第一篇:动量守恒定律的应用-教学设计
物理习题课中的五步教学法
----《动量守恒定律的应用》教学设计
江苏省怀仁中学
张忠一
一、教学目标:
1、知识目标:
应用动量守恒定律处理相互作用的物体的位移变化关系问题
2、能力目标:
培养学生的分析、归纳问题的能力和对知识的“迁移”能力
3、情感目标:
通过小组间的讨论竞赛,培养学生的团结协作精神和集体荣誉感,并让学生感受由困惑到豁然开朗的愉悦。
二、教学方法:
1、启发:动机是指引起和维持个体的活动,并使活动朝向某一目标的内部心理过程和内部动力。人的各种活动是在动机的指引下向着某一目标进行的,而兴趣是人们探究某种事物或从事某种活动的心理倾向,是推动人们认识事物、探求真理的重要动机。教师利用生动有趣的实验、生活中的物理现象和创设物理情境等方式来设疑,从而激发学生的学习兴趣、启发学生解释物理现象,探索物理知识的求知欲。“启”是教学过程中最重要的一种教学方法。
2、阅读:指学生在教师的指导下阅读物理问题,并进行独立思考。在读题的过程中,注重思考两点:第一是物理过程,这是把握问题的整体思路,是选择相关物理知识来处理问题的前提和依据。第二是分析各物理量,其中包括已知的量、待求的量、不变(或相同)的量、隐含的量,这是解决问题的基本思路,也是进一步确定所应用物理规律的方法。
3、议论:指教师组织学生针对阅读过程中出现的问题,利用已有的知识能力所进行的小组议论(宜四人一组)、全班讨论和师生共议。“议”一方面可以使学生加深理解所阅读的内容,另一方面还能启发学生的思维,培养学生的创新意识,促进学生的主动学习,加强学生间的团结协作能力,在讨论过程中教师尽量做到充分调动全体学生思维的积极性,鼓励他们积极思考,主动发言,提出问题。还要求教师具有敏锐的洞察力和良好的调控能力,准确把握讨论的信息,注意收集讨论中出现的带有普遍性的问题。
4、讲评:指学生和教师的讲解。学生分组讨论,选出组长,由组长向全班学生阐述讨论结果,并由其他同学进行补充、完善,这样可以促进学生的思维,锻炼学生的口才,还可以培养学生学习的主动性。教师针对学生在讨论过程中出现的带有普遍性的问题及关键性的问题进行讲解,讲的目的在于启发学生积极思维,帮助学生找出解决问题的方法、规律。
5、练习:指学生在掌握了一定的知识技能的情况下进行的形成性练习,从而进一步巩固所学的知识,练习的方式可以多样化,包括课内练习和课外练习,练习的内容应紧扣所学内容。课堂练习应“小”“精”“活”,有利于启迪学生思维,有利于学生理解所学内容,有利于提高学生的综合能力,有利于培养学生的创新意识和创新能力。课外练习应结合学生的日常生活或结合科学技术的应用,拓展学生的视野和思维。
三、教学内容:
1、引入:
江南水乡,风景秀丽,泛舟河中,其乐无穷。很多学生都坐过小渔船,但他们感到困惑的是:人在船上向前走时,为什么船却向后退?人在船上向前走的距离与船向后的距离又有什么关系呢?
题外话:在这节课之前,利用研究性学习课时间,带领学生到学校东面的小河边(这里渔民很多)去亲自体验这种情景,并分组进行测量记录。
2、投影:
例:静止在水平面上的船长为L,质量为M,一个质量为m的站在船头,当此人由船头走到船尾时,不计水的阻力,人移动的距离是多少?船移动的距离是多少?
学生审题后教师提出问题:
1、人走动是匀速的还是变速的?
2、人走动时与船之间水平方向是否存在力?
3、人走动时船是否运动?
4、若船运动,与人的走动速度关系如何?
5、人移动的距离等于船长L吗?
6、这个问题可能利用什么知识来处理?
将学生分组进行讨论,视回答情况进行积分竞赛。
对于两个物体相互作用,运动情况也相互影响的问题,学生很容易想到可能利用动量守恒定律来处理,但动量中涉及到的只是物体的速度,而题中要求移动的距离。这也是此题的一个“关节”所在,此时教师引导学生考虑速度与距离的关系,学生会想到s=vt,设人的速度为v1行走的距离为s1;船的速度为v2,行走的距离为s2,以人的行走方向为正方向,根据动量守恒定律:
0=mv1+M(-v2)两边同乘以时间t,则
0=mv1t-Mv2t
即 0=ms1-Ms2
学生可能会出现上面这样一个盲目的解题结果,根本没有理解这里v1、v2的意义。这时教师应提醒学生注意:s=vt只对匀速直线运动适用,而人和船的运动状态是个不定量,所以v只能是平均速度。但是动量mv是状态量,而平均速度是过程量,这里又存在矛盾,如何化解呢? 我们可以这样来想:对于一个变速运动的过程,它的平均速度比最大速度小,比最小速度大,所以一定会等于此过程中某一时刻的瞬时速度的大小,假设这一时刻人和船的速度分别为v1、v2,根据动量守恒定律:
0=mv1+M(—v2)
即
0=mv1+M(-v2)
那么 0=mv1t+M(-v2t)所以 0=ms1-Ms2
①
本题还有一个难点所在:人移动的距离和船移动的距离有什么关系?对于这一点,学生经过亲身经历已有感性认识,通过讨论会解决的。借助画图来分析:
由图易知:s1+s2=L
② 联立①②得
Ms1=L Mmms2=L Mm讨论:末状态会出现如下图所示情况吗?为什么?
(不可能,因为人的速度方向向右,末位置应在出发点的右侧。)
课堂练习1:静止在水面的船长为L,质量为M,一个质量为m,长为l的小车从船头由静止开向船尾时,不计水的阻力,则车移动的距离是多少?船移动的距离是多少?
本题类似于“队伍过桥”问题,与例题的区别在于车相对于船比人相对
Mm于船少走l,所以s1=(L—l)
s2=(L—l)
MmMm
课堂练习2:静止在水面上的船长为b,斜边长为a,质量为M,一个质量为m的小球从船头由静止沿斜面滚向船尾时,不计水的阻力,则球移动的距离是多少?船移动的距离是多少?
系统水平方向上动量守恒。先考虑小球
M水平方向上移动的距离s1=b,再考
Mm虑沿斜面方向上移动的距离
s`1=s(ab)
mb Mm课外练习:静止在水面上的船长为L,一人站立船头,手持一枪,船尾有一靶,子弹不能穿透靶。已知枪中有n子弹,每发子弹的质量为m,船、人、s2=枪和靶的总质量为M,问:子弹发射完后,船移动的距离是多少?
每发射一颗子弹,系统的动量守恒。在发射n发子弹的过程中,系统的动量也守恒,并可以等效地看成n发子弹一齐发射出去。
四、教学说明:
1、动量为状态量,对应的速度应为瞬时速度。所以动量守恒定律中的“总动量保持不变”指的应是系统的初、末两个时刻的总动量相等,或系统在整个过程中任意两个时刻的总动量相等。若相互作用的两个物体作用前均静止,则相互作用的过程中系统的平均动量也守恒,利用这一点我们解决不少涉及位移的问题。
2、动量守恒定律的公式中各速度都要相对同一惯性参照系。地球及相对地球静止或相对地球匀速直线运动的物体即为惯性系。所以在应用动量守恒定律研究地面上物体的运动时,一般以地球作参照系。
第二篇:《动量守恒定律及其应用》教学设计
《动量守恒定律及其应用》教学设计
何小东
一、教材分析
地位与作用
本节讲述动量守恒定律及其应用,它既是本章的核心内容,也是整个高中物理的重点内容。它是在学生学习了动量、冲量和动量定理之后,以动量定理为基础,研究有相互作用的系统在不受外力或所受合外力等于零时所遵循的规律。它是动量定理的深化和延伸,且它的适用范围十分广泛。
动量守恒定律是高中物理阶段继牛顿运动定律、动能定理以及机械能守恒定律、能量守恒定律之后的又一重要的解决问题的基本工具。动量守恒定律对于宏观物体低速运动适用,对于微观物体高速运动同样适用;不仅适用于两个物体组成的系统,也适用于多个物体组成的系统。因此,动量守恒定律不仅在动力学领域有很大的应用,在日后的物理学领域如原子物理等方面都有着广泛的应用,为解决物理问题的几大主要方法之一。因此,动量守恒定律在教学当中有着非常重要的地位。
二、学情分析
学生在前面高二的学习当中已经学习了动量、冲量、动量定理、动量守恒定律的相关知识,只是时间有点久,现在只记得公式和简单应用。对于动量守恒的条件已经基本忘记。对于很多经典模型还不会立刻写出公式,对于模型的末状态临界问题还很难把握。大部分学生对于动量守恒定律还是觉得比较容易,反而是与之对应的能量守恒公式对他们是难点。
三、教学目标、重点、难点
(一)教学目标
1.理解系统动量守恒的条件.2.会应用动量守恒定律解决基本问题.3.可以写出动量守恒与之对应的能量守恒.(二)重点、难点、关键
重点:教学目标的三点
难点:动量守恒条件的理解和能量守恒
四、设计理念
在教学活动中,充分体现学生的主体地位,积极调动学生的学习热情,让学生在学习过程当中体会成功的快乐,渗透严谨务实的科学思想;同时,教师发挥自身的主导作用,引导学生在学习中找到正确的分析方向,五、教学流程设计
教学方法
分析归纳法、典题例析法、多媒体展示
教学流程
(一)复习回顾
回顾动量守恒定律的内容、表达式和条件
(二)应用
经典模型的分析与应用:
1、碰撞的分类(主要讲解弹性碰撞和完全非弹性碰撞)
2、子弹打木块模型
3、小球弹簧问题
4、摩擦带动模型
(三)作业 步步高94--96
六、板书设计
动量守恒定律及其应用
1、表达式:m1v1+m2v2=m1v1′+m2v2′
2、条件:
3、应用
七、反思
练习题
1、(2021全国乙卷14)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统()
A.动量守恒,机械能守恒
B.动量守恒,机械能不守恒
C.动量不守恒,机械能守恒
D.动量不守恒,机械能不守恒
2.弹性碰撞(m1、m2)
讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);
②若m1>m2,则v1′>0,v2′>0(碰后两物体沿同一方向运动);当m1≫m2时,v1′≈v1,v2′≈2v1;
③若m1
4、
(2020·全国卷Ⅲ·15)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示.已知甲的质量为1 kg,则碰撞过程两物块损失的机械能为
(2020·全国卷Ⅲ·15)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示.已知甲的质量为1 kg,则碰撞过程两物块损失的机械能为
A.3 J B.4 J C.5 J D.6 J5、如图所示,光滑悬空轨道上静止一质量为3m的小车A,用一段不可伸长的轻质细绳悬挂一质量为2m的木块B.一质量为m的子弹以水平速度v0射入木块(时间极短),试求:(不计空气阻力,重力加速度为g).求:
子弹射入木块B时产生的热量;
6、如图所示,小球B与一轻质弹簧相连,并静止在足够长的光滑水平面上,质量为m1的小球A以v的速度与轻质弹簧正碰.小球B的质量为m2.求当两个小球与弹簧组成的系统动能最小时,小球B的速度的大小.以及弹簧的弹性势能。
7、滑块恰好不滑出长木板,动摩擦因数为μ,求木板的长度L。
第三篇:动量守恒定律教学设计范文
《动量守恒定律》教学设计
物理组 梁永
一、教材分析 地位与作用
本节课的内容是全日制普通高级中学物理第二册(人教版)第一章第三节。本节讲述动量守恒定律,它既是本章的核心内容,也是整个高中物理的重点内容。它是在学生学习了动量、冲量和动量定理之后,以动量定理为基础,研究有相互作用的系统在不受外力或所受合外力等于零时所遵循的规律。它是动量定理的深化和延伸,且它的适用范围十分广泛。
动量守恒定律是高中物理阶段继牛顿运动定律、动能定理以及机械能守恒定律之后的又一重要的解决问题的基本工具。动量守恒定律对于宏观物体低速运动适用,对于微观物体高速运动同样适用;不仅适用于两个物体组成的系统,也适用于多个物体组成的系统。因此,动量守恒定律不仅在动力学领域有很大的应用,在日后的物理学领域如原子物理等方面都有着广泛的应用,为解决物理问题的几大主要方法之一。因此,动量守恒定律在教学当中有着非常重要的地位。
二、学情分析
学生在前面的学习当中已经掌握了动量、冲量的相关知识,在学习了动量定理之后,对于研究对象为一个物体的相关现象已经能够做出比较准确的解释,并且学生已经初步具备了动量的观念,为以相对较为复杂的由多个物体构成的系统为研究对象的一类问题做好了知识上的准备。
碰撞、爆炸等问题是生活中比较常见的一类问题,学生对于这部分现象比较感兴趣,理论和实际问题在这部分能够很好地结合在一起。学生在前期的学习和实践当中已经具备了一定的分析能力,为动量守恒定律的推导做好了能力上的准备。
从实验导入,激发学生求知欲,对于这部分的相关知识,学生具备了一定的主动学习意识。
三、教学目标、重点、难点、关键
(一)教学目标
1.知识与技能:理解动量守恒定律的确切含义和表达式,能用动量定理和牛顿第三定律推导出动量守恒定律,掌握动量守恒定律的适用条件。
2.过程与方法:分析、推导并应用动量守恒定律
3.情感态度与价值观:培养学生实事求是的科学态度和严谨务实的学习方法。
(二)重点、难点、关键
重点:动量守恒定律的推导和守恒条件 难点:守恒条件的理解 关键:应用动量定理分析
四、设计理念
在教学活动中,充分体现学生的主体地位,积极调动学生的学习热情,让学生在学习过程当中体会成功的快乐,渗透严谨务实的科学思想;同时,教师发挥自身的主导作用,引导学生在学习探究活动当中找到正确的分析方向,五、教学流程设计 教学方法
分析归纳法、质疑讨论法、多媒体展示 教学流程
(一)引入新课
回顾动量定理的内容和表达式,指出动量定理的研究对象为一个物体。质疑:当物体相互作用时,情况又怎样呢?
(二)新课教学
1、分析教材中实验部分,对比多媒体展示的实验,总结通过实验得到的相关结论。
2、创设物理情景,搭设认知台阶,引导学生利用动量定理和牛顿第三定律推导动量守恒定律的形式。
3、讨论合外力不为零的情形,利用动量定理和牛顿第三定律重新推导,判断系统动量在碰撞前后是否守恒,从而确定动量守恒定律成立的条件。
4、总结动量守恒定律内容
5、介绍动量守恒定律的适用范围
(三)小结
师生共同总结动量守恒定律的内容、条件以及适用范围。
(四)作业P10 练习三(3)(4)
六、板书设计 动量守恒定律
1、内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变
(1)系统:有相互作用的物体通常称为系统(2)系统中各物体之间的相互作用力叫做内力(3)外部其他物体对系统的作用力叫做外力
2、表达式:pp'''12p1p2或pp
3、条件:一个系统不受外力或外力之和为零,系统的总动量保持不变
4、适用范围:(1)小到微观粒子,大到天体
(2)不仅适用于低速运动,也适用于高速运动
第四篇:动量守恒定律教学设计
教
学
设
计
稿
辽阳市第二高级中学物理组
李鑫
§ 16.2
动量守恒定律
(一)一、教学目标
知识技能:
1、理解动量的概念,会计算动量的一维变化
2、理解动量守恒定律及其条件拓宽
3、会应用动量守恒定律解决计算问题
过程与方法: 独立学与合作学 情感态度与价值观:
1、体验探索物理奥秘和创设物理情境的乐趣,培养科学探索和创造精神;
2、体会艺术中的科学,升华爱科学、爱祖国的情感
二、重点、难点
重点
动量和动量守恒定律 难点
动量的变化;动量守恒的条件 三、教法与学法
教法:两先两后,既先学后教,先练后讲。学法:独立学与合作学
四、教学准备
多媒体(展示学案播放动画)、实物展示台(供学生展示用)、学案(课前要求预习)
五、教学过程 引入新课:展示学生学案中对上节知识的回顾引入本节课 进行新课:
1、每个知识点都是先展示学生对学案中知识点的理解,先学后教突破重点。让学生自己小组讨论设计我是大导演里的物理情景并进行展示,先练后讲突破难点。最后由教师进行肯定和补充师生达成共识完成对每个知识点的教学。
2、三个知识点都学习完成后通过一个动画情景引出一道例题进行巩固练习
例题:若老鼠Jerry喷出质量mq = 10g 的气体之后,自己的质量是mJ = 0.5kg,且获得了vJ
= 1m/s 的水平速度,则Jerry喷出的气体相对于地面的速度vq 是多大?
3、让学生亲自动手做两个小实验,通过亲身体验进一步达到突破难点的目的
课堂小结:对所学的知识点进行总结 反馈评价:小组讨论,师生交流,反馈信息 布置作业:由一个小游戏引出本节的作业 思考:比较动量和动能
观察:观察或回忆生活中与动量守恒有关的现象或片段 交流;与同学们交流物理情境,共同分析其中的规律 提升:结合实际,估算数据,通过定量计算分析情境的科学性
六、板书设计 §16.2
动 量 守 恒 定 律(一)
一、动量
二、系统、内力和外力
三、动量守恒定律
1、定义式:p=mv
至少
内部
外部
1、内容(略)矢量性 相对性 状态量
两个
施力
施力
2、表达式:
2、单位:kgm/s
内力和外力的区分
p1 + p2 = p1' + p2'
3、动量变化量
依赖于系统的选取
3、条件(略)△p = p'- p = mv'-mv
·矢量性同时性相对性
学 案 设 计
〈我来学学〉§16.2动量守恒定律
(一)[回顾]A、B碰撞实验中,(填“A”或“B”或“AB系统”)具有的 守恒
[查阅资料]“mv”是什么?“mv”给了你什么印象? [我是大导演]你能导演一场“mv”(一维)变化的情境吗?
[分析研究]说说碰撞实验中,什么情况造成了A和B的mv都改变了,而AB系统的mv却没变?
[我的理论]
1、动量守恒之我论。
2、表达式
3、说明
[查阅资料][想想说说] [我是大导演]你能导演一场动量守恒的情景吗?
第五篇:动量守恒定律的应用的教学过程设计物理教案[小编推荐]
本节是继动量守恒定律之后的习题课.主要巩固所学知识,学会在不同条件下,熟练灵活的运用动量守恒定律解释一些碰撞现象,并能利用动量守恒定律熟练的解决相关习题.1、讨论动量守恒的基本条件
例
1、在光滑水平面上有一个弹簧振子系统,如图所示,两振子的质量分别为m1和m2.讨论此系统在振动时动量是否守恒?
分析:由于水平面上无摩擦,故振动系统不受外力(竖直方向重力与支持力平衡),所以此系统振动时动量守恒,即向左的动量与向右的动量大小相等.例
2、接上题,若水平地面不光滑,两振子的动摩擦因数μ相同,讨论m1=m2和m1≠m2两种情况下振动系统的动量是否守恒.分析:m1和m2所受摩擦力分别为f1=μm1g和f2=μm2g.由于振动时两振子的运动方向总是相反的,所以f1和f2的方向总是相反的.对m1和m2振动系统来说合外力∑f外=f1+f2,但注意是矢量合.实际运算时为
∑f外=μm1g-μm2g
显然,若m1=m2,则∑f外=0,则动量守恒;
若m1≠m2,则∑f外≠0,则动量不守恒.向学生提出问题:
(1)m1=m2时动量守恒,那么动量是多少?
(2)m1≠m2时动量不守恒,那么振动情况可能是怎样的? 与学生共同分析:
(1)m1=m2时动量守恒,系统的总动量为零.开始时(释放振子时)p=0,此后振动时,当p1和p2均不为零时,它们的大小是相等的,但方向是相反的,所以总动量仍为零.数学表达式可写成:
m1v1=m2v2
(2)m1≠m2时∑f外=μ(m1-m2)g.其方向取决于m1和m2的大小以及运动方向.比如m1>m2,一开始m1向右(m2向左)运动,结果系统所受合外力∑f方向向左(f1向左,f2向右,而且f1>f2).结果是在前半个周期里整个系统一边振动一边向左移动.进一步提出问题:(如果还没有学过机械能守恒此部分可省略)
在m1=m2的情况下,振动系统的动量守恒,其机械能是否守恒?
分析:振动是动能和弹性势能间的能量转化.但由于有摩擦存在,在动能和弹性势能往复转化的过程中势必有一部分能量变为热损耗,直至把全部原有的机械能都转化为热,振动停止.所以虽然动量守恒(p=0),但机械能不守恒.(从振动到不振动)
2、学习设置正方向,变一维矢量运算为代数运算
例
3、抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向.分析:手雷在空中爆炸时所受合外力应是它受到的重力g=(m1+m2)g,可见系统的动量并不守恒.但在水平方向上可以认为系统不受外力,所以在水平方向上动量是守恒的.强调:正是由于动量是矢量,所以动量守恒定律可在某个方向上应用.那么手雷在以10m/s飞行时空气阻力(水平方向)是不是应该考虑呢?
(上述问题学生可能会提出,若学生没有提出,教师应向学生提出.)
一般说当v=10m/s时空气阻力是应考虑,但爆炸力(内力)比这一阻力大的多,所以这一瞬间空气阻力可以不计.即当内力远大于外力时,外力可以不计,系统的动量近似守恒.板书:f内&&f外时p′≈p.解题过程:
设手雷原飞行方向为正方向,则v0=10m/s,m1的速度v1=50m/s,m2的速度方向不清,暂设为正方向.板书:
设原飞行方向为正方向,则v0=10m/s,v1=50m/s;m1=0.3kg,m2=0.2kg.系统动量守恒:
(m1+m2)v0=m1v1+m2v2
此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反.例
4、机关枪重8kg,射出的子弹质量为20克,若子弹的出口速度是1 000m/s,则机枪的后退速度是多少?
分析:在水平方向火药的爆炸力远大于此瞬间机枪受的外力(枪手的依托力),故可认为在水平方向动量守恒.即子弹向前的动量等于机枪向后的动量,总动量维持“零”值不变.板书:
设子弹速度v,质量m;机枪后退速度v,质量m.则由动量守恒有
mv=mv
小结:上述两例都属于“反冲”和“爆炸”一类的问题,其特点是f内&&f外,系统近似动量守恒
例
5、讨论质量为ma的球以速度v0去碰撞静止的质量为mb的球后,两球的速度各是多少?设碰撞过程中没有能量损失,水平面光滑.设a球的初速度v0的方向为正方向.由动量守恒和能量守恒可列出下述方程:
mav0=mava+mbvb ①
解方程①和②可以得到
引导学生讨论:
(1)由vb表达式可知vb恒大于零,即b球肯定是向前运动的,这与生活中观察到的各种现象是吻合的.(2)由va表达式可知当ma>mb时,va>0,即碰后a球依然向前滚动,不过速度已比原来小了。当 时,即碰后a球反弹,且一般情况下速度也小于v0了.当ma=mb时,va=0,vb=v0,这就是刚才看到的实验,即a、b两球互换动量的情形.(3)讨论极端情形:若mb→∞时,va=-v0,即原速反弹;而vb→0,即几乎不动.这就好像是生活中的小皮球撞墙的情形.(在热学部分中气体分子