第一篇:视图(一)教案及反思
第四章 视图与投影
1.视图
(一)孔凡全
一、教学目标:
①经历探索基本几何体(圆柱、圆锥、球)与其三视图之间的关系; ②能根据三视图描述基本几何体或实物图形,培养和发展学生推理能力和空间观念;
③让学生在课堂活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力;
④结合具体实例,初步体会视图在现实生活中的应用,感受数学与现实生活的密切联系,增强学生的数学应用意识.二、重、难点:
会画圆柱、圆锥、球三种几何体的三种视图。
三、教学过程
第一课时设计了六个教学环节:第一环节:情境问题引入;第二环节:活动探究;第三环节:合作学习;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。第一环节:情境问题引入
活动内容:
1还记得一个物体的主视图、左视图和俯视图吗?
2你能自己或者与同伴画出下图的主视图、左视图和俯视图吗? 第二环节:活动探究(获取信息,体会特点)
活动内容:99页的图中物体的形状分别可以看成什么样的几何体?
从正面、侧面、上面看这些几何体,他们的形状各是什么样的?
第三环节:合作学习
活动内容:(1)在下图中找出上图中各物体的主视图。
(1)(2)(3)
(4)(5)(6)
(2)上图中各物体的左视图是什么?俯视图呢?与同伴进行交流。第四环节:练习提高
活动内容:如图是一个蒙古包的照片。小明认为这个蒙古包可以看成下图所示的几何体,并画出这个几何体的三种视图,你同意小明的做法吗?
活动目的:对本节知识进行巩固练习。第五环节:课堂小结
活动内容:师生互相交流总结三视图的特点,主视图、左视图、俯视图的区别与内在的联系,及各自在合作交流学习过程中的体会与感受等。
活动目的:引导学生养成一种习惯、形成一种学习方法,为以后的自学和钻研打下一定的基础。第六环节:布置作业
1、(1)请你自己观察你家里的一些日常生活用品并尝试画出它的三视图,并与同伴进行交流;
(2)本课时随堂练习(做到书上);(3)习题4.1的1、2题。
视图
(一)教学反思
孔凡全
1、要创造性的使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。学生在初一已经学过一些基本的三视图的特点,而且普遍掌握较好,因此没有必要再以问题的形式逐步总结认识,教学中将重点放在怎样根据“研究问题的需要、三视图本身的特点”科学合理地选择实物,、让学生通过亲自体验去感受三视图的内在变化与联系,在实际生活中的应用、体现,体会数学的实际价值。
2、相信学生并为学生提供充分展示自己的机会
通过课堂小组合作解决有关问题的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
3、注意改进的方面
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。
第二篇:劳技视图教案
第三单元、视图
课时计划:2课时
第一课时、工具与技法
教学任务分析
教学目标
知识技能
1.会从投影角度深刻理解视图的概念。2.会画简单几何体及简单几何体组合的三视图。
数学思考
1.通过具体活动,积累学生的观察、想象物体投影的经验。
2.通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系,积累数学活动的经验。
解决问题
会画实际生活中的简单物体的三视图。
情感态度
1.培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。
2.在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。
重点
1.从投影的角度加深对三视图概念的理解。2.会画简单几何体及其组合的三视图。
难点
1.对三视图概念理解的升华。
2.正确画出三棱柱的三视图和小零件的三视图。
教学流程安排
情景引入制作小零件,明确学习三视图的作用,并且明确正投影画视图的意义。对长方体的六个面进行正投影,讨论比较全面研究几何体至少需要研究几个不同的视图。引出三视图的概念,并让学生理解学习三视图的意义。
通过教师课件演示,学生合作探究,发现三视图位置关系及大小的对应关系。
采用多种形式学习和解决简单几何体的三视图,并在此基础上最终解决实际生活中的模型(小零件)的三视图。
师生共同归纳总结收获体会。
教学过程设计
问题与情景
师生行为
设计意图
〔活动1〕
1.情景引入制作小零件。
张师傅是铸造厂的工人,今天我有事情拜托他,想让他给我制作一个如图所示的小零件,我如何准确的告诉他小零件的形状和规格? 2.给出视图的定义。3.欣赏工程中的三视图。4.介绍视图的产生。
教师提问:(1)如何准确的表达小零件的尺寸大小?(2)除了用文字的语言,可不可以用图形的语言表示?(3)你们生活中见过三视图吗? 活动中教师应关注: 学生是否理解将立体图形分解成平面图形来表达的意义。
明确学习三视图的作用,并且为明确正投影画视图的意义? 通过介绍视图的产生,使学生感受到数学来源于生活,产生于实践。
〔活动2〕
1.对长方体的六个面进行正投影,并思考为什么选择用三视图来表达几何体的形状及尺寸。
总结: 从前向后正投影在正面内得到主视图。从左向右正投影在侧面内得到左视图。
从上向下正投影在水平面内得到俯视图。
教师提问:(1)选择什么样的视图可以比较准确全面的表达几何体?(2)我们对长方体的六个不同方向进行正投影,可以分别得到什么样的视图?(3)这些视图分别反映了几何体的哪些尺寸?(4)只要观察哪些视图就可以比较全面的表达这个长方体的形状、大小? 活动中教师应关注:(1)学生是否理解用投影定义视图。
(2)学生是否理解用三种视图表示立体图形的道理。
引出三视图的概念,并理解用三视图来表达几何体形状、大小的意义。
在定义三维投影面时,让学生举出教室里的三维投影面,如墙角。帮助学生理解互相垂直的三维投影面。
〔活动3〕
1.思考三视图的画法。
2.课件演示:对几何体进行正投影得到三视图。
3.将水平面、侧面、正面展开到同一平面,观察得到三种视图的位置关系。4.同桌讨论得到三种视图大小上的规律。
教师提问:(1)如何绘制一个几何体的三视图?(观察:从不同方向正视几何体观察几何体的三视图)。
(2)除了观察,将这三种视图画在同一平面它们的位置和大小尺寸有什么关系吗?(3)现在将空间中的三种视图展开到同一平面,你还能确定它们各自的名称吗?(4)除了位置上的关系,在大小尺寸上,三种视图彼此之间又存在什么关系?(5)对于其他几何体,如何表示它的长、宽、高?(6)探索了这些规律后,我们在画三视图时,除了要观察三个方向的正投影外,还需要考虑什么? 活动中教师应关注:(1)学生是否理解展开后的三视图位置的特殊要求?(2)学生是否探究发现展开后的三种视图对几何体长、宽、高的对应关系?(3)学生是否明确几何体长、宽、高的概念?(4)学生是否充分展开探究? 观察很重要,要强调,要正对物体用视线对所看物体进行正投影。
通过课件演示有利于学生发现三种视图在位置和大小上的关系。
讨论交流有助于学生发现三种视图的大小对应关系,主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等。
明确长宽高概念:从正面观察几何体。长是几何体从左到右的距离,宽是几何体从前到后的距离,高是几何体从上到下的距离。
有助于学生更加深刻地理解三视图的大小对应关系。
〔活动4〕
1.选择判断圆柱体的三视图,分析学生诊断错误的原因。2.由三棱镜引出正三棱柱
板演正三棱柱的三视图。3.与学生讨论:(1)从三个方向看正三棱柱应看到什么形状?(2)三棱柱的宽是三棱柱上哪部分距离?(3)总结三视图的画法步骤。
4.课件演示底面是一般的三棱柱的三视图画法。
5.通过积累得知识和经验完成课前提出的任务。小组探究合作完成小零件的三视图。
6.课件演示得到小零件三视图的过程。
〔活动5〕
小结升华 布置作业 1.小结知识并指出重点。
2.课件展示辛勤工作的设计师,及各种零件的三视图,总结升华。
活动中教师应关注:(1)学生在画图之前要正对几何体,从三个方向观察投影。(2)板演三视图时,总结出明确的步骤。(3)先确定主视图位置,画主视图。
添加平行线在主视图下方“长对正”画出俯视图。
添加平行线在主视图右方“高平齐”画左视图。
用圆规截取左视图的宽与俯视图“宽相等”。
注意:三视图用粗线画出,辅助线用细线
初学时,标注长对正,高平齐,宽相等,可以加深印象。(1)利用手中的长方体搭建模型帮助想象。(2)从各个方向的观察得到正确的投影。(3)按照投影规律画出几何体的三视图。(4)小组审核完成。
第二课时,拓展与延伸
三视图简介
从不同方向看就是工程(机械)制图中所说的“三视图”的初步,这也是《标准》新增加的内容,后面在初三学习时还会涉及到,就此介绍一点相关知识供老师参考:
一、视图
通常把互相平行的投影射线看作人的视线,而把物体在投影面上的投影称为视图。为此有专门的国家标准GB/T14692-1993规定:物体的图形按正投影绘制,并采用第一角(坐标)投影法。
在正投影中,一般来说一个视图只能反映物体的一个方位的形状而不能完整地表达物体的形状和大小,也不能区分不同的物体。如下图中三个不同的物体在同一投影面上的视图完全相同。二、三视图
三视图是从三个不同方向对同一个物体进行投影的结果,能较完整地表达物体的形状和大小。
1.三投影体系
在机械制图中通常采用与零件(物体)长、宽、高相对应的三个互相垂直的投影面,分别是:
正立投影面--直立在观察者正对面的投影面,简称正面,如下图V; 水平投影面--水平位置的投影面,简称水平面,如下图H; 侧立投影面--右侧的投影面,简称侧面,如下图W。
课本竖放在课桌上,可以建立一个简易而形象的三投影面体系。2.三视图
由前向后投影,在正面V上所得视图称为主视图——能反映物体的前面形状;由上向下投影,在水平面H上所得视图称为俯视图——能反映物体的上面形状;
由左向右投影,在侧面W上所得视图称为左视图——能反映物体的左面形状。
3.三视图的画法:为了方便,三面视图都画在同一张图纸上。可将三投影面展开,正面V保持不动,水平面H沿Y轴剪开然后绕OX轴向下转90°,W面沿Y轴剪开绕Z轴然后向右转90°。
4.三视图的图形位置:
主视图在图纸的左上角,左视图在主视图的正右方,俯视图在主视图的正下方 三、三视图的投影特性(三等关系)
主视图反映物体的长度和高度(不反映宽度,原因:宽度方位与主视的投影方向重合),俯视图反映物体的长度和宽度(不反映高度,原因:高度方位与俯视的投影方向重合),左视图反映物体的宽度和高度(不反映长度,原因:长度方位与左视的投影方向重合)。由此可得出三视图之间的内在联系,即:主、俯视图长对正,主、左视图高平齐,俯、左视图宽相等。这种视图间的内在联系归纳为三句话:长对正,高平齐,宽相等。这种“三等关系”对整个物体以及物体上任何一个几何元素都是适用的。
第三篇:32.2_视图_教学设计_教案
教学准备
1.教学目标
知识与技能
1.会从投影的角度理解视留的概念. 2.会画简单几何体的三视图. 数学思考与问题解决
通过对三视图的了解,建立起由立体图形到三视图和由视图到立体图形的转化方法. 情感与态度
视图法是生产实践中常用的方法,通过识图与画图,提高学习几何的兴趣,培养学数学、用数学的意识.
2.教学重点/难点
重点难点
重点:简单几何体的三视图画法. 难点:三视图概念的理解.
3.教学用具
课件
4.标签
视图
教学过程
一、创设情境,引入新课
直棱柱的侧棱与水平投影面垂直,请与同伴—起探讨下面的问题:
(1)在正投影下这个直三棱柱的三条侧棱的投影是什么图形?
(2)画出直三棱柱在水平投影面的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?
二、探究新知
这个正.投影能完全反映这个物体的形状和尤水吗?如不能,那么还需知道哪些投影?
物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常选择物体的正面、左面和上面3个不同方向上的正投影来刻画这个物体.
你能说说如何画出正投影正确表示物体吗?
如图(1),我们用三个互相垂直的平面作为投影面,其中正对着義们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向右观察物体的视图,叫做左视图.
如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方向表示物体,三者合起来就能够较全面反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的长对正,主视图与左视图的髙平齐,左视图与俯视图的宽相等.
通过以上的学习,你有什么发现?
物体的三视图实际上是物体在三个不同方向的正投影,从正面得到的视图叫做主视图,从上面得到的视图叫做俯视图,从左面得到的视图叫做左视图.主视图、俯视图、左视图,三者合在—起叫做三视图.
三、应用新知
例:画出下列所示的球、圆柱、圆锥的三视图.
(先由学生分组讨论各个几何体三视图的画法,教师巡回指导,最后讲解.)分析:画这些基本几何体的三视图时,要注意从三个方面观察它们具体画法为:(1)确定主视图的位置,画出主视图;
(2)在主视图正下方画出俯视图,注意与主视图“长对正”;
(3)在主视右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”. 展示学生的答案.
四、课堂练习
教材第96页练坷第1、2题.
五、课堂小结
1.—个视图不能确定物体的空间形状,根据三视图描述几何体或实物原型时,必须将各视图对照起来看.
2.一个摆好的几何体的视图是唯一的.
六、课后作业
必做题:教材第96〜97页A组. 选做题:教材第97页B组.
课堂小结
学了这节课,你有什么收获?
课后习题 完成课后练习题。
板书 视图
第四篇:投影与视图全章教案
投影
(一)学材分析:“投影与三视图”是人教版第二十九章的教学内容。
①本节课教学内容从提出问题开始,进而向学习者描述投影的特点,并进一步分析三视图的形成原理,让学生充分认识三视图,并以形体的结构为例详细阐述三视图的具体制图步骤及要领;同时通过书本里的“马上行动”、“案例分析”以及相关的阅读资料,让学生主动去获取新知。
②在教材的结构上,本节占用的篇幅较长,意图很明显,就是在学习完了设计表现图之后,进一步掌握绘制简单的技术图样的方法,并能绘制简单形体的三视图。学习目标:
1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;
2、了解平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。学习重点: 理解平行投影和中心投影的特征;
学习难点: 在投影面上画出平面图形的平行投影或中心投影。学习方法:设置疑问,引导学生主动发现方法与途径 学习过程:
(一)创设情境
你看过皮影戏吗? 皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。放映电影《小兵张嘎》部分片段---小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏
(二)你知道吗 出示投影:
北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻. 问题:那什么是投影呢?
出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别
1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形
纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?
3、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。如图4-14,当线段AB与投影面平行时,AB的中心投影A‘B’把线段AB放大了,且AB∥A’B‘,△OAB~ OA‘B’.又如图4-15,当△ABC所在的平面与投影面平行时,△ABC的中心投影△A‘B’C‘也把△ABC放大了,从△ABC到△A‘B’C‘是我们熟悉的位似变换。
4、请观察平行投影和中心投影,它们有什么相同点与不同点?平行投影与中心投影的区别与联系
(四)应用新知:
(1)地面上直立一根标杆AB如图,杆长为2cm。
①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?
②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图;
(2)一个正方形纸板ABCD和投影面平行(如图),投射线和投影面垂直,点C在投影面的对应点为C’,请画出正方形纸板的投影示意图。
(3)两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由。
解:分别连结标杆的顶端与投影上的对应点(图4-17).很明显,图(1)的投射线互相平行,是平行投影.图(2)的投射线相交于一点,是中心投影。
(五)小结:
我们这节课学习了什么知识? 布置作业:
画出一个四边形的不同平行投影图和中心投影图 课后反思:
投影
(二)学习目标:
1、了解正投影的概念;
2、能根据正投影的性质画出简单的平面图形的正投影
3、培养动手实践能力,发展空间想象能力。
学习重点: 正投影的含义及能根据正投影的性质画出简单的平面图形的正投影 学习难点: 归纳正投影的性质,正确画出简单平面图形的正投影。学习方法:设置疑问,引导学生主动发现方法与途径 学习过程:
(一)复习引入新课
下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2)(3)的投影线与投影面的位置关系有什么区别?
解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。
(二)合作学习,探究新知
1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置:
(1)铁丝平行于投影面;
(2)铁丝倾斜于投影面,(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状
通过观察,我们可以发现;
(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB A1B(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB
A2B2
(3)当线段AB垂直于投影面P时,它的正投影是一个点A3
2、如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置:
(1)纸板平行于投影面;
(2)纸板倾斜于投影面;
(3)纸板垂直于投影面
结论:(1)当纸板P平行于投影面Q时.(2)当纸板P倾斜于投影面Q时.(3)当纸板P垂直于投影面Q时..当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.3、例1画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P图(1);(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P图(2).分析口述画图要领 解答按课本板书
(三)课堂练习练习和习题1、2、5
(四)小结
谈谈收获 布置作业 3、4 教学后记:
三视图
(一)主备人:潘继南 备课组长:何月光 教材分析:“投影与三视图”是人教版第二十五章的教学内容。
①本节课教学内容从提出问题开始,进而向学习者描述投影的特点,并进一步分析三视图的形成原理,让学生充分认识三视图,并以形体的结构为例详细阐述三视图的具体制图步骤及要领;同时通过书本里的“马上行动”、“案例分析”以及相关的阅读资料,让学生主动去获取新知。
②在教材的结构上,本节占用的篇幅较长,意图很明显,就是在学习完了设计表现图之后,进一步掌握绘制简单的技术图样的方法,并能绘制简单形体的三视图。学习目标:
1、会从投影的角度理解视图的概念
2、会画简单几何体的三视图
3、通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系。
学习重点: 从投影的角度加深对三视图的理解和会画简单的三视图 学习难点: 对三视图概念理解的升华及正确画出三棱柱的三视图 学习方法:设置疑问,引导学生主动发现方法与途径 课时安排:1课时 学习过程:
(一)创设情境,引入新课
这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?
物体的正投影从一个方向反映了物体的了全面地反映一个物体的形状和大小,再选择正面和侧面两个投影面,画出物投影。
如图(1),我们用三个互相垂直的平面 作为投影面,其中正对着我们的叫做正 面,正面下方的叫做水平面,右边的叫 做侧面.一个物体(例如一个长方体)在
形状和大小,为
我们常常体的正三个投影面内同时进行正投影,在正面 内得到的由前向后观察物体的视图,叫做 主视图,在水平面内得到的由上向下观 察物体的视图,叫做俯视图;在侧面内得 到由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面 内,得到这一物体的一张三视图(由主视
图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图与俯视图的宽相等。
通过以上的学习,你有什么发现?
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图
(二)应用新知
例1画出下图2所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:
1.确定主视图的位置,画出主视图;
2.在主视图正下方画出俯视图,注意与主视图“长对正”。
3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.解:
(三)课堂练习:
1、2、你能画出下图1中几何体的三视图吗 小明画出了它们的三种视图(图2),他画的对吗 请你判断一下.(四)小结
1、画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰。
2、在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。布置作业:习题25.2 2题 教学后记:
三视图
(二)主备人:潘继南 备课组长:何月光 教材分析:“投影与三视图”是人教版第二十五章的教学内容。
①本节课教学内容从提出问题开始,进而向学习者描述投影的特点,并进一步分析三视图的形成原理,让学生充分认识三视图,并以形体的结构为例详细阐述三视图的具体制图步骤及要领;同时通过书本里的“马上行动”、“案例分析”以及相关的阅读资料,让学生主动去获取新知。
②在教材的结构上,本节占用的篇幅较长,意图很明显,就是在学习完了设计表现图之后,进一步掌握绘制简单的技术图样的方法,并能绘制简单形体的三视图。学习目标:
1、进一步明确正投影与三视图的关系
2、经历探索简单立体图形的三视图的画法,能识别物体的三视图;
3、培养动手实践能力,发展空间想象能力。学习重点: 简单立体图形的三视图的画法 学习难点: 三视图中三个位置关系的理解
学习方法:设置疑问,引导学生主动发现方法与途径 课时安排:1课时 学习过程:
(一)复习引入
1、画一个立体图形的三视图时要注意什么?(上节课中的小结内容)
2、说一说:直三棱柱、圆柱、圆锥、球的三视图
3、做一做:画出下列几何体的三视图
4、讲一讲:你知道正投影与三视图的关系获 图29.2-7
(二)讲解例题
例2画出如图所示的支架(一种小零件)的三视图.分析:支架的形状,由两个大小不等的长方体构 成的组合体.画三视四时要注意这两个长方体的 上下、前后位置关系.解:
(三)课堂练习
1、P91 练习
2、一个六角螺帽的毛坯如图,底面正六边形的边长为250mm,高为 200mm,内孔直径为200mm.请画出六角螺帽毛坯的三视图.布置作业:复习题25 2题 教学后记:
三视图
(三)主备人:潘继南 备课组长:何月光 教材分析:“投影与三视图”是人教版第二十五章的教学内容。
①本节课教学内容从提出问题开始,进而向学习者描述投影的特点,并进一步分析三视图的形成原理,让学生充分认识三视图,并以形体的结构为例详细阐述三视图的具体制图步骤及要领;同时通过书本里的“马上行动”、“案例分析”以及相关的阅读资料,让学生主动去获取新知。
②在教材的结构上,本节占用的篇幅较长,意图很明显,就是在学习完了设计表现图之后,进一步掌握绘制简单的技术图样的方法,并能绘制简单形体的三视图。学习目标:
1、学会根据物体的三视图描述出几何体的基本形状或实物原型;
2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。学习重点: 根据物体的三视图描述出几何体的基本形状或实物原型 学习难点: 根据物体的三视图描述出几何体的基本形状或实物原型 学习方法:设置疑问,引导学生主动发现方法与途径 课时安排:1课时 学习过程:
(一)复习引入
前面我们讨论了由立体图形(实物)画出三视图,那么由三视图能否也想象出立体图形(实物)呢?引导学生结合例例例的三视图想象一下构造还原过程(发展空间想象能力)
(二)新课学习
例3根据下面的三视图说出立体图形的名称.分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形,解:(1)从三个方向看立体图形,图象都是矩形,可以想象出:整体是长方体,如图(1)所示;(2)从正面、侧面看立体图形,图象都是等腰三角形;从上面看,图象是圆;可以想象出:整体是圆锥,如图(2)所示.例4根据物体的三视图(如下图)描述物体的形状.分析.由主视图可知,物体正面是正五边形,由俯视图可知,由上向下看物体是矩形 的,且有一条棱(中间的实线)可见到。两 条棱(虚线)被遮挡,由左视图知,物体的侧 面是矩形的.且有一条棱〔中间的实线)可 见到,综合各视图可知,物体是五棱柱形状的.解:物体是五棱柱形状的,如下图所示.(三)课堂练习
1、P89练习
2、如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。
(四)1、间形主视图左视图俯视图小结:
一个视图不能确定物体的空
状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看。
2、一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等。
3、对于较复杂的物体,有三视图形象出物体的原型,应搞清三个视图之间的前后、左右、上下的对应关系。布置作业:习题25.2 4题 教学后记:
三视图
(四)主备人:潘继南 备课组长:何月光 教材分析:“投影与三视图”是人教版第二十五章的教学内容。
①本节课教学内容从提出问题开始,进而向学习者描述投影的特点,并进一步分析三视图的形成原理,让学生充分认识三视图,并以形体的结构为例详细阐述三视图的具体制图步骤及要领;同时通过书本里的“马上行动”、“案例分析”以及相关的阅读资料,让学生主动去获取新知。
②在教材的结构上,本节占用的篇幅较长,意图很明显,就是在学习完了设计表现图之后,进一步掌握绘制简单的技术图样的方法,并能绘制简单形体的三视图。
学习目标:
1、学会根据物体的三视图描述出几何体的基本形状或实物原型;
2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力;
3、了解将三视图转换成立体图开在生产中的作用,使学生体会到所学的知识有重要的实用价值。
学习重点: 根据三视图描述基本几何体和实物原型及三视图在生产中的作用 学习难点: 根据三视图想象基本几何体和实物原型的形状 学习方法:设置疑问,引导学生主动发现方法与途径 课时安排:1课时 学习过程:
(一)复习引入
1、完成下列练习
(1)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
(2)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
(3)某几何体的三种视图分别如下图所示,那么这个几何体可能是()。
(A)长方体(B)圆柱(C)圆锥(D)球
2、让学生欣赏事先准备好的机械制图中三视图与对应立体图形的图片,借助图片信息让学生体会到本章知识的价值。并借此可以讲述一下现在一些中专、中技甚至大学里开设的模具和机械制图专业和课程就需要这方面的知识,激发学生的学习兴趣,导入本课。
(二)自学质疑
例6某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如下图),请你按照三视图确定制作每个密封罐所需钢板的面积.分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形——展开图.在实际的生产中.三视图和展开图往往结合在一起使用.解决本题的思路是,由视图想象出密封罐的立体形状,再进一步画出展开图.从而计算面积.解:由三视图可知,密封罐的形状是正六棱柱(如图(左)).密封罐的高为50mm,底面正六边形的直径为100mm.边长为50mm,图(右)是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为
(三)课堂练习P101 练习
(四)拓展延伸
根据下面三视图请说出建筑物是什么样子的?共有几层?一共需要多少个小正方体?
分析:由俯视图确定该建筑物在平面上的形状,由主视图、左视图确定空间的形状如图所示.解:该建筑物的形状如图所示:
有3层,共9个小正方体.思考:一个物体的主视图如上右图所示, 请画出它的俯视图,耐心想一想有 几种不同的情形?
(五)课堂小结:
根据物体的三视图想像物体的形状一般是由俯视图确定物体在平面上的形状.然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状.布置作业:复习题25 7题 教学后记:
投影与视图(练习课)
主备人:潘继南 备课组长:何月光 教材分析:“投影与三视图”是人教版第二十五章的教学内容。
①本节课教学内容从提出问题开始,进而向学习者描述投影的特点,并进一步分析三视图的形成原理,让学生充分认识三视图,并以形体的结构为例详细阐述三视图的具体制图步骤及要领;同时通过书本里的“马上行动”、“案例分析”以及相关的阅读资料,让学生主动去获取新知。
②在教材的结构上,本节占用的篇幅较长,意图很明显,就是在学习完了设计表现图之后,进一步掌握绘制简单的技术图样的方法,并能绘制简单形体的三视图。
学习目标:
1、进一步体会投影中的平行投影、中心投影和正投影间的相互关系
2、加深体会立体图形或实物原型与三视图的互相转化,进一步拓展学生的空间想象力 学习重点: 体会投影中的平行投影、中心投影和正投影间的相互关系 学习难点: 体会立体图形或实物原型与三视图的互相转化,进一步拓展学生的空间想象力
学习方法:设置疑问,引导学生主动发现方法与途径 课时安排:1课时 学习过程:
(一)提问导入
前面我们都学习了哪些内容?
(让学生进行2~3分钟的梳理,然后让几个学生说说看,最后老师拓展总结)
(二)看谁学得好 1.填空题
(1)俯视图为圆的几何体是_______,______。(2)画视图时,看得见的轮廓线通常画成_______,看不见的部分通常画成_______。
(3)举两个左视图是三角形的物体例子:________,_______。(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
(5)请将六棱柱的三视图名称填在相应的横线上.(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
2.选择题
(1)圆柱对应的主视图是()。
(A) (B)(C) (D)
(2)某几何体的三种视图分别如下图所示,那么这个几何体可能是()。
(A)长方体(B)圆柱(C)圆锥(D)球(3)下面是空心圆柱在指定方向上的视图,正确的是()
(4)一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是()
(5)主视图、左视图、俯视图都是圆的几何体是()。(A)圆锥(B)圆柱(C)球(D)空心圆柱
3、解答题
(1)根据要求画出下列立体图形的视图。
(画左视图)(画俯视图)(画正视图)(2)画出右方实物的三视图。
(3)如图是一个物体的三视图,请画出物体的形状。
(4)根据下面三视图建造的建筑物是什么样子的?共有几层?一共需要多少个小正方体。
(三)课堂小结
学生谈收获
布置作业:复习题25 2题 教学后记:
制作立体模型(活动课)
主备人:潘继南 备课组长:何月光 教材分析:“投影与三视图”是人教版第二十五章的教学内容。
①本节课教学内容从提出问题开始,进而向学习者描述投影的特点,并进一步分析三视图的形成原理,让学生充分认识三视图,并以形体的结构为例详细阐述三视图的具体制图步骤及要领;同时通过书本里的“马上行动”、“案例分析”以及相关的阅读资料,让学生主动去获取新知。②在教材的结构上,本节占用的篇幅较长,意图很明显,就是在学习完了设计表现图之后,进一步掌握绘制简单的技术图样的方法,并能绘制简单形体的三视图。
学习目标:通过根据三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
学习重点: 体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
学习难点: 体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
学习方法:设置疑问,引导学生主动发现方法与途径 课时安排:1课时 学习过程:
(一)、工具准备
刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等。
(二)、具体活动
1、以硬纸板为主要材料,分别做出下面的两组视图所表示的立体模型。
2、按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型
3、下面的每一组平面图形都是由四个等边三角形组成的。(1)
(2)
(3)(1)指出其中哪些可以折叠成多面体。把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;
(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;
(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?
(三)、拓广延伸:
三视图和展开图都是与立体图形有关的平面图形,了解有关生产实际,结合具体例子,写一篇短文介绍三视图、展开图的应用。
(四)课堂小结:学生谈收获 教学后记:
投影与三视图 复习
主备人:潘继南 备课组长:何月光 教材分析:“投影与三视图”是人教版第二十五章的教学内容。①本节课教学内容从提出问题开始,进而向学习者描述投影的特点,并进一步分析三视图的形成原理,让学生充分认识三视图,并以形体的结构为例详细阐述三视图的具体制图步骤及要领;同时通过书本里的“马上行动”、“案例分析”以及相关的阅读资料,让学生主动去获取新知。
②在教材的结构上,本节占用的篇幅较长,意图很明显,就是在学习完了设计表现图之后,进一步掌握绘制简单的技术图样的方法,并能绘制简单形体的三视图。
学习目标:
1、通过复习系统掌握本章知识,2、体验数学来源于实践,又作用于实践。
3、提高解决问题分析问题的能力。
4、培养空间想象能力。
学习重点: 投影和三视图 学习难点: 画三视图
学习方法:设置疑问,引导学生主动发现方法与途径 课时安排:2课时 学习过程:
(一)、以提问形式小结本章知识
1、本章知识结构框架:
2、填空:
(1)人在观察目标时,从眼睛到目标的 叫做视线。所在的位置叫做视点,有公共 的两条 所成的角叫做视角。视线不能到达的区域叫做。
(2)物体在光线的照射下,在某个 内形成的影子叫做,这时光线叫做,投影所在的 叫做投影面。由 的投射线所形成的投影叫做平行投影。由 的投射线所形成的投影叫做中心投影。
(3)在平行投影中,如果投射线 垂直于投影面,那么这种投影就称为正投影。
(4)物体的三视图是物体在三个不同方向的。
上的正投影就是主视图,水平面上的正投影就是,(二)、例题讲解 例
1、(1)在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()
A、小明的影子比小强的影子长 B、小明的影子比小强的影子短 C、小明和小强的影子一样长 D、无法判断谁的影子长 分析:阳光是平行光线,出现平行投影。路灯是点光源,是中心投影,形成的影子是不一样的
例
2、如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。
主视图左视图俯视图分析:从俯视图上看,该立体图形是个对称图形,从主视图、左视图上看,正面和左面都是等腰三角形,因此我们可以想象,该立体图形是正四棱锥。例
3、A、B 表示教室门口,张丽在教室内,王明、钱勇、李杰三同学在教室外,位置如图所示,张丽能看得见三位同学吗?请说明理由。
C张丽A王明李杰钱勇B
小王小李电线杆
例4、如右上图,小王、小李及一根电线杆在灯光下的影子。(1)确定光源的位置;
(2)在图中画出表示电线杆高度的线段。
分析:由条件易知,本题属于中心投影问题,根据中心投影的特点,物体与影子对应点的连线必须经过光源,因此我们可以利用两线的交点来求光源的位置。例5、如图,是由一些大小相同的小正方体组成的简单的几何体的主视图和俯视图。
(1)请你画出这个几何体的一种左视图;
(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值。分析:左视图为侧视图,由于几何体只知道主视图和俯视图,那么左视图就不是唯一的,而主视图表示几何体共有三层,所以侧视图有多种可能,俯视图只看见5个小正方体,这5个正方体可分布在1、2、3层。
(三)、课堂小结:学生谈收获 布置作业:复习题25 4 教学后记:
主视图 俯视图投影与三视图测试卷
姓名: 分数:
一、精心选一选(每小题5分,共50分)
1.圆形的物体在太阳光的投影下是
()(A)圆形.
(B)椭圆形.
(C)线段.
(D)以上都不可能. 2.如图所示的圆台的上下底面与投影线平行,圆台的正投影是()(A)矩形.
(B)两条线段.(C)等腰梯形.
(D)圆环. 3.如图摆放的几何体的左视图是
()
4.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()(A)小明的影子比小强的影子长.
(B)小明的影子比小强的影子短.(C)小明的影子和小强的影子一样长.(D)无法判断谁的影子长. 5.“圆柱与球的组合体”如图所示,则它的三视图是
()
6.下列左边的主视图和俯视图对应右边的哪个物体
()
7.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()(A)相交.
(B)平行.
(C)垂直.
(D)无法确定. 8.在一个晴朗的好天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是
()(A)上午.
(B)中午.
(C)下午.
(D)无法确定. 9.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是
()
(A)①②③④.
(B)④①③②.
(C)④②③①.(D)④③②①. 10.如图是“马头牌”冰激凌模型图,它的三视图是
()
二、耐心填一填(每小题4分,共20分)
11.右图是基本几何体的三视图,该基本几何体为 . 12.皮影戏中的皮影是由投影得到的 .
13.为测量旗杆的高度我们取一米杆直立在阳光下,其长为1.5米,在
同一时刻测得旗杆的影长为10.5米.旗杆的高度是 . 14.如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径.
在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的 距离是10米(如示意图,AB=10米);同一时刻,他 又测得竖直立在地面上长为1米的竹竿的影子长为2 米,那么,球的半径是 米.
15.圆锥底面展开后是 ,侧面展开后是.三、用心想一想(每小题10分,共30分)
16.画出实物图(如图,上部分是长方体,下部是空心圆柱)的三视图.
17.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树。晚上,幕墙反射路灯灯光形成了那盆花的影子(如图所示),树影是路灯灯光形成的。请你确定此时路灯光源 的位置.
18.要制作一个如图所示(图中阴影部分为底与盖,且SⅠ=SⅡ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来既可,求有盖盒子的高x.
第五篇:机械制图《看组合体视图》教案
教学时数:4 学时
课
题:§5-7 看组合体视图 教学目标:
学习研究读组合体视图的基本方法,掌握由图形到形体这一空间的思维过程。教学重点:
1、形体分析法;
2、线面分析法。教学难点:
两种分析法的具体运用。教学方法:
讲练结合 教
具:
挂图、模型 教学步骤:(复习提问)
1、组合体的组合形式有哪几种?
2、尺寸标注的要求是什么?
3、画组合体视图的步骤是怎样的?(引入新课)
看图和画图是学习本课程的主要任务,画图是将物体或想象(设计)中的物体运用正投影法表达在图纸上,是一种从空间形体到平面 图形的表达过程。看图也就是我们常说的读图,它正好是画图的一个逆过程,是根据平面图形(视图)想象出空间物体的结构形状。(讲授新课)
§5-7 看组合体视图
一、形体分析法
1、形体分析法的概念:是根据视图的特点和基本形体的投影特征,把物体分解成若干个简单的形体,分析出组成形式后,再将它们组合起来,构成一个完整的组合体。
2、形体分析法的分析步骤:(1)认识视图,抓住特征;(2)分析投影,联想形体;(3)综合起来,想形体。例:(以图5-16为例进行讲解)
二、线面分析法
1、线面分析法的概念:是运用线面的投影规律,分析图中的线条、线框的含义和空间位置,从而看懂视图。
2、线面分析法的分析步骤:(1)用形体分析法先做主要分析;(2)用线面分析法再作补充分析;(3)最后综合起来性形体。例:(以图5-17为例进行分析讲解)(巩固练习)让学生分析下图所示形体
(课堂小结)
1、形体分析法;
2、线面分析法。(作业布置)
课堂作业:
习题集P54,P55,P56,P57 课后作业:
习题集P58,P59,P60,P61,教后感:
P62