第一篇:单项式乘以多项式教学设计
单项式乘以多项式
教学目标
1.使学生探索并了解单项式与多项式相乘的法则;会运用法则进行简单计算.
2.使学生进一步理解数学中“转化”、“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.
3.逐步形成独立思考、主动探索的习惯,培养思维的批评性、严密性和初步解决问题的愿望和能力.
重点:单项式与多项式相乘的法则及其运用. 难点:单项式与多项式相乘去括号法则的应用. 教学过程(师生活动)复习引新 一知识回顾:
1.回忆幂的运算性质:
am·an=am+n(m,n都是正整数)底数幂相乘,底数不变,指数相加.(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘.(ab)n=anbn(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
2.单项式与单项式相乘法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
3.判断正误(如果不对应如何改正?)(1)4a2·2a3=8a6()
(2)(ab)2(ab3)=a3b5()
(3)(-2x2)3xy2=8x7y2()
点拨:(1)错误,应该为8a5(2)正确(3)错误,应该为-8x7y2 创设情境引入新课
问题: b c d
a
如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.a
b+c+d 如果把它看成一个大长方形,那么它的面积可表示为_________.则得:ab+ac+ad=a(b+c+d)想一想:你能由此总结出单项式与多项式相乘的乘法法则吗? 教师总结如下:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.例题分析:(-3a)·(-2a2-3a-2)
(在学习过程中重点提醒学生注意符号问题,多项式的每一项都包括它前面的符号)解:(-3a)·(-2a2-3a-2)=(-3a)·(-2a2)+(-3a)·(-3a)+(-3a)·(-2)
=6a3+9a2+6a
深入 探究
一、根据例题分析,启发学生总结单项式与多项式相乘的实质和一般步骤:
1、单项式与多项式相乘的实质是利用分配律把单项式乘以多项式转化为单项式乘法
2.单项式与多项式相乘时,分三个阶段:
①按分配律把乘积写成单项式与单项式乘积的代数和的形式; ②按照单项式的乘法法则运算。③再把所得的积相加.二、强调计算时的注意事项:
1.计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负。2.不要出现漏乘现象。
3.运算要有顺序:先乘方,再乘除,最后加减。4.对于混合运算,注意最后应合并同类项。课内巩固 练一练:
⑴ a(2a-3)⑵ a2(1-3a)⑶ 3x(x2-2x-1)⑷-2x2y(3x2-2x-3)(5)(2x2-3xy+4y2)(-2xy)给学生足够的时间进行基础练习,安排2-3个同学在黑板上演示解题过程,及时观察学生知识的掌握状况,及时纠错以便加深印象,使学生深刻理解单项式与多项式相乘的解题思路及基本方法。课外研究 试一试:
通过以下三道题目加深对单项式与多项式相乘的理解,能够灵活的应用计算方法解出除了例题这样常规题型以外的几类经典题型,拓宽学习思路。
⑴ 3x(x2-2x-1)-2x2(x-3)
⑵-6xy(x2-2xy-y2)+3xy(2x2-4xy+y2)⑶ x2-2x[2x2-3(x2-2x-3)] 设计思想
单项式的乘法用到了有理数的乘法、幂的运算性质,而后续的多项式与多项式的乘法,都要转化为单项式乘法.因此,单项式乘法将起到承前启后的作用,在整式乘法中占有独特地位.所以在教学中先对所学知识进行回顾,再从实际问题导入,让学生自己动手试一试,主动探索;在教学过程中引导学生参照引例解决方法,教师先不给出单项式与多项式相乘的运算法则,而是让学生先独立思考,然后由学生自己小结出如何进行单项式与多项式相乘的乘法,在探索新知的过程中让学生体会从特殊到一般,从具体到抽象的认识过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则,从而构建新的知识体系.在此基础上要求学生用语言叙述这个性质,这有利于提高学生数学语言的表述能力.因为整式是在数的运算的基础上发展起来的,所以在学习单项式与多项式的乘法时,让学生类比数的运算律,将单项式乘以多项式转化为单项式的乘法,将新知识转化为已经学过的知识.无论是单项式乘以单项式还是单项式乘以多项式“转化”为单项式的乘法,学生都从中体会到学习新知识的方法,即学习一种新的知识、方法;通常的做法是把它归结为已知的数学知识、方法,从而使学习能够进行。
第二篇:单项式乘以多项式相乘教学反思
《单项式乘以多项式》教学反思
1.教学过程始终围绕学习目标展开。我首先复习了单项式乘以单项式的知识,然后让学生自己得出本节课的研究内容,并举出了一个单项式乘以多项式的实例。
2.给学生创设了一个轻松和乐于向上的学习环境。在上课过程中,我关注学生的情感。新课堂改革,不应该是对原有课堂的全盘否定,原有课堂教学中对学生的表扬和鼓励应该在新课堂教学中得到更好的体现,因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。这一堂课就在这样轻松愉悦的气氛中展开来,最终的效果也很好。单项式与多项式相乘时要提醒学生注意以下点: 1.积是一个多项式,其项数,与多项式的项数相同.2.运算时,要注意多项式中的每一项前面的”+””-”号是性质符号, 单项式乘多项式的每一项的结果,要先确定符号,然后再把项的绝对值相乘.3.单项式与多项式相乘,学生对乘法的分配律掌握得不好,出现漏乘,并且出现弄错符号的现象,有一部分学生乘法,还有对合并同类项和同底数幂相混淆的情况,或把加法看作是同底数幂来进行计算。
第三篇:单项式乘以单项式教学设计
单项式乘以单项式教学设计
【教学内容及内容分析】
在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,具备了由数的运算转化为式的运算的知识基础,类比有理数运算学习整式的运算是本章的重点,是代数知识学习的重点内容,可以帮助学生认识到代数与现实世界、学生生活、相关学科联系十分密切,为数学本身和其他学科的研究提供了语言、方法和手段.本单元提前安排了同底数幂的乘法、幂的乘方、积的乘方等知识,然后通过实例引入了整式的乘法,使学生通过对乘法分配律等法则的运用探索整式乘法的运算法则以及一些重要的公式,所以,本节知识既是对前面所学知识的综合应用,也为下面学习乘法公式、整式除法以及学习因式分解打好基础.本单元共分5课时,由浅入深地学习单项式乘单项式、单项式除以单项式、单项式乘多项式、多项式除以单项式、多项式乘多项式,五节课的知识环环相扣,每节课新知识的学习既是对前一节所学知识的应用,也为后一一节学习奠定基础.所以在教学时要注意引导学生发现各知识点之间的联系,善于应用转化的思想,化未知为已知,形成较完整的知识结构.【教学目标】
1、通过探索单项式乘法法则的过程,在具体情境地中了解单项式乘法的意义,理解单项式乘法法则
2、会利用法则进行单项式的乘法运算。【教学重难点】
重点: 单项式乘法法则及其应用.难点:理解运算法则及其探索过程.一、旧知回顾
活动内容:教师提出问题,引导学生复习幂的运算性质 1:前面学习了哪三种幂的运算?运算方法分别是什么?)1)同底数幂相乘,底数不变,指数相加。aman=am+n(m,n是正整数)(2)幂的乘方,底数不变,指数相乘。
(3积的乘方等于各因数乘方的积。(ab)n=nbn
(n是正整数)2.口算
指名学生回答,并说出运用的相关法则。
二、讲授新知
出示问题1(多媒体)
让学生思考
学生思考后师引导学生完成以上计算。
引导学生继续探究:(多媒体出示)
提问:怎样计算?
引导学生完成计算,并总结法则: 单项式乘以单项式法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数一起作为积的一个因式。多媒体出示例题:
指名学生完成,师生共同小结计算过程。多媒体出示: 学生回答,并指出错误原因。
三、练习巩固 多媒体出示:
指名学生完成,师生共同订正。
四、小结:
1、求系数的积,应注意符号;
2、相同字母因式相乘,是同底数幂的乘法,底数不变,指数相加;
3、只在一个单项式里含有的字母,要连同它的指数写在积里,防止遗漏;
4、单项式乘以单项式的结果仍然是一个单项式,结果要把系数写在字母因式的前面;
5、单项式乘法的法则对于三个以上的单项式相乘同样适用.五、作业:
1.课本第65页习题8.2第1题; 2.课本第65页习题8.2第2题。
第四篇:2017单项式乘以多项式教案.doc[小编推荐]
8.2 整式乘法(单项式乘以多项式)
教学目标:经历探索单项式与多项式相乘的运算法则的过程,会进行整式相乘的运算。
教学重点:单项式与多项式相乘的运算法则的探索. 教学难点:灵活运用法则进行计算和化简. 教学过程: 一. 复习旧知 1. 2. 3. 单项式乘单项式的运算法则
练习:9x2y3·(-2xy2)
(-3ab)3·(1/3abz)合并同类项的知识
二、问题引入,探究单项式与多项式相乘的法则
问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a、b、c.你能用不同的方法计算它们在这个月内销售这种商品的总收入吗?
学生独立思考,然后讨论交流.经过思考可以发现一种方法是先求出三家连锁店的总销量,再求总收入,为:m(a+b+c).
另一种计算方法是先分别求出三家连锁店的收入,再求它们的和,即:ma+mb+mc.
由于上述两种计算结果表示的是同一个量,因此
m(a+b+c)=ma+mb+mc. 学生归纳:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
引导学生体会:单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘,三.讲解例题
1.例题: 计算:
(1)(-4x2)(3x+1);
(2)(ab22ab)ab 2.补充例题1:
化简求值:
(-3x)2 - 2x(x+3)+ x·x +2x ·(-4x + 3)+ 2007 其中:x = 2008 练习:课本61页 1、2、3 3.补充练习: 计算
211.2ab(5ab2+3a2b); 2.(2ab-2ab)· ab; 2323.-6x(x-3y); 4.-2a2(1ab+b). 223125.(-2a2)·(1/2ab + b2)6.(2/3 x2y - 6x y)·1/2xy2 7.(-3 x2)·(4x 2- 4/9x + 1)8 3ab·(6 a2b4 -3ab + 3/2ab3)9.1/3xny ·(3/4x2-1/2xy-2/3y-1/2x2y)10.(-ab)2 ·(-3ab)2·(2/3a2b + a3·a2·a -1/3a)四.小结归纳,布置作业:
作业:课本第65页2、4(1、2、3)
第五篇:《单项式与多项式》教学设计
《单项式与多项式》教案
横山中学
沈习兵
2014.10.14 【教学目标】
一、知识与技能:
1.了解整式的有关概念,会识别单项式、多项式和整式。
2.能说出一个单项式的系数和次数,多项式的项的系数和次数,以及多项式的项数和次数。
二、过程与方法:
在参与对单项式、多项式识别的过程中,培养观察、归纳、概括和语言表达的能力。
三、情感、态度与价值观:
通过单项式与多项式有关概念的探究,培养学生发现问题、解决问题的科学思想。【重点与难点】
1.能说出单项式的系数、次数
2.能说出多项式每一项的系数、次数,及整个多项式是几次几项式。【教学过程】
2.1 代数式(3、你能举出一些单项式的例子吗?
三、问题与思考
(1)“9”是不是单项式?“a”是不是单项式?
注意: 单独一个数或一个字母也是单项式。
(2)是不是单项式?“2x+1”和“a–b” 是不是单项式? 都不是单项式,单项式只含有一个乘积运算。
注意:单项式的分母中不含字母,且不含加减运算
四、单项式系数与次数
1、单项式是由数字因数和字母因数组成,如3ab •
2、单项式中的数字因数叫作单项式的系数
如:3a2的系数是3,-0.6x2y的系数是-0.6
3、问:a的系数是多少?-a的系数呢?
4、一个单项式中,所有字母的指数的和叫作这个单项式的次数
如: 3a2的次数是2,-0.6x2y的次数是3
5、问:8的次数是多少?
五、几点说明:
1、单项式的系数必须包括前面的符号
2、注意:单项式的系数是1时,1可省略。单项式的系数是-1时,1可省略,但负号不可省略。•
3、单独一个数字的次数为0 •
4、圆周率π是常数,不要把它看成字母
5、如果一个单项式的次数为n,我们就把它叫作n次单项式。如x2y3的次数为5,我们就说x2y3是五次单项式
六、大家一起练:
• 例1 判断下列各代数式是否是单项式。如果不是,请简要说明理由;如果是,请指出它的系数与次数:
(1)x+1(2)r2
2(3)1 / x(4)-½ab 解答:
(1)不是.因为原代数式中出现了加法运算.(2)是.它的系数是 ∏,次数是2.(3)不是.因为原代数式是1与x的商.(4)是.它的系数是3x+4(3)b-5 + ab3-a2
2、已知:3xmy2m-x2y-4是一个六次多项式,m的值为。
3.如果多项式 x2-7x-2 和 3x2+5x+n 的常数项相同,则n =_______。
十二、注意事项:
(1)多项式的每一项应该包括前面的符号;
(2)多项式的次数不是所有项的次数之和,而是次数最高项的次数。
十三、课堂小结
今天你有什么收获?
单项式系数:单项式中的数字因数。次数:所有字母的指数的和.整式
项:式中的每个单项式叫多项式的项。多项式 次数:多项式中次数最高项的次数。
十四、课外作业:
课本