5.3.1 平行线的性质(第1课时)教学设计

时间:2019-05-13 01:10:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《5.3.1 平行线的性质(第1课时)教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《5.3.1 平行线的性质(第1课时)教学设计》。

第一篇:5.3.1 平行线的性质(第1课时)教学设计

《5.3.1平行线的性质》教学设计

5.3.1平行线的性质(第1课时)

一、教学内容解析

本节课的教学内容是平行线的性质.平行线的性质是平面几何的一个重要内容,它是研究几何图形位置关系与数量关系的基础也是学习简单的逻辑推理的素材,是证明角相等、研究角的关系的重要依据.平行线的性质不但为三角形内角和定理的证明提供了转化的方法,也为今后学习三角形、四边形、平移等知识奠定基础.图形的性质是研究图形构成要素之间的关系,它和图形的判定是几何中研究的两个重要方面.平行线的性质是学生对图形性质的第一次系统研究,对今后学习其他图形性质有“示范”的作用.教科书由平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性.平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的(在九年级《圆》这一章中再作证明),然后在性质1的基础上经过进一步推理得到性质2和性质3,体现了由实验几何到论证几何的过渡,渗透了简单推理的思想方法,从而逐步构建起学习几何的“基本套路”,实现对逻辑思维的培养,体现数学在培养良好思维品质方面的价值.因此可以确定本节课的重点为:平行线的三条性质.二、学生学情分析

东直门中学是北京市示范性中学,我的授课班级数学基础较好,学生个性活泼,思维活跃,积极性高.但是,学生初次接触图形的性质,对于平行线的性质的研究过程和研究方法都是陌生的,所以,本节课学生需要在老师的引导下来构建平行线性质的研究过程.作为培养学生推理能力章节,对于性质2和性质3的论证,学生可以做到“说理”,但把推理过程从逻辑上叙述清楚存在困难,需要老师做示范,学生进行模仿.对于证明过程的严密化,对于刚刚接触平面几何的初一学生而言,具有一定的难度,为此,在推理过程符合逻辑的前提下,对于学生在证明过程中使用文字语言或符号语言来进行表述的方式不作限制,更多关注学生对证明本身的理解.本课的教学难点是:平行线性质推理过程的严谨表达.三、教学目标设置 1.目标

(1)理解平行线的性质;

(2)经历平行线性质的探究过程,体会研究平行线性质的方法,感受数学活动中的探索性和创造.2.目标解析

达成目标(1)的标志是:学生知道平行线三条性质的条件和结论并能初步运用平行线性质进行简单推理.达成目标(2)的标志是:学生知道三条性质的关系,能独立完成由性质1推导性质

2、性质3.四、教学策略分析

(1)在学习课标、研读教材的基础上,把平行线的性质这部分内容划分为两课时,第一课时即本节课得到平行线的性质,第二课时了解平行线性质和判定的区别并综合运用平行 《5.3.1平行线的性质》教学设计

线性质和判定解决问题.(2)本节课采取教师启发引导与学生实验探究相结合的方式,使学生亲身体验平行线性质的探索和验证全过程.(3)在学生思维最近发展区提出问题,引导学生逐步构建平行线性质的研究思路.(4)课前要求学生准备了三角板、直尺、量角器、剪刀、图形计算器等学习用品,使学生能够根据自身需要,选择不同方法来验证性质1成为可能,在推理性质2和性质3的过程中,从说理到说清理再到书写推理过程,为学生搭建“台阶”,提供展示的机会.(5)依据学生课上实际表现、课后完成作业及目标检测的情况,进行学生学习效果评价.五、教学过程

1.梳理旧知,引出新课

问题1 上节课,学习了哪些平行线的判定方法?

(1)你认为这三个判定方法中条件和结论分别是什么?

(2)在这三种条件下,都可以得到两条直线平行的结论,反过来,在两条直线平行的条件下,同位角、内错角、同旁内角又各有什么关系呢?

师生活动:学生代表回答,如出现错误或不完整,请其他学生修正或补充.教师点评.设计意图:复习上节课所学的平行线的三种判定方法并引入探究课题,有意识让学生回顾上节课内容,为后面类比研究平行线判定的过程来构建平行线性质的研究过程做好铺垫.2.动手操作,归纳性质1 类比研究平行线判定的思路,首先来研究两条直线平行时,同位角的数量关系.问题2 两条平行线被第三条直线截得的同位角会具有怎样的数量关系?

师生活动:学生首先对结论进行猜想,然后在老师的引导下独立探究,学生代表演示、说明.(1)猜想:在两条平行线被第三条直线所截的条件下,同位角有什么关系?(相等)(2)你能验证你的猜想吗?

说明:在此过程中教师要关注:学生能否准确标记角;能否准确找出同位角,能否正确使用工具比较角的大小.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探究活动.(3)你能与同学交流一下你的验证方法吗?

师生活动:给学生提供充分的展示机会,如果出现操作或表达不规范的地方教师给与指正.学生可能想到的方法:(1)度量法:用量角器进行测量或使用图形计算器进行验证.(2)叠合法:通过剪纸、拼图进行比较.(4)如果改变截线的位置,你发现的结论还成立吗?

说明:学生小组合作,制定方案,进行说明.学生可能作出多个图形,分别通过度量验证,也可能使用图形计算器的相关功能让截线运动起来,发现同位角不变的数量关系.c(5)你能结合图形,表达你得到的结论吗?

如果 a//b,那么 ∠1= ∠2.(6)你能用文字语言表达这个结论吗?(性质1 两直线平行,同位角相等.)

a12证猜想的探究b设计意图:让学生充分经历动手操作—独立思考—合作交流—验过程得到性质1,并且在这一过程中,锻炼学生由图形语言转化为文字语言,文字语言转化 《5.3.1平行线的性质》教学设计

为符号语言的归纳能力和表达能力.为下一步推理性质

2、性质3及今后进一步学习推理打下基础.3.简单推理,得出性质2和性质3 问题3在两条平行线被第三条直线所截的条件下,你会采取什么样的方法来说明内错角或同旁内角的关系呢?

(1)你能用性质1和其他相关知识说明理由吗?

师生活动:学生口述推理过程(学生可能使用邻补角或对顶角的关系推导内错角的关系)学生之间进行点评,指出问题或互相作补充.教师给予鼓励和肯定.(2)你能写出推理过程吗?

师生活动:学生代表做板演.根据板演情况,师生共同做修改或补充.在此更多关注推 理过程是否符合逻辑,不过多强调格式,多给学生鼓励.(3)类比性质1,你能用文字语言表达出上述结论吗?(性质2 两直线平行,内错角相等.)

(4)你能用符号语言表达性质2吗? 如果 a//b,那么 23.设计意图:在教师引导下逐步构建研究思路,循序渐进地引导学生思考,从“说点儿理”向“说清理”过渡.问题4在两条直线平行的条件下,我们研究了同位角和内错角,那么同旁内角之间又有什么关系呢?你能由性质1推出同旁内角之间的关系吗?

文字语言:性质3 两直线平行,同旁内角互补.符号语言:

如果 a//b, 那么 34180.师生活动:学生独立完成,学生代表使用 实物投影进行展示和说明.设计意图:逐步培养学生的推理能力.使学生初步养成言之有据的习惯,从而能进行简单的推理.4.巩固新知,深化理解

例1 如图,平行线AB,CD被直线AE所截.(1)从1110可以知道2是多少度吗?为什么?(2)从1110可以知道3是多少度吗?为什么?(3)从1110可以知道4是多少度吗?为什么?

cab321ca3421bCA1243EBD 例2 如图,已知AB//CD,AE//CF,A39,C是多少度?为什么?

E

F

AGBCD师生活动:学生独立思考回答,教师组织学生互相补充,并演示准确形式.设计意图:帮助学生巩固平行线的性质及文字语言、符号语言、图形语言之间的相互转 《5.3.1平行线的性质》教学设计

化,为今后进一步学习推理打下基础.5.归纳小结,布置作业

教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:

(1)平行线的性质是什么?

(2)你能用自己的语言叙述研究平行线性质的过程吗?

(3)本节课通过简单推理得到性质2和性质3,在推理过程中需要注意哪些问题?

设计意图:通过小结,帮助学生梳理本节课所学内容,掌握本节课的核心——平行线的性质,引领学生回顾探究平行线性质的过程,体会研究平行线性质的方法.布置作业 :

教科书习题5.3第2,4,6题.六、目标检测设计

1.(教科书练习第1题)如图,直线a//b,154,那么2,3,4各是多少度?

设计意图:检测学生对平行线的性质的掌握.2.如图,填空: ①∵ ED//AC(已知), ∴1C().②∵ AB//DF(已知), ∴ 3().③∵ AC//ED(已知), ∴  =(两直线平行,内错角相等).设计意图:检测学生对三线八角图的识别和平行线性质的直接应用.BE12D3CAF3241ab

第二篇:3.1一元一次方程及其解法教学设计(第1课时)

课题:3.1一元一次方程及其解法(第1课时)

合肥市第四十八中学滨湖校区 孙志峰

教学目标:

1.通过问题情境的分析,使学生掌握分析实际问题的一般方法,感受方程作为刻画现实世界有效模型的意义;

2.通过观察、分析、归纳一元一次方程的概念,了解方程的解(根)及解方程等概念; 3.理解等式的基本性质,并会利用等式的基本性质初步能解决简单一元一次方程并规范学生的解题格式;

4.积极鼓励学生进行观察思考,利用已掌握的知识辨析相关问题,培养合作交流的意识 和能力。教学重点:

1.一元一次方程的概念;

2.等式的基本性质及利用等式的基本性质解一元一次方程。教学难点:

1.实际问题中数量关系的寻找;

2.等式的基本性质由“数”推广到“式”。教学方法: 启发式教学。教学过程:

一、情境导入: “鸡兔同笼”问题

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何。

设计意图:从学生熟悉的问题引入,激发学生求知欲,渗透中国传统文化; 问题1:在参加2016年里约奥运会的中国代表队中,游泳运动员46人,比女排运动员的4倍少2人,参加奥运会的女排运动员有多少人?

思考:(1)题目中有哪些量?

(2)这些量之间有怎样的关系呢?(3)如何表示这个等式呢?

解:设参加奥运会的女排运动员有x人,由题意得:464x2

设计意图:通过奥运会运动员的问题情境,唤起学生的兴趣,激发学习热情,通过三个问题,教会学生分析实际问题的一般方法;

问题2:某同学今年13岁,老师今年37岁,问:再过几年后,老师的年龄是该同学年龄的2倍?

思考:(1)题目中有哪些量?

(2)这些量之间有怎样的关系呢?(3)如何表示这个等式呢?

设计意图:通过最贴近学生身边的问题,让学生能够用数学知识解决遇到的实际问题,体现数学的应用价值,也能体现方程相比小学算法的优越性; 解:设再过x年后,由题意得:37x213x 二:探究新知: 思考:观察这两个式子,它们有什么共同点呢?

464x2 ; 36x212x;

1.小组讨论:这几个方程有什么特征?(从未知数的个数与未知数的次数两方面去考虑)2.总结得出一元一次方程定义:只含有一个未知数,未知数的次数都是1,等式两边都是整式的方程叫做一元一次方程。

设计意图:通过学生观察、分析、归纳得到一元一次方程的特点,让学生发现,教师最后规范给出概念,学生对概念理解更深刻; 3.出示课题:一元一次方程及其解法 4.反馈练习

①下列各式哪些是一元一次方程?

(1)x+1=3;(2)5x+9;(3)x2-4=3x;(4)x+2y=7;

设计意图:通过辨析概念,加深对一元一次方程概念的印象,并通过(1)介绍方程的解(根),解方程等概念,并自然过渡到等式的基本性质的讲解;

三、回顾性质

1.在小学里已经学过等式的基本性质,能告诉老师等式基本性质的内容吗? 性质1: 等式两边同时加上(或减去)同一个数或同一个整式,所得结果仍是等式;

即如果a=b,那么a+c=b+c,a-c=b-c 性质2: 等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式;即如果a=b,那么ac=bc,a/c=b/c(c≠0)性质3:对称性:如果a=b,那么b=a 性质4:传递性:如果a=b,b=c,那么a=c 教师演示,小学阶段利用天平得到等式的基本性质1,推广到,在天平两边都加上相同重量C千克,天平能否保持平衡?由此可以把性质1,由数推广到式;

设计意图:在学生回忆的基础上,推广抽象,通过天平直观演示,便于学生理解;教好性质1,并用字母表示性质1,性质2的理解就水到渠成了。2.反馈练习:下列变形是根据等式的哪一条基本性质得到的?

(1)如果5x+3=7,那么5x=4.(2)如果-8x=4,那么x=-1/2.(3)如果-5a=-5b,那么a=b.(4)如果3x=2x+1,那么x=1.(5)如果-0.25=x,那么x=-0.25.(6)如果x=y,y=z,那么x=z.设计意图:通过练习,加深学生对等式的基本性质的理解,并能熟练掌握;

四、简单运用

1.例1 解方程:46=4x-2

解: 两边交换,得:

4x-2=46(性质3)两边都加上2,得

4x=46+2 即4x=48 两边都除以4,得

x=12(性质2)

检验:将x=12代入原方程的两边,得 左边=46 右边=4×12-2=46即:

左边=右边

所以,x=12是原方程的解.设计意图:解方程其实就是利用等式基本性质对等式进行变形,我们必须清楚每一步变形的依据,所解得的结果是否是原方程的根,可以通过检验来验证。通过例题示范学生解一元一次方程的解题格式。

2.反馈练习:利用等式基本性质来解下列方程5x-7=8 请2名学生板书,其余学生在作业本上练习

五、课堂小结

和你的同座位交流一下本节课学习了哪些内容 提出问题为下堂课做预习。

六、作业布置 课本P91第2题

27=7+4x

第三篇:七年级数学教学案例平行线的性质(第1课时)

七年级数学教学案例平行线的性质(第1课时)

郑平

教学目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力;

2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.

重点、难点

重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学过程

一、引导学生逆向思维

现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?

二、实践探究

1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).

2.学生测量这些角的度数,把结果填入表内.

3.学生根据测量所得数据作出猜想.

图中哪些角是同位角?它们具有怎样的数量关系?

图中哪些角是内错角?它们具有怎样的数量关系?

图中哪些角是同旁内角?它们具有怎样的数量关系?

在详尽分析后,让学生写出猜想.

4.学生验证猜测.

学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?

5.师生归纳平行线的性质,教师板书.

平行线具有性质:

性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.

性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错角相等.

性质3:两条平行线被第三条直线所截,同旁内角互补,简称为两直线平行,同旁内角互补.

教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.

平行线的性质平行线的判定

因为a∥b,因为∠1=∠2,所以∠1=∠2所以a∥b.

因为a∥b,因为∠2=∠3,所以∠2=∠3,所以a∥b.

因为a∥b,因为∠2+∠4=180°,所以∠2+∠4=180°,所以a∥b.

6.教师引导学生理清平行线的性质与平行线判定的区别.

学生交流后,师生归纳:两者的条件和结论正好相反:

由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.

7.进一步研究平行线三条性质之间的关系.

教师:大家能根据性质1,推出性质2成立的道理吗?

结合上图,教师启发分析:考察性质

1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.因为a∥b,所以∠1=∠2(两直线平行,同位角相等);又∠3=∠1(对顶角相等),所以∠2=∠3.

教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.

学生仿照以下说理,说出如何根据性质1得到性质3的道理.

8.平行线性质应用.

第四篇:教学设计 平行线的性质

教学设计

《平行线的性质》

:阿城区杨树民主学校 姓

:杨凤杰

教学目标: 1.使学生能够深入理解平行线的性质和判定的不同之处,能够灵活应用.

2.使学生能够牢固掌握平行线的三个性质,并能运用它们进行简单的逻辑推理.

教学重点:理解平行线的性质.

教学难点:平行线的三个性质的应用,能结合图形用符号语言表示平行线的三条性质.

教学过程 :

一、复习提问: 1.怎样利用同位角和内错角以及同旁内角来判定两条直线是否平行?

2.叙述对顶角的性质?

二、探索新知:

1动手操作并观察发现平行线第一个性质

出示教材图5.3-1请学生进行实验观察.其中a∥b,c和它们相交,动手度量∠1 和∠2的大小。

师:从中你能发现什么关系?

学生:交流后得出平行线性质1:两直线平行,同位角相等.

2类比推理探索出平行线的另两条性质

(1)已知:两条直线AB和CD被第三条直线EF所截,AB∥CD.求证:∠1= ∠2.

(2)已知:两条直线AB和CD被第三条直线EF所截,AB∥CD.求证:∠1+∠2=180°.

在探索实践合作交流后得出:平行线的性质2 和平行线的性质3 .

3平行线判定与性质的区别与联系:把判定和性质分别用多媒体显示出来.

(1)性质:是根据两条直线平行,去证明两个角相等或互补.

(2)判定:是根据两角相等或互补,去证明两条直线平行.

两者的联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是完全不相同的.

三、例题 :

例1:动手画出AB∥CD,AC∥BD.并且找出图中相等的角与互补的角.

用意是向学生强调:哪两条直线被哪一条直线所截.

答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC+∠ACD=180°,∠ ABD+∠CDB=180°,∠CAB+∠DBA=180°,∠ACD+∠BDC=180°.

相等的角还有:∠ACD=∠ABD,∠BAC=∠BDC.(同角的补角相等)例2:多媒体给出图和已知:AD∥BC,∠AEF=∠B,求证:AD∥EF.

剖析:从图直观分析,要证AD∥EF,只需∠A+∠AEF=180°即可。因为AD∥BC,所以∠A+∠B=180°,又知∠B=∠AEF,所以∠A+∠AEF=180°成立.故此得证.

证明:因为 AD∥BC,(已知)

所以 ∠A+∠B=180°.(两直线平行,同旁内角互补)

又因为 ∠AEF=∠B,(已知)

所以 ∠A+∠AEF=180°,(等量代换)

所以 AD∥EF.(同旁内角互补,两条直线平行)

四、巩固练习:

1.多媒体给出图和已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.

证明:因为 AB∥CD,所以 ∠BAC+∠ACD=180°,又因为 AE平分∠BAC,CE平分∠ACD,所以 ————————————

故——————————————(让学生分析尝试后补充)

即 ∠1+∠2=90°.(理由略)

2.多媒体给出图和已知:∠1=∠2,求证:∠3+∠4=180°.

仔细剖析:鼓励学生先自己分析再合作完成证明:(找学生板书过程)略。

小结: 我们是如何得到平行线的性质定理?先通过度量,运用从特殊到一般的思维方式发现性质1,然后通过演绎证明得到后两个性质定理,从因果关系和所起的作用来看性质定理和判定定理区别和联系.

五、作业:

1.给出图,AB∥CD,∠1=102°,求∠

2、∠

3、∠

4、∠5的度数,并说明根据?

2.给出图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠

1、∠

3、∠C、∠BAC+∠B+∠C各是多少度,为什么?

3.给出图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.

第五篇:平行线的性质教学设计

《平行线的性质》教学设计(人教版)学习目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.经历探究直线平行的条件的过程,掌握直线平行的条件,领悟归纳和转化的数学思想 学习重、难点:探索并掌握直线平行的条件是本课的重点也是难点.学习过程

一、复习引入

1.填空:经过直线外一点,________与这条直线平行.2.画图:已知直线AB,点P在直线AB外,用直尺和三角尺画过点P的直线CD,使CD∥AB.3.反思:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用?

既然两个角相等与两条直线平行能联系起来, 那么这两个角具有什么样的位置关系,我们是否得到了一个判定两直线平行的方法?

二、探索直线平行的条件

1.画出课本图5.2-5的简化图形,分析∠

1、∠2的位置关系.(1)你能描述∠

1、∠2的方位吗?.(2)识别图中其他的同位角,并标记出它们。(要求:正确而又不遗漏.)

(3)强调:同位角是具有特殊位置关系的两个角, 它不同于对顶角和邻补角.同位角都有一条边在截线EF上.2.归纳利用同位角判定两条直线平行的方法.(1)根据同位角的意义以及平推三角尺画出平行线活动中叙述判定两条直线平行的方法.平行线的判定方法1: 简单记为:(2)结合图形用符号语言表达两直线平行的判定方法1:

强调:判定两直线平行方法1的条件中有两层意思:第一层这两个角是这两条被第三条直线所截而成的一对同位角;第二层这两个角相等两者缺一不可.(3)简单应用.①表演木工用角尺画平行线过程,说出用角尺画平行线的道理(结合P14图5.2-7).规范说理过程:(因为∠DCB与∠FEB是直线CD、EF被AB所截而成的同位角,而且 ∠DCB=∠FEB,即同位角相等,根据直线平行判定方法,从而CD∥EF.)3.探索两条直线平行的其它方法

(1)演示学具,如果内错角相等时,两条直线平行吗?(2)思考:为什么内错角相等时,两条直线平行?你能用学过的两直线平行的判定方法1来说明吗?(提示:通过内错角和同位角之间的关系把条件∠2=∠3转化为∠1=∠2.)规范说理过程:(3)归纳判定两条直线平行的方法2: 简单记为: 结合图形用符号语言表达方法2:(4)讨论:同旁内角数量上满足什么关系时,两直线平行? ①猜想:

②利用平行判定方法1或方法2来说明猜想正确.方法一 因为∠4+∠2=180°,而∠4+∠1=180°,根据同角的补角相等,所以有∠2=∠1, 即同位角相等,从而a∥b.方法二 因为∠4+∠2=180°,而∠4+∠3=180°,根据同角的补角相等,所以有∠3=∠2, 即内错角相等,从而a∥b.③归纳两条直线平行的判定方法3: 简单记为: 综合图形,用符号语言表达:

三、巩固练习

课本P17练习.反馈练习

一、判断题

1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.()2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.()

二、填空

1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________;如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.(1)(2)(3)(2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.三、选择题

1.如图3所示,下列条件中,不能判定AB∥CD的是()A.AB∥EF,CD∥EF B.∠5=∠A;C.∠ABC+∠BCD=180° D.∠2=∠3 2.右图,由图和已知条件,下列判断中正确的是()A.由∠1=∠6,得AB∥FG;B.由∠1+∠2=∠6+∠7,得CE∥EI C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;D.由∠5=∠4,得AB∥FG

四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由

下载5.3.1 平行线的性质(第1课时)教学设计word格式文档
下载5.3.1 平行线的性质(第1课时)教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平行线的性质教学设计大全

    第二章相交线与平行线2.3平行线的性质(第1课时)教学设计一、教学内容分析本节内容是北师大教版义务教育课程标准实验教科书《数学》七年级下册第二章相交线与平行线的2.3节《......

    5.3.1平行线的性质(第8课时) 1学生版

    厦门五中2013数学 学科教学案上课时间:第周 星期备课组长审核签名课题: §5.3.1平行线的性质(一)(第8课时)主备教师:蔡建勋班级:座号:姓名:学习目标:1.经历探索直线平行的性质的过程,......

    平行线性质1教案

    平行线的性质(第1课时)教学目标1.使学生理解平行线的性质,能正确区分平行线的性质和判定。2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生......

    第3课时-(绿)平行线的性质和平移

    课题§5.3平行线的性质日期:月日1、掌握平行线的三个性质,并能应用它们进行简单的推理论证;2、了解命题、定理的概念,能够区分命题的题设和结论.知识点1:平行线的判定:⑴平行线的......

    《18.1.1平行四边形的性质(第1课时)》教学设计

    18.1平行四边形(第一课时) 大冶市第二实验中学 华先法 一、教学内容平行四边形的概念,平行四边形边、角的性质,平行线间的距离。 二、教学目标 1、理解平行四边形的概念。 2、......

    5.3.1平行线的性质教学设计

    5.3.1平行线的性质 学习目标: 知识与技能: 1、掌握平行线的三个性质及性质二和性质三的的推到过程。 2、能应用这三条性质进行简单的推理论证; 过程与方法:通过观察、推理、交流......

    《5.3.1平行线的性质》教学设计

    《平行线的性质》教学设计 一、教学目标 1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。 2、能力目标:经历探索平行......

    平行线的性质(二)教学设计

    第二章 相交线与平行线 3平行线的性质(第2课时) 本节课的教学目标是: 1、知识与技能目标: (1)熟练应用平行线的性质和判别直线平行的条件解决问题。 (2)逐渐理解几何推理的要领,分......