《动量守恒定律》说课教案 《动量守恒定律》是高中物理新教材第一册第七第三节的内容。它是本章的重点,同时也是力学部分的重要内容。动量守恒定律是自然界中最普遍最重要的......

    实验验证动量守恒定律

    碰撞中的动量守恒1.实验目的、原理(1)实验目的运用平抛运动的知识分析、研究碰撞过程中相互作用的物体系动量守恒(2)实验原理(a)因小球从斜槽上滚下后做平抛运动,由平抛运动知......

    动量守恒定律教学设计范文

    《动量守恒定律》教学设计 物理组 梁永 一、教材分析 地位与作用 本节课的内容是全日制普通高级中学物理第二册(人教版)第一章第三节。 本节讲述动量守恒定律,它既是本章的核心......

    《动量守恒定律》说课稿1★

    《动量守恒定律》说课稿 一、教材分析: (一)教材的内容、地位和作用 动量守恒定律是自然界普遍适应的基本规律之一,它比牛顿定律发现的早,应用比牛顿定律更为广泛,如可以适用于......

    高中物理动量守恒定律(5篇范文)

    万老师物理 §8·3 动量守恒定律 §8·3 动量守恒定律 教学目标:1.理解动量守恒定律的确切含义和表达式 2.能用动量定理和牛顿第三定律推导出动量守恒定律 3.知道动量守恒定律的......

    《动量守恒定律及其应用》教学设计

    《动量守恒定律及其应用》教学设计何小东一、教材分析地位与作用本节讲述动量守恒定律及其应用,它既是本章的核心内容,也是整个高中物理的重点内容。它是在学生学习了动量、冲......

    动量守恒定律说课稿[精选多篇]

    动量守恒定律说课稿作为一名辛苦耕耘的教育工作者,就难以避免地要准备说课稿,说课稿有助于学生理解并掌握系统的知识。我们应该怎么写说课稿呢?下面是小编为大家整理的动量守恒......