第一篇:方阵问题教学设计与反思
方阵问题教学设计与反思
教学思路:
现代数学教学观认为数学教学是学生在教师的指导下,在师生共同组成的“共同体”中,利用自己已有的知识和经验(认知结构),主动建构新知识(自己对数学知识的理解),扩大认知结构,学会思考,发展能力,完善人格的活动。
本堂课着重体现“知识在做数学中自主建构,思维在交流互动中提升拓展”。通过学生在练习纸上把自己的想法圈一圈,画一画的学习方式,使每一个学生都能经历数学学习的全过程,让他们结合自己独特的学习体验感受数学知识,建构对数学知识的认识,从而将知识内化为自己的能力。通过小组同桌交流、全班学生互动,学生之间的思维发生碰撞和融合,各汲所长,每位学生既收获自己的方法,又能理解他人的做法。学生深刻体会到解决问题方法的多样性,并在比较和应用的过程中对众多方法进行优化,感受到具体问题具体分析,依据实际情况灵活地选择方法。
数学知识源于生活,本堂课通过具体生动的生活情境激发学生的学习兴趣,拉近数学知识与学生之间的距离,感受数学知识魅力。学生既在生活情境中探讨方阵问题的规律和解决方法,又能将这些方法和思想更灵活地应用到更广阔的生活实际问题中去,进一步提高了学生的创新意识和解决问题的能力。
教学目标:
1、在问题情境中自主探讨方阵问题;了解求方阵最层总数的方法;会选择比较简便的方法解决问题。
2、初步培养学生从问题解决中探索规律的意识,提高解决问题的能力。
3、让学生感受数学在日常生活中的广泛应用,培养学生对数学学习的兴趣。
4、通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教学重点:在自主探究、合作交流中理解方阵问题的解决方法,发现其中的规律。教学难点:掌握方阵问题的解决方法,并能灵活地解决实际问题。教具准备:课件,练习纸 教学过程设计:
一、谈话引入,激发兴趣:
2008年里你印象最深刻的一件事是什么? 北京奥运会开幕式上你最难忘的片段是什么?
播放视频:北京2008奥运会开幕式《灿烂文明:文字》,出示相关资料: “北京2008奥运会开幕式《灿烂文明:文字》一段,摆出来一个23×44的方阵。” 引导学生理解23×44的含义,提出问题:你知道这个方阵中一共有多少人吗?。课件演示生活中的方阵,让学生感受数学知识就在自己身边。
二、体验交流,获得方法 课件出示一个漂亮的方阵图。
看到这个方阵,你能提出什么数学问题?
出示问题一:用蓝灯围成一个正方形,四个角上都有一个,每边有8个,一共有()个蓝灯。
先估一估,有多少个灯。数一数验证一下,对不对呢? 学生在练习纸上用自己的方法数一数,算一算,画一画。想一想用什么方法数得准,算得快,并把算式写下来。
把你的想法跟你的同桌说一说,互相交流,看看有没有不同的解决问题的方法。指名学生当小老师,汇报自己的方法,在黑板上展示。你们喜欢哪种方法?你认为哪种方法更容易解决问题? 板书:(每边数—1)×4=一层总数。
问题二:用红灯围成一个正方形,四个角上都有一个,每边有10个,一共有()个红灯。
学生口答,说说你是怎么想的?你用的那一种方法?
问题三:绿灯有多少个?要算出绿灯一圈共有多少个需要先知道什么? 说说你怎么算的。你有什么发现?(相邻两层的总数相差8,相邻两层每边数相差2)
快速口答:“灰灯,黄灯各有多少个?”说说你是怎么想的?
说明:解决问题的方法多种多样,我们可以根据实际情况灵活地选择方法。
三、应用知识,拓展练习
1、我来当老师
学校举行团体操表演。四年级学生排成下面的方阵,最外层每边站了15个人,最外层一共有多少名学生?整个方阵一共有多少名学生? 指名板演,说说你是怎么想的?
2、我来当花匠
要在五边形的水池边上摆上花盆,使第一边都有4盆花,可以怎样摆放?最少需要几盆花? 你能试着在练习纸上设计一下吗?看看怎样摆让花盆最少? 学生独立设计,展示。比较谁的方案摆的花盆最少,为什么?
说明:我们可以运用方阵问题的解题方法来解决更多的问题,做到知识活学活用。
3、我来当士兵 排兵布阵,智退强盗。
讲述故事:在一个正方形城堡上驻有八个兵站。原先,守城的是这样布置的。一天,一群强盗前来攻城。他们先派出几名探子从城堡四周侦查。探子们回来报告,每个方向都有7名士兵。海盗头子一算:城里有共二十八名士兵,不太好对付。明天我把我三十几名手下全叫来再攻不迟。
多蠢的强盗头子啊。城堡里应该有多少名士兵呢?强盗为什么会算错的。同时,守城的侦查兵也打探到了海盗的消息,这可怎么办呢?一个聪明的士兵站出来说:别担心,我让来排兵布阵,一定会吓退强盗的。他们不慌不忙地排兵布阵,作好了准备。第二天,强盗头子带着三十几名手下来到了城墙下,结果,真的被士兵们的阵势吓退了。你知道士兵们是怎样排兵布阵的吗?
四、回顾总结
通过这节课的学习,你有什么收获吗?
教学反思:
《方阵问题》数学广角中的部分,属于奥数内容,有一定的深度和广度。对于这样难度较深的课,既要考虑到学生学的效果,又要扩大教学内容的容量,实则不是一件容易的事。我翻阅了不同版本的奥数资料,确定了这节课的教学目标,并围绕教学目标开展了富有挑战性学习过程,达到了一定的教与学的效果。我想从以下几方面来谈谈我对《方阵问题》教学的几点思考。
一、鼓励学生解决问题策略多样化,引导学生优化方法。
我由中实方阵为引子,由易到难。放手让学生自主探究一层中空方阵(一个方阵最外层每边站3人,最外层一共站了多少人?)的算式,得出的方法有六种: 方法一:4×3-4=8(人)
每边3个圆点,4边就有3×4=12,每个角上的都算重复一次,所以减去4。
方法二:(3-1)×4=8(人)
每边都只算一个端点,这样每边都是3个圆点。(取头不取尾做到不重复不遗漏)也可引导每边的圆点等于每两个圆点的间隔数。引导出:(每边的圆点数-1)×4=一圈的圆点数。
方法三:3×2+(3-2)×2=8(人)上下两边算3,左右两对边算1。方法四:1×4+4=8(人)每边两端都不算,用中间的数×4,再加上角落4个。方法五:(3-1)×4=8(人)把这个中空方阵看作一个封闭图形,封闭图形的人数等于间隔数。每边(3-1)个间隔,四周共8个间隔,即最外层有8人。第五种方法和第一种方法便于让学生发现规律,抽象算法,我设计一个按每边的数量、图形边数、四周的数量为列的表格,学生一目了然地观察到数据有规律的变化,然后再在比较的过程中,优化解题方法,并将最后得到的优化方法抽象化。当然我也鼓励其他策略,告诉学生或者在别的题型中,你的方法可能更合适,同时为今后学习这方面的有关知识打下基础。
二、适当延伸教学内容,激发学生挑战难度。
问题的延伸与拓展的过程其实是一种施压的过程,有压力才有弹力,往往可以磨练一个学生的意志品质。提升问题难度可以激发一部分学生的求知欲,这是一种自我激励的良好情感态度。因此适当拓展到二层中空方阵,初步理解并渗透一层中空方阵与二层中空方阵的联系与区别。又延伸拓展,如果变成不同正多边形的空心队形,这个空心队形一共站了多少人?学生在解题的过程中体验成功的愉悦感,提高了解决问题的数学思维能力。
第二篇:方阵问题
方阵问题
【知识要点】
1.方阵问题:把若干人或物排列成正方形队列的形式,根据排列规律,引出的计算问题就叫做方阵问题 2.方阵问题的特点是:方阵每边的实物数量相等,相邻两边的实物数量相差2,相邻两层的实物数量相差8 3.方阵问题的解题思路是:
(1)实心方阵:每边数×每边数=总数
每层数÷4+1=每边数(每边数-1)×4=每层数
(2)空心方阵:大实心方阵-小实心方阵=总数
(每边数-层数)×层数×4=总数
【典型题解】
天津市晟嘉培训中心 例1.四年级同学举行广播操比赛,排成了8行8列。如果去掉一行一列,要去掉几人?还剩多少人?
分析:方阵中的任何1人,既是其中一排中的人,也是其中一列中的人。去掉一行一列,不管去掉哪一行哪一列,总有1人被去掉了两次,因此,求去掉一行一列去掉多少人,就是求比原来方阵中2行的人数少1人是多少人
解:82115(人)881549(人)答:要去掉15人,还剩49人
例2.菊花展上,园丁李师傅要摆一个正方形空心花坛,已知四边各摆5盆菊花,且四个角上都有一盆,请计算李师傅摆这个花坛共要用多少盆菊花?
天津市晟嘉培训中心 分析:正方形空心花坛是空心方阵,依题意,四个角上的1盆在横、竖排中各计算了一次。求李师傅共要用多少盆,就是求这个空心方阵的总数,可以4个5盆中减去重复计算的4个1盒 解:541416(盆)
答:李师傅摆这个花坛共要用16盆菊花
例3.某校180名学生,排成一个三层空心方阵,这个方阵外层每边有多少名学生? 分析:在三层空心方阵中,外层比中层多8,中层比内层多8,如果中层、内层的人数与外层同样多,需要加上3个8人,这样总人数180就多了83人,平均分成3份,就可求出最外层有多少人,然后求外层每边多少人
解:180833204368(人)684117118(人)
答:这个方阵外层每边有18名学生
天津市晟嘉培训中心
例4.某班抽出一些学生参加节日活动表演,如果排成一个正方形实心方阵多7人,如果每行每列增加1人,就少4人,共抽出学生多少人?
分析:排成一个实心方阵多7人,增加一行一列后少4人,说明增加一行一列的总人数是74人,就可先求出原来方阵中一排的人数,然后求出抽出学生总数 解:74121025(人)55725732(人)答:共抽出学生32人 【能力训练】
A 卷
1.同学们排队,要排成每行10人,共10行的方阵,共需要多少人? 2.同学们排成十行十列的方阵,如果去掉一行一列,要去掉多少人?
3.小明用棋子摆了一个实心方阵,后来他又加上15个棋子,使横竖各增加一排,成为一个大的实心方阵,原来的实心方阵每排有几个棋子?
4.一个正方形池塘四周栽满了树,已知每边栽了9棵,并且四个角上都有一棵,这个池塘四周一共栽了多少棵树?
5.学校的升旗台成正方形,在四周共放了40盆花,每个角放一盆,每边放花多少盆? 6.同学们站队,一共站了15行,如果要去掉2行2列,一共要去掉多少人? 7.沿一个正方形水池的四周栽树一行,四角都要栽1棵,共载树152棵。问每边栽多少棵树?
8.一个两层空心花盆阵,最外层每边放了10盆,一共用花多少盆?
9.一些战士排成一个方阵,横竖各增加一人,就要增加11人。增加后共有战士多少人?
10.由24人组成两层中空方阵,现在外面增加2层,要增加多少人?
B 卷
1.一个三层的中空方阵,最内层共有80人,这个方阵共有多少人? 2.由252名学生组成一个三层的中空方阵,求最外层共有多少名学生? 3.有72人排成一个三层的实心方阵,求最外层每边有多少人?
4.用32棵围棋子在棋盘上组成一个两层中空方阵,如果在方阵外再围3层,还需要多少颗围棋子?
天津市晟嘉培训中心 5.小明用棋子摆成一个实心方阵,小刚用13颗棋子使这个方阵增加一行一列,求小明摆的实心方阵共用多少颗棋子?
6.苗圃正中是块石头,外边的树苗形成一个由520棵树苗组成的10层方阵,若移开石头种树苗,这个苗圃一共有多少棵树苗?
7.一个方阵花坛,共5层,最内层有20株花草,这个花坛共有多少株花草? 8.设计一个团体操表演队形,想排成一个中空方阵,最内层要24人,最外层要48人,这个表演队形一共需要多少人?
9.某班抽出一些学生参加团体操表演,如果排成一个正方形实心方阵就差7人,如果每行每列减少1人,就多4人,这个班共抽出多少人?
10.聪聪用棋子摆空心方阵,最外面一层每边摆20个,共摆了三层,一共用了多少个棋子?
C 卷
1.一个围棋爱好者,用围棋子组成一个正方形实心阵,最外层用白子,共92颗,里面全部用黑子,共多少颗?
2.一个游行方阵,外层每边30人,共10层。中间5层留给20人抬标语,这个方阵共有多少人?
3.团体操表演时,同学们先排成每边16人的实心方阵队形,后来又变成一个四层空心方阵,求这个空心方阵最外层共有多少人?
4.一队战士排成三层空心方阵多出16人,如果在空心部分再增加一层又差28人。这队战士共有多少人?
5.某小学四年级的同学排成一个四层空心方阵还多15人,如果在方阵的空心部分再增加一层又少21人。这个小学四年级的学生一共有多少人?
6.一个方阵花坛,共20层,最内层有20株花草,这个方阵花坛一共有多少株花草? 7.红红用棋子摆空心方阵,最外层每边摆20颗棋子,一共摆了5层,一共用了多少颗棋子?
8.某班同学在军训队列表演中恰站成一个双层空心方阵,外层每边站了9个同学。若让这个班同学在一条250米长的笔直马路上站岗,从一端开始每隔5米站一人,则站满之后还剩下几人?
9.正方形广场的边界上共插有48面黄旗和红旗。每条边上的棋子数目相同,且每两面红旗间的黄旗数目也相同。如果四个角上都插有红旗,每条边上的红旗比黄 天津市晟嘉培训中心 旗少5面,那么每2面红旗间有多少面黄旗?
10.一个六边形广场的边界上插有336面红旗和黄旗。六边形的每个顶点处都插有红旗,每条边上的红旗数目一样多,并且每两面红旗间插有相同数目的黄旗。已知每条边上黄旗的数目比红旗的2倍还多12面,那么每两面红旗间插有几面黄旗?
天津市晟嘉培训中心
第三篇:方阵问题
方阵问题
例
1、远动会上,一些学生排成一个方阵,最外层共56人,这个方阵共有多少人?
例
2、参加团体操表演的同学组成了一个正方形的队列。如果使这个正方形队列减少一行和一列需要减少27人,参加团体操表演的同学有多少人?
例
3、小亮用棋子排成一个四层空心方阵。最外边一层每边有10个棋子。小亮摆这个空心方阵共用了多少个棋子?
例
4、有一队学生,排成一个中空方阵,最外层有56人,最内层有24人。这对学生共有多少人?
例
5、用160个棋子摆成每边4层的空心方阵,最外层每边有多少个棋子?
巩固练习
1、在一个正方形草坪的四周装彩灯,四个角都装一盏,共装80盏,平均每边装多少盏?
2、小明用棋子排成一个最外层每边6枚的正方形的实心方阵,这个方阵的最外层共有多少枚棋子?这个实心方阵共用了多少枚棋子?
3、参加运动会的同学排成正方形队列进行体操表演,如果这个队列横竖各增加一排,则要补充21个同学。参加体操表演的同学有多少个?
4、在运动会上,同学们组成了一个6层的大型方阵,最外层每边有30人,这个方阵共由多少名同学组成?
5、春节前夕,在广场中心一个雕像的四周,用鲜花摆成了5层的空心方阵,最内层每边摆了16盆,雕像的四周共摆了多少盆鲜花?
6、用320盆鲜花摆成了一个每边为五层的中空方阵,最外层每边有鲜花多少盆?
第四篇:《植树问题》教学设计与反思
《植树问题》教学设计
赵 波
学习内容:四年级上册(冀教版)学习目标:
1、结合具体事例,总结解决植树问题的一般方法的过程。
2、了解间隔数与植树棵树之间的关系,能解答类似的简单问题。
3、在用植树问题的思路和方法解答其他问题的过程中,获得成功的体验,感受数学与生活的密切联系。
学习重点与难点:
教学重点:理解植树问题棵数与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。
教学难点:应用植树问题的模型解决一些相关的实际问题。教具学具准备:多媒体课件,画图用的纸,投影仪。学习过程:
一、谈话引入
师:喜欢猜谜语吗? 生:喜欢。
师:老师这里带来一则谜语,请大家来猜一猜。(课件出示谜语的谜面)现在请咱们班嗓音最洪亮的同学来读一读。
生:一棵小树五个叉,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体器官。
师:猜出来了吗? 生:猜出来了。
师:大声地说出你们的答案。生:手。
师:真好,同学们真是太聪明了!现在请大家慢慢地伸出你的左手,五指张开,手指与手指之间出现了什么?
生:缝隙。
师:对,这个缝隙在数学上叫做间隔。(板书“间隔”二字)那么,大家数一数,我们的五根手指有几个间隔呢?
生:4个。
师:那么四根手指呢? 生:3个。师:三根呢? 生:两个。
师:哪位同学能把手指数和间隔数的关系说出来。生:手指数=间隔数+1,间隔数=手指数-1。
师:看来我们小小的手指就包含着数学原理。好,看完了手指,让老师带领大家来到北京的人民大会堂。大会堂前面有几根柱子呢?请大家来数一数。(课件出示人民大会堂的图片)
学生齐声数人民大会堂柱子的根数。有12根柱子。师:柱子与柱子之间有几个间隔呢?
学生齐声数柱子的间隔数。有 11个间隔。师:现在哪位同学能说一说,柱子数与间隔数的关系。生:柱子数=间隔数+1,间隔数=间隔数-1。
师:说得真棒!看来,人民大会堂柱子也有类似的数学原理。其实,在我们的生活中,到处都有这样的例子,(课件依次出示四张图片)比如说,学校操场四个乒乓球桌之间有三个间隔,楼房的楼层与楼层之间有间隔,公路两旁的路灯之间有间隔,建筑物上铁栏杆之间也有间隔……谁还能举出更多这样的例子呢?
学生举例,只要符合有间隔的要求,教师便给予肯定的评价。
师:同学们一连举了这么多的例子,看来你们的生活经验非常丰富。在数学里,一般把这种有关物体数和间隔数的问题,叫做植树问题。(板书“植树问题”并课件出示本课的标题“植树问题”)其实刚才不管是手指也好,人民大会堂的柱子也好,乒乓球桌也好,我们都可以把它们比作树,把它们代表的数学问题叫做植树问题。大家以前有没有植过树呢?
生:有。
师:不管有没有,大家要知道,植树之前得先规划设计一下啊。老师这里正好有一个植树的问题,需要大家开动脑筋去设计一下。
二、探究新知,设计方案
1、课件出示例题:学校计划在20米长的小路一边植树,每隔5米栽一棵。一共需要栽多少棵树苗?
师:哪位同学能说一说这道问题里包含的数学信息? 生:20米长的小路,每隔5米栽一棵树。
师:在解决这个问题之前,请大家先思考一个问题(课件出示问题),沿着小路的一边植树,植树的棵数有几种可能呢?你能设计出几种植树方案呢?请大家在小组内讨论一下。
提示:可以用尺子画一条线段来代表20米长的小路,再用几个短竖线来代表小树苗。小组合作要求:1号主持,2号记录,其它组员积极参与。学生在小组内用一张图纸画出三种植树方案的示意图。画完之后以派出小组代表上讲台汇报。汇报的形式可以用投影仪展示,也可以用表演的形式。
学生汇报:可以有三种植树方案,第一种方案为两端都栽:
算式为:20÷5=4(段)4+1=5(棵)即有4段间隔,可以种5棵树。
第二种方案为一端栽一端不栽:
算式为:20÷5=4(段)=4(棵)即有4段间隔,可以种4棵树。
第三种方案为两端都不栽:
算式为:20÷5=4(段)4-1=3(棵)即有4段间隔,可能种3棵树。
学生上台表演:一个人扮演植树人,五个人扮演小树苗。植树人负责指挥和汇报,小树苗配合植树人的汇报。第一种方案,五个人一字排开站成一排,代表两端都植的五棵树;第二种方案,在植树人的指挥下,两端有一人从台上下来,代表一端植一端不植;第三种方案,在植树人的指挥下,原来两端另外一个也从台上下来,代表两端都不植。
师:同学们的汇报和表演都非常精彩,看来大家在下面都非常地用心。那么,通过刚才的汇报,你能看出,以上三种情况下,种树的棵数和间隔数各有什么关系吗?(课件出示刚才总结出的三种方案的示意图)
生1:第一种情况是两端都植,棵数=间隔数+1。生2:第二种情况是一端植一端不植,棵数=间隔数。生3:第三种情况是两端都不植,棵数=间隔数-1。师:在后两种情况中,为什么会有不植的地方呢?不植的地方可能发生了什么情况呢? 生:可能有障碍物或者建筑物。
师:太厉害了!真是爱动脑筋的好孩子。一个小小的植树问题,大家居然设计出了三种不同的方案,你们真有设计师的潜能。如果有人向我们求助关于植树的问题,你们能帮他(或她)解决吗?
生:能!
师:好,信心真足!现在老师就给大家一个机会。
三、创设连续情境,解决一系列问题
课件出示问题一:同学们在全长90米的小路同一侧植树,每隔6米栽一棵(两端都栽),一共需要栽多少棵树苗?
课件出示课本上我们的小伙伴聪聪的图片。师:同学们,这是谁? 生:聪聪。
师:对,我们学习的好伙伴聪聪。现在我们要请一位同学来扮演聪聪,完成下面的学习活动。(请出扮演聪聪的同学,以下把这名同学称为聪聪)聪聪和一群同学最近参加了一项校外的植树活动,当他们准备要植树时,突然发现不知道总共要植多少棵,大家能不能帮帮他们呢?聪聪,你把你们碰到的问题给大家介绍一下吧。
聪聪开始朗读问题一,其他同学倾听。
师:请大家帮聪聪解答下这个问题,把你们解答的过程和结果写到练习本上。然后每组二号把你们的解题过程写到小黑板上。
其他同学在练习本上做题,每组二号在小黑板上做题。做题过程中教师巡视,并让写得出色的同学把做题过程写到大黑板上,并加以讲解。讲解时以汇报的形式向聪聪说明,其他同学也倾听。
解题过程:90 ÷6=15(段)15+1=16(棵)答:一共需要栽16棵树苗。
师:同学们掌握得真快,这么顺利就把这个问题解决了。但是事情还没有结束,聪聪和其他同学后来接到通知,什么通知呢?聪聪,还是你来说吧。
聪聪:如果这条路的两侧都植树,需要种多少棵呢? 师:请同学们帮聪聪把第二个问题也解决一下吧。
学生在第一个算式的基础上写出第二个算式:16 ×2=32(棵)上板同学加以讲解并向聪聪汇报。
师:聪聪和同学们植完树之后回到学校,突然眼前一亮,他发现老师和其他同学为了欢迎他们归来,已经在教室门口摆了几盆鲜花。看着这些鲜花,聪聪突然发现一个问题。聪聪,过来给大家说说吧?(课件出示问题二)
聪聪:学校在16米长的教室前面均匀地摆了9盆鲜花,两端都摆。每两盆鲜花之间相隔几米?
师:同学们,你能回答聪聪发现的问题吗?请大家把你们的想法用算式的形式写到本子上。看哪位同学写得又快又准确。
学生在练习本上解决问题,教师巡视。最先写完的同学把自己的解题过程写到大黑板上。并把解题过程向聪聪加以汇报,其他同学倾听。
解题过程:16 ÷(9-1)
=16÷8
=2(米)
答:每两盆鲜花之间相隔2米。师:聪聪放了学要回家了,当他来到自己家住的楼下,突然又想到一个问题。想到什么问题呢?聪聪,请你给大家说一说吧?
聪聪:我家住在5楼,我从一楼到二楼要上12个台阶,每两层楼之间的台阶数相同。我回家一共要上多少个台阶?
师:你们能回答聪聪提出的问题吗?请大家把你的想法写到练习本上。教师巡视,并让写完的同学把解题过程写到大黑板上。并以汇报的形式面向聪聪加以讲解。其他同学倾听。
解题过程:12×(5-1)
=12×4
=48(个)
答:聪聪回家一共要上48个台阶。
师:聪聪回到了家。这半天的时间,聪聪总共为我们提供了几个数学问题呢? 生:三个。
师:对于这个爱提问题的聪聪,你们有什么评价呢? 学生说一说自己对聪聪这半天经历的看法和评价。对于精彩的发言,教师给予肯定和表扬。
师:聪聪回家了。同学们是否还有点意犹未尽呢?老师这里还有两个问题,大家有没有兴趣抢答一下、生:有!
出示两个问题: 1、49个人站成一队,每两人之间相隔1米,这个队伍有多长呢?
2、一根10米长的木头,每2米锯成一段,一共可以锯几段?一共锯了几次呢? 学生快速抢答,教师评价并出示正确答案。对于学生快速的反应要加以表扬。
师:同学们今天表现真是太让老师惊讶了,老师最后还有一个问题,就是我们今天所讲的植树问题,所研究的对象一定是树吗?
生:不是。
师:对。那还可以是什么呢?
学生列举除了树以外的其他例子,对于恰当精彩的回答,要加肯定和表扬。
四、课堂小结:
今天,我们一起探讨学习了植树问题,谈谈你有哪些收获和体会? 学生畅谈自己的收获和体会,对于精彩的回答要给予表扬。师:看来大家都是非常认真的好孩子,个个都像一棵棵茁壮的小树苗。那么请大家说说,这节课我们最应该感谢谁呀?
生:聪聪。
师:对呀,让我们再次请我们的聪聪走上讲台。(聪聪上台)法国著名的雕刻家罗丹曾经说过:生活中并不是缺乏美,而是缺乏发现美的眼睛。如果把这句话套用在我们数学上面,应该怎么说呢?
生:生活中并不是缺乏数学,而是缺乏发现数学的眼睛。
师:对了。我们的聪聪就有一双善于发现数学的眼睛。老师希望大家今后一定要向聪聪一样,善于发现自己身边的数学问题,并能用数学的方法来解决问题。你们有信心做到吗?
生:有!
师:真好!我相信,你们这些茁壮的树苗,在学校和老师的细心培育下,并通过自己不懈的努力和拼搏,将来个个都将长成参天大树,成为祖国建设的栋梁之材!
《植树问题》课后反思
本节课在课堂教学中,前紧中松后紧,时间把握并没有达到称心如意的程度。学生讨论过程中,我巡视中干预不足,导致学生各自为战,耗费了大量的时间。学生汇报讨论结果时,过于仓促,后面学生的表演过于紧张匆忙,我当时没有充分进行现场指导,没有达到理想的效果。此外,对于植树问题的第三种情况,即例题的方案三(两端都植),没有设置重点练习题,只是在最后的抢答题(锯木头问题)加以呈现,所以没有突出这一重点和难点。必须在下一课时中加以补充。
第五篇:植树问题 教学设计与反思
“植树问题”教学设计与反思
丁贵才
一、教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。
二、教材目标:
1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。
2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。
三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。
四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。
五、教学准备:学习单、多媒体课件、小树和小路模型。
六、教学过程:
(一)问题导入:
出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?
教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”
(二)探究新知: 1.队列问题:
出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”
并出示课题。
2.植树问题:
(1)体会“化繁为简”思想:
问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?
突出矛盾:数字太大,不易思考,引导学生转换较小的数。明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)
(2)设计三种植树方案:
引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。
①学生活动,教师巡视。②汇报、展示:
③小结:组织学生对不同方案进行命名,突出其主要特征。教师板书:两端都种、只种一端、两端不种(3)探究规律: ①求间隔数:
教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1”。
在没有植树的棵数时,探究间隔数与全长、间隔的关系。组织学生独立思考,借助学具、线段图等形式探究规律 a:学生思考并摆学具或画线段或列算式。b:汇报:
②探究间隔数与棵数的关系:
开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要 棵树?
小组合作完成探究,活动要求:
1)自己选择适合的间隔长度,四人小组合作完成记录表。
2)小组选择一种植树方式进行探究。
3)可以借助摆学具、画线段、数手指或列算式的方式。a:学生小组活动,教师巡视。b:学生汇报发现规律,教师板书。c:升华:
三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。
d:应用:
老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?
(三)巩固提升: 1.选一选:
下面每一题相当植树问题的哪一种情况?
(1)音乐中的“五线谱”()(2)衣服上的纽扣()(3)成语“一刀两断”()
(4)自鸣钟九点报时的钟声()A.两端都种 ; B.只种一端; C.两端不种。
2.广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。3.小法官:
(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。()
(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。()
4.学校一条大路的一边共插了20面彩旗。
(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?
(四)课堂总结:
师:今天我们学习了什么?你有什么收获?
生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。
教学反思:
通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。