第一篇:高一数学必修1函数教案
第二章 函数
§2.1 函数
教学目的:(1)学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 一 函数的有关概念 1.函数的概念:
设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数(function). 记作: y=f(x),x∈A.
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:
○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x. 2. 构成函数的二要素: 定义域、对应法则
值域被定义域和对应法则完全确定 3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 二 典型例题 求解函数定义域值域及对应法则 课本P32 例1,2,3 求下列函数的定义域
14x2 F(x)= F(x)=
x/x/x1 F(x)=111x F(x)=x24x5
巩固练习P33 练习A中4,5 说明:○1 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○2 函数的定义域、值域要写成集合或区间的形式. 2.判断两个函数是否为同一函数
○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:
○1 判断下列函数f(x)与g(x)是否表示同一个函数
(1)f(x)=(x1)0 ;g(x)= 1
(2)f(x)= x; g(x)=x2
(3)f(x)= x;f(x)=(x1)(4)f(x)= | x | ;g(x)= 2x2
三 映射与函数
教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;(2)结合简单的对应图示,了解一一映射的概念. 教学重点难点:映射的概念及一一映射的概念. 复习初中已经遇到过的对应:
1. 对于任何一个实数a,数轴上都有唯一的点P 和它对应; 2. 对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;
3. 对于任意一个三角形,都有唯一确定的面积和它对应; 4. 某影院的某场电影的每一张电影票有唯一确定的座位与它对应; 5. 函数的概念.
映射 定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B 为从集合A 到集合B 的一个映射(mapping).记作“f:A→B”。象与原象的定义与区分
一一对应关系: 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,就称这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。(结合P35的例7解释说明)
说明:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
例题分析:下列哪些对应是从集合A 到集合B 的映射?
(1)A={P | P 是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P 是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x 是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)A={x | x 是新华中学的班级},B={x | x 是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:将(3)中的对应关系f 改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A 是从集合B 到集合A 的映射吗? 四 函数的表示法
教学目的:(1)明确函数的三种表示方法;
(2)通过具体实例,了解简单的分段函数,并能简单应用; 教学重点难点:函数的三种表示方法,分段函数的概念及分段函 数的表示及其图象.
复习:函数的概念;
常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.
(一)典型例题
例 1.某种笔记本的单价是5 元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x).
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略)注意:
○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2 解析法:必须注明函数的定义域; ○3 图象法:是否连线;
○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 例 3.画出函数y = | x | . 解:(略)
巩固练习: P41练习A 3,6 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系.
五 分段函数 定义: 例5讲解
练习P43练习A 1(2),2(2)
注意:分段函数的解析式不能写成几个不同的方程,而写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
第二篇:人教版数学必修1函数教案
第二章 函数
§2.1 函数 一 函数的有关概念 1.函数的概念:
设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数(function). 记作: y=f(x),x∈A.
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:
○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x.
2. 构成函数的二要素: 定义域、对应法则
值域被定义域和对应法则完全确定 3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 二 典型例题 求解函数定义域值域及对应法则 课本P32 例1,2,3 求下列函数的定义域
14x2 F(x)= F(x)=
x/x/x1 F(x)=111x F(x)=x24x5
巩固练习P33 练习A中4,5 说明:○1 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○2 函数的定义域、值域要写成集合或区间的形式. 2.判断两个函数是否为同一函数
○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:
○1 判断下列函数f(x)与g(x)是否表示同一个函数
(1)f(x)=(x1);g(x)= 1
(2)f(x)= x; g(x)=x2
2(3)f(x)= x;f(x)=(x1)
(4)f(x)= | x | ;g(x)= 20x2
三 映射与函数
映射 定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B 为从集合A 到集合B 的一个映射(mapping).记作“f:A→B”。象与原象的定义与区分
一一对应关系: 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,就称这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。(结合P35的例7解释说明)
说明:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
例题分析:下列哪些对应是从集合A 到集合B 的映射?
(1)A={P | P 是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P 是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x 是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x | x 是新华中学的班级},B={x | x 是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:将(3)中的对应关系f 改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A 是从集合B 到集合A 的映射吗? 四 函数的表示法 复习:函数的概念;
常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.
(一)典型例题
例 1.某种笔记本的单价是5 元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x).
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略)注意:
○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2 解析法:必须注明函数的定义域; ○3 图象法:是否连线; ○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 例 3.画出函数y = | x | . 解:(略)
巩固练习: P41练习A 3,6 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系.
五 分段函数 定义: 例5讲解
练习P43练习A 1(2),2(2)
注意:分段函数的解析式不能写成几个不同的方程,而写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
第三篇:高一数学必修一基本初等函数教案
状元坊专用
基本初等函数
一.【要点精讲】 1.指数与对数运算(1)根式的概念:
①定义:若一个数的n次方等于a(n1,且nN),则这个数称a的n次方根。即若xna,则x称a的n次方根n1且nN),1)当n为奇数时,a的n次方根记作na;
2)当n为偶数时,负数a没有n次方根,而正数a有两个n次方根且互为相反数,记作na(a0)
②性质:1)(na)na;2)当n为奇数时,naa; 3)当n为偶数时,na|a|(2).幂的有关概念
①规定:1)anaaa(nN;2)a01(a0);
*
na(a0)。
a(a0)n个 3)ap1p(pQ,4)annam(a0,m、nN* 且n1)arsrsrsrs;2)(a)a(a0,r、s Q);(a0,r、sQ)
m②性质:1)aaarrr3)(ab)ab(a0,b0,r Q)。(注)上述性质对r、sR均适用。(3).对数的概念
b①定义:如果a(a0,且a1)的b次幂等于N,就是aN,那么数b称以a为底N的对数,记作logaNb,其中a称对数的底,N称真数
1)以10为底的对数称常用对数,log10N记作lgN;
2)以无理数e(e2.71828)为底的对数称自然对数,logeN,记作lnN; ②基本性质:
1)真数N为正数(负数和零无对数);2)loga10; 3)logaa1;4)对数恒等式:alogaNN。
状元坊专用
③运算性质:如果a0,a0,M0,N0,则1)loga(MN)logaMlogaN; 2)logaMlogaMlogaN;3)logaMnnlogaM(nR)N④换底公式:logaNlogmN(a0,a0,m0,m1,N0),logmanlogab。mn1)logablogba1;2)logamb2.指数函数与对数函数(1)指数函数:
①定义:函数yax(a0,且a1)称指数函数,1)函数的定义域为R;2)函数的值域为(0,);
3)当0a1时函数为减函数,当a1时函数为增函数。②函数图像:自己作图,注意两种情况。1)指数函数的图象都经过点(0,1),且图象都在第一、二象限;
2)指数函数都以x轴为渐近线(当0a1时,图象向左无限接近x轴,当a1时,图象向右无限接近x轴);
3)对于相同的a(a0,且a1),函数yax与yax的图象关于y轴对称 ③函数值的变化特征:看图像可得。自己总结。
(2)对数函数:
①定义:函数ylogax(a0,且a1)称对数函数,1)函数的定义域为(0,);2)函数的值域为R;
3)当0a1时函数为减函数,当a1时函数为增函数;
4)对数函数ylogax与指数函数ya(a0,且a1)互为反函数 ②函数图像:自己作图,注意两种情况。1)对数函数的图象都经过点(0,1),且图象都在第一、四象限;
2)对数函数都以y轴为渐近线(当0a1时,图象向上无限接近y轴;当a1时,图象向下无限接近y轴);
4)对于相同的a(a0,且a1),函数ylogax与ylog1x的图象关于x轴对称。
ax③函数值的变化特征:看图像可得。自己总结。(3)幂函数
1)掌握5个幂函数的图像特点。指数分别为-1,1,1,2,3.22)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数
3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1)
状元坊专用
当a>0时过(0,0)。4)幂函数一定不经过第四象限 四.【典例解析】 题型1:指数运算
34例1.(1)计算:[(3)3(5)0.5(0.008)3(0.02)2(0.32)2]0.06250.25;
892211解:;2。91212例2.(1)已知xx21.xx○3,求○
1x2x22xx3232的值 7,3
3题型2:对数及幂运算
(2)幂函数yf(x)的图象经过点(2,1),则满足f(x)=27的x的值是.81答案 3例3.计算
(1)(lg2)lg2lg50lg25; 解: 2;
题型3:指数、对数方程 22xb例4.已知定义域为R的函数f(x)x1是奇函数.2a(1)求a,b的值;
(2)若对任意的tR,不等式f(t22t)f(2t2k)0恒成立,求k的取值范围.题型4:指数函数的概念与性质
x12e,x<2,则f(f(2))的值为()例5.设f(x)2log3(x1),x2.题型5:指数函数的图像与应用
|1x|m的图象与x轴有公共点,则m的取值范围是()例6.若函数y()。12题型6:对数函数的概念与性质 例7.(1)函数ylog2x2的定义域是()
yo1例8.当a>1时,函数y=logax和y=(1-a)x的图象只可能是()yo1yxAyo1xBxCo1xD
状元坊专用
【思维总结】
1.nNa,aN,logaNb(其中N0,a0,a1)是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底;
2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验;
3.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识;
4.指数、对数函数值的变化特点是解决含指数、对数式的问题时使用频繁的关键知识,要达到滚瓜烂熟,运用自如的水平,在使用时常常还要结合指数、对数的特殊值共同分析;
5.含有参数的指数、对数函数的讨论问题是重点题型,解决这类问题的最基本的分类方案是以“底”大于1或小于1分类;
6.在学习中含有指数、对数的复合函数问题大多数都是以综合形式出现,如与其它函数(特别是二次函数)形成的复合函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要努力提高综合能力
b 4
第四篇:高一数学:1.3.2《函数的奇偶性》教案 新人教版必修1
课题:§1.3.2函数的奇偶性
教学目的:(1)理解函数的奇偶性及其几何意义;
(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性.
教学重点:函数的奇偶性及其几何意义.
教学难点:判断函数的奇偶性的方法与格式.
教学过程:
一、引入课题
1.实践操作:(也可借助计算机演示)
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题: 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,○然后将纸展开,观察坐标系中的图形;
问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. 以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画○出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:
问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.
2.观察思考(教材P39、P40观察思考)
二、新课教学
(一)函数的奇偶性定义
1中的图象关于y轴对称的函数即是偶函数,2中的图象关于原点对象上面实践操作○操作○称的函数即是奇函数.
1.偶函数(even function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义 2.奇函数(odd function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数. 注意: 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意○
2x22x1 f(x)○;
x132 f(x)x2x; ○3 f(x)a
(xR)○4 f(x)○x(1x)x0,x(1x)x0.3. 课后思考:
已知f(x)是定义在R上的函数,设g(x)f(x)f(x)f(x)f(x),h(x)
221 试判断g(x)与h(x)的奇偶性; ○2 试判断g(x),h(x)与f(x)的关系; ○3 由此你能猜想得出什么样的结论,并说明理由. ○
第五篇:高一数学函数教案24
2.9 函数应用举例(第二课时)
教学目的:
1.使学生适应各学科的横向联系.2.能够建立一些物理问题的数学模型.3.培养学生分析问题、解决问题的能力.教学重点:数学建模的方法
教学难点:如何把实际问题抽象为数学问题.教学过程:
一、例题
例1(课本第86页 例2)设海拔 x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 ycekx,其中 c,k为常量,已知某地某天在海平面的大气压为1.01105Pa,1000 m高空的大气压为0.90105Pa,求:600 m高空的大气压强。(结果保留3个有效数字)
解:将 x = 0 , y =1.01105;x = 1000 , y =0.90105,代入 ycekx得:
(1)1.01105cek0c1.01105 5k100051000k(2)0.9010ce0.9010ce 将(1)代入(2)得:
0.901051.01105e1000kk10.90ln 10001.014 计算得:k1.15104 ∴y1.01105e1.1510
将 x = 600 代入, 得:y1.01105e1.151044600
计算得:y1.01105e1.1510=0.943×105(Pa)答:在600 m高空的大气压约为0.943×105 Pa.说明:(1)此题利用数学模型解决物理问题;(2)需由已知条件先确定函数式;(3)此题实质为已知自变量的值,求对应的函数值的数学问题;(4)此题要求学生能借助计算器进行比较复杂的运算.例2在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,„„, an共n个数据,我们规定所测量的物理量的“最佳近似值”a是这样一个量:与其他近似值比较a与各数据差的平方和最小.依次规定,从a1,a2,„„, an推出的a=________.(1994年全国高考试题)分析:此题应排除物理因素的干扰,抓准题中的数量关系,将问题转化为函数求最值问题.解:由题意可知,所求a应使y=(a-a1)2+(a-a2)2+„+(a-an)2 最小 由于y=na2-2(a1+a2+„+an)a+(a12+a22+„+an2)若把a看作自变量,则y是关于a的二次函数,于是问题转化为求二次函数的最小值.因为n>0,二次函数f(a)图象开口方向向上.1当a=(a1+a2+„+an),y有最小值.n1所以a=(a1+a2+„+an)即为所求.n说明:此题在高考中是具有导向意义的试题,它以物理知识和简单数学知识为基础,并以物理学科中的统计问题为背景,给出一个新的定义,要求学生读懂题目,抽象其中的数量关系,将文字语言转化为符号语言,即
y=(a-a1)2+(a-a2)2+„+(a-an)2,然后运用函数的思想、方法去解决问题,解题关键是将函数式化成以a为自变量的二次函数形式,这是函数思想在解决实际问题中的应用.例3某种放射性元素的原子数N随时间t的变化规律是N=N0et,其中N0,λ是正的常数.(1)说明函数是增函数还是减函数;(2)把t表示成原子数N的函数;(3)求N当N=0时,t的值.2解:(1)由于N0>0,λ>0,函数N=N0et是属于指数函数y=ex类型的,所以它是减函数,即原子数N的值随时间t的增大而减少(2)将N=N0et写成et=
N N0根据对数的定义有-λt=ln所以t=-1N N01NN11(3)把N=0代入t=(lnN0-lnN)得t=(lnN0-ln0)2211=(lnN0-lnN0+ln2)= ln2.
二、练习:
1.如图,已知⊙O的半径为R,由直径AB的端点B作圆的切线,从圆周上任一点P引该切线的垂线,垂足为M,连AP设AP=x ⑴写出AP+2PM关于x的函数关系式 ⑵求此函数的最值 解:⑴过P作PDAB于D,连PB 设AD=a则x22Ra
x2x2a PM2R
2R2R(lnN-lnN0)=(lnN0-lnN)
x2∴f(x)AP2PMx4R(0x2R)
R1R17R(x)2 R2417R当x时f(x)maxR
42⑵f(x) P D C B A D O A 当x2R时f(x)min2R
2.距离船只A的正北方向100海里处有一船只B,以每小时20海里的速度,沿北偏西60角的方向行驶,A船只以每小时15海里的速度向正北方向行驶,两船同时出发,问几小时后两船相 距最近?
解:设t小时后A行驶到点C,B行驶到点D,则BD=20 BC=100-15t 过D作DEBC于E DE=BDsin60=103t BE=BDcos60=10t ∴EC=BC+BE=100-5t CD=DE2CE2∴t=103t21005t=325t21000t10000
220203时CD最小,最小值为200,即两船行驶小时相距最近。
1313133.一根均匀的轻质弹簧,已知在600N的拉力范围内,其长度与所受拉力成一次函数关系,现测得当它在100N的拉力作用下,长度为0.55m,在300N拉力作用下长度为0.65,那么弹簧在不受拉力作用时,其自然长度是多少? 解:设拉力是 x N(0≤x≤600)时,弹簧的长度为 y m
0.55100kbk0.0005 设:y = k x + b 由题设: 0.65300kbb0.50 ∴所求函数关系是:y = 0.0005 x + 0.50 ∴当 x = 0时,y = 0.50 , 即不受拉力作用时,弹簧自然长度为 0.50 m。
三、作业:课本P89习题2.9 4,5,6