第一篇:初中数学(人教版)第二十二章 一元二次方程教案
第二十二章
一元二次方程
主备人:刘鸿智
教材内容
本单元教学的主要内容:
1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.2.本单元在教材中的地位和作用: 教学目标
1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。教学重点、难点 重点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。难点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(配方法、公式法、分解因式法),3.一元二次方程根与系数的关系以及灵活运用 课时安排
本章教学时约需课时,具体分配如下(供参考)
22.1 一元二次方程 1课时 22.2 降次 7 课时 22.3 实际问题与一元二次方程 3 课时 教学活动、习题课、小结
静下心来教书,潜下心来育人
22.1 一元二次方程
教学目的
1.使学生理解并能够掌握整式方程的定义.
2.使学生理解并能够掌握一元二次方程的定义.
3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式. 教学重点、难点
重点:一元二次方程的定义.
难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.教学过程 复习提问
1.什么叫做方程?什么叫做一元一次方程?
2.指出下面哪些方程是已学过的方程?分别叫做什么方程?
(l)3x+4=l;
(2)6x-5y=7;
3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”. 引入新课
1.方程的分类:(通过上面的复习,引导学生答出)
学过的几类方程是
静下心来教书,潜下心来育人
没学过的方程有x-70x+825=0,x(x+5)=150.
这类“两边都是关于未知数的整式的方程,叫做整式方程.”像这样,我们把“只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程.”
据此得出复习中学生未学过的方程是
(4)一元二次方程:x-70x+825=0,x(x+5)=150.
同时指导学生把学过的方程分为两大类: 22
2.一元二次方程的一般形式
注意引导学生考虑方程x-70x+825=0和方程x(x+5)=150,即x+5x=150,可化为:x+5x-150=0.
从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为
ax+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.
其中ax,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数. 【注意】二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.
例 把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项. 课堂练习P27 1、2题 归纳总结 222
221.方程分为两大类:
判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.
2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.
其一般形式是ax+bx+c=0(a≠0),其中b,c均可为任意实数,而a不能等于零. 布置作业:习题22.1 1、2题. 达标测试
1.在下列方程中,一元二次方程的个数是()
2静下心来教书,潜下心来育人
①3x+7=0,②ax+bx+c=0,③(x+2)(x-3)=x-1,④x-5x+4=0, ⑤x-(2+1)x+2=0,⑥3x-2
22222
4+6=0 xA.1个 B.2个 C.3个 D.4个
2.关于x的一元二次方程3x=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是()A.3,-5,-2 B.3,-5x,2 C.3,5x,-2 D.3,-5,2 3.方程(m+2)xm2+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=-2 D.m≠±2 4.若方程kx+x=3x+1是一元二次方程,则k的取值范围是 5.方程4x=3x-2+1的二次项是 ,一次项是 ,常数项是 222课后反思:
22.2解一元二次方程
第一课时
直接开平方法
教学目的
1.使学生掌握用直接开平方法解一元二次方程.
2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax+c=0(a>0,c<0)的方法. 教学重点、难点
重点:准确地求出方程的根.
难点:正确地表示方程的两个根. 教学过程
复习过程
回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.
求下列各式中的x:
1.x=225; 2.x-169=0;3.36x=49; 4.4x-25=0.
静下心来教书,潜下心来育人
222
一元二次方程的解也叫做一元二次方程的根.
解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.
即 一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.
引入新课
我们已经学过了一些方程知识,那么上述方程属于什么方程呢?
新课
例1 解方程 x2-4=0.
解:先移项,得x2=4.
即x1=2,x2=-2.
这种解一元二次方程的方法叫做直接开平方法.
例2 解方程(x+3)2=2.
练习:P28 1、2 归纳总结
1.本节主要学习了简单的一元二次方程的解法——直接开平方法.
2.直接法适用于ax2+c=0(a>0,c<0)型的一元二次方程. 布置作业:习题22.1 4、6题 达标测试
1.方程x2-0.36=0的解是
A.0.6 B.-0.6 C.±6 D.±0.6 2.解方程:4x2+8=0的解为 A.x1=2 x2=-2 B.x12,x22
C.x1=4 x2=-4 D.此方程无实根 3.方程(x+1)2-2=0的根是
A.x112,x212 B.x112,x212
C.x112,x212 D.x112,x212
4.对于方程(ax+b)2=c下列叙述正确的是
静下心来教书,潜下心来育人
A.不论c为何值,方程均有实数根 B.方程的根是xcb aC.当c≥0时,方程可化为:axbD.当c=0时,x5.解下列方程:
c或axbc
b a①.5x-40=0 ②.(x+1)-9=0 ③.(2x+4)-16=0 ④.9(x-3)-49=0 课后反思
2222
第二课时
配方法
教学目的
1.使学生掌握用配方法解一元二次方程的方法.
2.使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程.并由此体会转化的思想. 教学重点、难点
重点:掌握配方的法则.
难点:凑配的方法与技巧. 教学过程
复习过程
用开平方法解下列方程:
(1)x=441;(2)196x-49=0;
引入新课
我们知道,形如x-A=0的方程,可变形为x=A(A≥0),再根据平方根的意义,用直接开平方法求解.那2么,我们能否将形如ax+bx+c=0(a>0)的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.
新课
我们研究方程x+6x+7=0的解法:
静下心来教书,潜下心来育人
2222
将方程视为:x+2·x·3=-7,即 x+2·x·3+3=3-7,∴(x+3)=2,22222
这种解一元二次方程的方法叫做配方法.这种方法的特点是:先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解.
例1 解方程x-4x-3=0.
配方法解之.在解的过程中,注意介绍配方的法则.
例2 解方程2x+3=7x. 22
练习:P34 1、2题 归纳总结
应用配方法解一元二次方程ax+bx+c=0(a≠0)的要点是:
(1)化二次项系数为1;
(2)移项,使方程左边为二次项和一次项,右边为常数;
(3)方程两边各加上一次项系数一半的平方,使左边配成一个完全平方式.布置作业:习题22.2 1、3题 达标测试
1.方程x-a=(x-a)(a≠0)的根是
A.a B.0 C.1或a D.0或a 2.已知关于x的方程(m+3)x+x+m+2m-3=0一根为0,另一根不为0,则m的值 为
A.1 B.-3 C.1或-3 D.以上均不对 3.若x-mx+
22222221是一个完全平方式,则m= 4A.1 B.-1 C.±1 D.以上均不对
4.方程x=5的解是 ,方程(x-1)=5的解是 ,方程(3x-1)=5的解是 5.①x课后反思:
静下心来教书,潜下心来育人
215x =(x-)2 ②x2x =(x+)2
第三课时
求根公式法
教学目的
1.使学生掌握一般一元二次方程的求根公式的推导过程,并由此培养学生的分析、综合和计算能力.
2.使学生掌握公式法解一元二次方程的方法. 教学重点、难点
重点:要求学生正确运用求根公式解一元二次方程.
难点:1.求根公式的推导过程.
2.含有字母参数的一元二次方程的公式解法.
教学过程
复习提问
提问:当x2=c时,c≥0时方程才有解,为什么?
练习:用配方法解下列一元二次方程
(1)x2-8x=20;(2)2x2-6x-1=0.
引入新课
我们思考用配方法解一般形式的一元二次方程,应如何配方来进行求解?
新课
(引导学生讨论)用配方法解一元二次方程ax
2+bx+c=0(a≠0)的步骤.
解:∵a≠0,两边同除以a,得
把常数项移到方程右边,并两边各加上一次项系数的一半的平方,得
静下心来教书,潜下心来育人
(a≠0)的求根公式.用此公式解一元二次方程的方法叫做公式法.
应用求根公式解一元二次方程的关键在于:
(1)将方程化为一般形式ax2+bx+c=0(a≠0);(2)将各项的系数a,b,c代入求根公式.
例1 解方程x2-3x+2=0.例2 解方程2x2+7x=4.例5 解关于x的方程 x2-m(3x-2m+n)-n2
=0.
练习P37 1题 归纳总结
1.本节课我们推导出了一元二次方程ax2
+bx+c=0(a≠0)的求根公式,即
要重点让学生注意到应用公式的大前提,即b2
-4ac≥0.
2.应注意把方程化为一般形式后,再用公式法求解. 布置作业:习题22.2 5、8、10题 达标测试
1.若代数式4x2-2x-5与2x2+1的值互为相反数,则x的值为 A.1或32 B.1或23 C.-1或23 D.1或32
2.对于一元二次方程ax2+bx+c=0,下列叙述正确的是 A.方程总有两个实数根
B.只有当b2-4ac≥0时,才有两实根 C.当b2-4ac<0时,方程只有一个实根 D.当b2-4ac=0时,方程无实根
3.已知三角形两边长分别是1和2,第三边的长为2x
2-5x+3=0的根,则这个三角形的周长是
静下心来教书,潜下心来育人
A.4 B.411 C.4或4 D.不存在 224.如果分式x22x3的值为0,则x值为
x3A.3或-1 B.3 C.-1 D.1或-3 5.把23x(3x)2化成ax+bx+c=0(a≠0)的形式后,则a= ,b= ,c=
26.若分式x2xx22的值为0,则x=
27.已知x=-1是关于x的一元二次方程ax+bx+c=0的根,则22
2bc=__________.aa8.若a+b+2a-4b+5=0,则关于x的方程ax-bx+5=0的根是___________.课后反思:
第四课时
因式分解法
教学目的
使学生掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法. 教学重点、难点
重点:用因式分解法解一元二次方程.
难点:将方程化为一般形式后,对左侧二次三项式的因式分解. 教学过程
复习提问
1.在初一时,我们学过将多项式分解因式的哪些方法?
2.方程x=4的解是多少?
引入新课
方程x=4还有其他解法吗?
新课
众所周知,方程x=4还可用公式法解.
此法要比开平方法繁冗.本课,我们将介绍一种较为简捷的解一元二次方程的方法——因式分解法.
我们仍以方程x=4为例.
静下心来教书,潜下心来育人
222
2移项,得 x-4=0,对x-4分解因式,得(x+2)(x-2)=0.
我们知道:
∴ x+2=0,x-2=0.
即 x1=-2,x2=2.
由上述过程我们知道:当方程的一边能够分解成两个一次因式而另一边等于0时,即可解之.这种方法叫做因式分解法.
例1 解下列方程:
(1)x-3x-10=0;(2)(x+3)(x-1)=5.
在讲例1(1)时,要注意讲应用十字相乘法分解因式;
讲例1(2)时,应突出讲将方程整理成一般形式,然后再分解因式解之.
例2 解下列方程:
(1)3x(x+2)=5(x+2);(2)(3x+1)-5=0.
在讲本例(1)时,要突出讲移项后提取公因式,形成(x+2)(3x-5)=0后求解;
再利用平方差公式因式分解后求解.
注意:在讲完例
1、例2后,可通过比较来讲述因式分解的方法应“因题而宜”.
例3 解下列方程:
(1)3x-16x+5=0 ;(2)3(2x-1)=7x.
练习:P40 1、2题 归纳总结
对上述三例的解法可做如下总结:因式分解法解一元二次方程的步骤是
1.将方程化为一般形式;
2.把方程左边的二次三项式分解成两个一次式的积;(用初一学过的分解方法)
3.使每个一次因式等于0,得到两个一元一次方程;
4.解所得的两个一元一次方程,得到原方程的两个根. 布置作业:习题22.2 6、10题
达标测试
静下心来教书,潜下心来育人
222222
1.对方程(1)(2x-1)=5,(2)x-x-1=0,(3)x(x3)3x选择合适的解法是 A.分解因式法、公式法、分解因式法 B.直接开平方法、公式法、分解因式法 C.公式法、配方法、公式法 D.直接开平方法、配方法、公式法
2.方程2x(x-3)=5(x-3)的根为 A.x222552 B.x=3 C.x1,x23 D.x 2253.若x-5∣x∣+4=0,则所有x值的和是 A.1 B.4 C.0 D.1或4 5.若方程x+ax-2a=0的一根为1,则a的取值和方程的另一根分别是 A.1,-2 B.-1,2 C.1,2 D.-1,-2 5.已知3xy-xy-2=0,则x与y之积等于
6.关于x的一元二次方程(m+2)x+x-m-5m-6=0有一根为0,则m=。7.方程(x-1)(x-2)=0的两根为x1,x2,且x1>x2,则x1-2x2的值是。8.方程x=∣x∣的解是 9.用因式分解法解下列方程:(1).(2x-1)+3(1-2x)=0(2).(1-3x)=16(2x+3)(3).x+6x-7=0 10.选用适当的方法解下列方程:(1).(3-x)+x=9(2).(2x-1)+(1-2x)-6=0(3).(3x-1)=4(1-x)(4).2(x-1)=(1-x)2
2222
2222根据以上各方程的特点,选择解法的思路是:先特殊后一般.选择解法的顺序是:直接开平方法—因式分解法—公式法或配方法.配方法是普遍适用的方法,但不够简便,一般不常用.不过对于二次项系数为1,一次项系数为偶数的一元二次方程,用配方法可能比用公式法要简单些.课后反思:
静下心来教书,潜下心来育人
第五课时
一元二次方程的根的判别式。
教学目的
1.使学生理解并掌握一元二次方程的根的判别式.
2.使学生掌握不解方程,运用判别式判断一元二次方程根的情况.
3.通过对含有字母系数方程的根的讨论,培养学生运用一元二次方程根的判别式的论证能力和逻辑思维能力.培养学生思考问题的灵活性和严密性. 教学重点、难点
重点:一元二次方程根的判别式的内容及应用.
难点:1.一元二次方程根的判别式的推导.
2.利用根的判别式进行有关证明
教学过程
复习提问
1.一元二次方程的一般形式及其根的判别式是什么?
2.用公式法求出下列方程的解:
(1)3x+x-10=0;(2)x-8x+16=0;(3)2x-6x+5=0.
引入新课
通过上述一组题,让学生回答出:一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根.
接下来向学生提出问题:是什么条件决定着一元二次方程的根的情况?这条件与方程的根之间又有什么关系呢?能否不解方程就可以明确方程的根的情况?这正是我们本课要探讨的课题.(板书本课标题)
新课
先讨论上述三个小题中b-4ac的情况与其根的联系.再做如下推导:
对任意一元二次方程ax+bx+c=0(a≠0),可将其变形为 222
22∵a≠0,∴4a>0.
由此可知b-4ac的值的“三岐性”,即正、零、负直接影响着方程的根的情况.
(1)当b-4ac>0时,方程右边是一个正数. 22
2静下心来教书,潜下心来育人
(2)当b-4ac=0时,方程右边是0. 2
通过以上讨论,总结出:一元二次方程ax+bx+c=0的根的情况可由b-4ac来判定.故称b-4ac2是一元二次方程ax+bx+c=0的根的判别式,通常用“△”来表示.
综上所述,一元二次方程ax+bx+c=0(a≠0)
当△>0时,有两个不相等的实数根;
当△=0时,有两个相等的实数根;
当△<0时,没有实数根. 反过来也成立.
例1.不解方程,判别下列方程根的情况:
(1)2x+3x-4=0;(2)16y+9=24y;(3)5(x+1)-7x=0.
分析:要想确定上述方程的根的情况,只需算出“△”,确定它的符号情况即可. 例2.当k取什么值时,关于x的方程2x-(4k+1)x+2k-1=0
(1)有两个不相等的实数根;(2)有两个相等实数根;(3)方程没有实数根.
例3.求证关于x的方程(k+1)x-2kx+(k+4)=0没有实数根.归纳总结
应用判别式解题应注意以下几点:
1.应先把已知方程化为一元二次方程的一般形式,为应用判别式创造条件.
2.一元二次方程根的判别式的逆命题也是成立的. 布置作业:习题22.2 4题 达标测试
1.证明关于x的方程(x-1)(x-2)=m有两个不相等的实数根.
2.已知a,b,c是△ABC的三边的长,求证方程ax-(a+b-c)x+b=0没有实数根.
静下心来教书,潜下心来育人
3.若m≠n,求证关于x的方程2x2+2(m+n)x+m2+n2
=0无实数根.
4.已知,关于x的方程(a-2)x2
-2(a-1)x+(a+1)=0,当a为何非负整数时; ①.方程只有一个实数根.②方程有两个相等的实数根.③方程没有实数根.课后反思
第六课时
一元二次方程的根与系数的关系
教学目的
1.使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会其运用.
2.培养学生分析、观察以及利用求根公式进行推理论证的能力. 教学重点、难点
重点:1.韦达定理的推导和灵活运用.
2.已知方程求关于根的代数式的值
难点:用两根之和与两根之积表示含有两根的各种代数式. 教学过程
复习提问
1.一元二次方程ax2+bx+c=0的求根公式应如何表述?
2.上述方程两根之和等于什么?两根之积呢?
新课
一元二次方程ax2+bx+c=0(a≠0)的两根为
由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”)
如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么
我们再来看二次项系数为1的一元二次方程x
2+px+q=0的根与系数的关系.
静下心来教书,潜下心来育人
得出:
如果方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p,x1x2=q.
由 x1+x2=-p,x1x2=q 可知p=-(x1+x2),q=x1·x2,∴ 方程x2+px+q=0,即 x2-(x1+x2)x+x1·x2=0.
这就是说,以两个数x21,x2为根的一元二次方程(二次项系数为1)是x-(x1+x2)x+x1·x2=0.例1.已知方程5x2+kx-6=0的一个根是2,求它的另一根及k的值. 例2.下列各方程两根之和与两根之积各是什么?
(1)x2-3x-18=0;(2)x2
+5x+4=5;
(3)3x2+7x+2=0;(4)2x2
+3x=0.
练习P42 归纳总结
1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理.
2.要掌握定理的两个应用:
⑴.不解方程直接求方程的两根之和与两根之积; ⑵.已知方程一根求另一根及系数中字母的值. 布置作业:习题22.2 7题 达标测试
1.方程2x2+7x+k=0的两根中有一个根为0,k为何值?
2.利用根与系数的关系,求一元二次方程2x2
+3x-1=0两根的(1)平方和;(2)倒数和. 课后反思
第七课时
二次三项式的因式分解(公式法)教学目的
静下心来教书,潜下心来育人
1.使学生理解二次三项式的意义及解方程和因式分解的关系.
2.使学生掌握用求根法在实数范围内将二次三项式分解因式. 教学重点、难点
重点:用求根法分解二次三项式.
难点:1.方程的同解变形与多项式的恒等变形的区别.
2.二元二次三项式的因式分解.
教学过程
复习提问
解方程:1.x-x-6=0; 2.3x-11x+10=0; 3.4x+8x-1=0.
引入新课
在解上述方程时,第1,2题均可用十字相乘法分解因式,迅速求解.而第3题则只有采用其他方法.此题给我们启示,用十字相乘法分解二次三项式,有时是无法做到的.是否存在新的方法能分解二次三项式呢?第3个方程的求解给我们以启发.
新课
二次三项式ax+bx+c(a≠0),我们已经可以用十字相乘法分解一些简单形式.下面我们介绍利用一元二次方程的求根公式将之分解的方法.
易知,解一元二次方程2x-6x+4=0时,可将左边分解因式,即2(x-1)(x-2)=0,求得其两根x1=1,x2=2.反之,我们也可利用一元二次方程的两个根来分解二次三项式.即,令二次三项式为0,解此一元二次方程,求出其根,从而分解二次三项式.具体方法如下:
如果一元二次方程ax+bx+c=0(a≠0)的两个根是 222
22=a[x-(x1+x2)x+x1x2] =a(x-x1)(x-x2).
从而得出如下结论.
在分解二次三项式ax+bx+c的因式时,可先用公式求出方程ax+bx+c=0的两根x1,x,然后写成ax+bx+c=a(x-x1)(x-x2).
静下心来教书,潜下心来育人
例如,方程2x2-6x+4=0的两根是x1=1,x2=2.
则可将二次三项式分解因式,得2x2
-6x+4=2(x-1)(x-2).
例1 把4x2-5分解因式. 归纳总结
用公式法解决二次三项式的因式分解问题时,其步骤为:
1.令二次三项式ax2+bx+c=0;
2.解方程(用求根公式等方法),得方程两根x1,x2;
3.代入a(x-x1)(x-x2).
二次三项式ax2+bx+c(a≠0)分解因式的方法有三种,即
1.利用完全平方公式;
2.十字相乘法:
即x2+(a+b)x+ab=(x+a)(x+b);
acx2+(ad+bc)x+bd=(ax+b)(cx+d).
3.求根法:
ax2+bx+c=a(x-x1)(x-x2),(1)当b2-4ac≥0时,可在实数范围内分解;
(2)当b2-4ac<0时,在实数范围内不能分解. 布置作业:
对下列式子进行因式分解
① 2x2+6x+4.②.4x2-4x+1 ③.-2x2
-4x+3.④.2x2
-8xy+5y2
课后反思
22.3一元二次方程的应用
第一课时
教学目的
1.使学生会列出一元二次方程解应用题.
2.使学生通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.教学重点、难点
静下心来教书,潜下心来育人
重点:由应用问题的条件列方程的方法.
难点:设“元”的灵活性和解的讨论. 教学过程
复习提问
1.一元二次方程有哪些解法?(要求学生答出:开方法、配方法、公式法、因式分解法.)
2.回忆一元二次方程解的情况.(要求学生按△>0,△=0,△<0三种情况回答问题.)
3.我们已经学过的列方程解应用题时,有哪些基本步骤?(要求学生回答:①审题;②设未知数;③根据等量关系列方程(组);④解方程(组);⑤检验并写出答案.)
引入新课
问题1:用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为21500cm的无盖长方形盒子.试问:应如何求出截去的小正方形的边长?
解:设小正方形边长为xcm,则盒子底面的长、宽分别为(80-2x)cm及(60-2x)cm,依题意,可得(80-2x)(60-2x)=1500,即 x-70x+825=0.
当时,我们不会解此方程.现在,可用求根公式解此方程了. 2
∴x1=55,x2=15.
当x=55时,80-2x=-30,60-2x=-50;
当x=15时,80-2x=50,60-2X=30.
由于长、宽不能取负值,故只能取x=15,即小正方形的边长为15cm.
问题2:剪一块面积是150cm的长方形铁片,使它的长比宽多5cm,这块铁片应怎样剪?
分析:要解决此问题,需求出铁片的长和宽,由于长比宽多5cm,可设宽为未知数来列方程.
解:设这块铁片宽xcm,则长是(x+5)cm.依题意,得
x(x+5)=150,即x+5x-150=0.
∴x1=10,x2=-15(舍去).
∴x=10,x+5=15.
答:应将之剪成长15cm,宽10cm的形状.
静下心来教书,潜下心来育人
归纳总结
利用一元二次方程解应用题的主要步骤仍是:①审题;②设未知数;③列方程;④解方程;⑤依题意检验所得的根;⑥得出结论并作答. 布置作业:习题22.3 1、2、3、5题 课后反思
第二课时
教学目的
使学生掌握有关面积和体积方面以及“药液问题”的一元二次方程应用题的解法.提高学生化实际问题为数学问题的能力. 教学重点、难点
重点:用图示法分析题意列方程.
难点:将实际问题转化为对方程的求解问题.教学过程
复习提问
本小节第一课我们介绍了什么问题?
引入新课
今天我们进一步研究有关面积和体积方面以及“药液问题”的一元二次方程的应用题及其解法.
新课
例1 如图1,有一块长25cm,宽15cm的长方形铁皮.如果在铁皮的四个角上截去四个相同的小正方形,2然后把四边折起来,做成一个底面积为231cm的无盖长方体盒子,求截去的小正方形的边长应是多少?
分析:如图1,考虑设截去的小正方形边长为xcm,则底面的长为(25-2x)cm,宽为(15-2x)cm,由此,知由长×宽=矩形面积,可列出方程.
解:设小正方形的边长为xcm,依题意,得(25-2x)(15-2x)=231,即x-20x+36=0,静下心来教书,潜下心来育人
解得x1=2,x2=18(舍去).
答:截去的小正方形的边长为2cm.
例2 一个容器盛满药液20升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液5升,问每次倒出药液多少升?
∴x=10.
答:第一、二次倒出药液分别为10升,5升.
练习P41 3、4 归纳总结
1.注意充分利用图示列方程解有关面积和体积的应用题.
2.要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式. 布置作业:习题22.3 8、9题 课后反思
第三课时
教学目的
使学生掌握列一元二次方程解关于增长率的应用题的方法.并进一步培养学生分析问题和解决问题的能力. 教学重点、难点
重点:弄清有关增长率的数量关系.
难点:利用数量关系列方程的方法. 教学过程
复习提问
1.问题:(1)某厂生产某种产品,产品总数为1600个,合格品数为1563个,合格率是多少?
(2)某种田农户用800千克稻谷碾出600千克大米,问出米率是多少?
(3)某商店二月份的营业额为3.5万元,三月份的营业额为5万元,三月份与二月份相比,营业额的增长率是多少?
新课
例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增产的百分率是多少?
分析:用译式法讨论列式
静下心来教书,潜下心来育人
一月份产量为5000吨,若月增长率为x,则二月份比一月份增产5000x吨.
二月份产量为(5000+5000x)=5000(1+x)吨;
三月份比二月份增产5000(1+x)x吨,三月份产量为5000(1+x)+5000(1+x)x=5000(1+x)吨.再根据题意,即可列出方程.
解:设平均每月增长的百分率为x,根据题意,得5000(1+x)=7200,即(1+x)=1.44,∴1+x=±1.2,x1=0.2,x2=-2.2(不合题意,舍去).
答:平均每月增长率为20%.
例2 某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少?
解:设每月增长率为x,依题意得
50+50(1+x)+50(1+x)=182,2
22答:
二、三月份平均月增长率为20%. 归纳总结
依题意,依增长情况列方程是此类题目解题的关键. 布置作业:习题22.3 7题 课后反思
静下心来教书,潜下心来育人
第二篇:《一元二次方程》参考教案
21.1 一元二次方程教学内容
本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
知识技能
探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.
数学思考
在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.
解决问题
培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:一元二次方程的定义、各项系数的辨别,根的作用. 难点:根的作用的理解.
关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
一、情境引入 【问题情境】
问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?
问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛? 【活动方略】
教师演示课件,给出题目.
学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题. 【设计意图】
由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.
二、探索新知 【活动方略】
学生活动:请口答下面问题.
(1)上面几个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
【设计意图】
主体活动,探索一元二次方程的定义及其相关概念.
三、范例点击 例1 将方程3x(x1)5(x2)化成一元二次方程的一般形式,并指出各项系数. 解:去括号得
0
3x23x5x1,移项,合并同类项,得一元二次方程的一般形式
3x28x100.
其中二次项系数是3,一次项系数是-8,常数项是-10. 【活动方略】 学生活动:
学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.
教师活动:
在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题). 【设计意图】
进一步巩固一元二次方程的基本概念. 例2 猜测方程x2x560的解是什么? 【活动方略】 学生活动:
学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.
教师活动:
教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结: 使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根). 【设计意图】
探究一元二次方程根的概念以及作用.
四、反馈练习课本P4 练习1、2题 补充习题:
1.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
2.你能根据所学过的知识解出下列方程的解吗?(1)x2360;
【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.五、应用拓展
例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
例4:有人解这样一个方程(x5)(x1)7.
解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?
由(x5)(x1)7得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.
【活动方略】
教师活动:操作投影,将例
3、例4显示,组织学生讨论. 学生活动:合作交流,讨论解答。【设计意图】
使学生进一步理解一元二次方程的概念,对一元二次方程的根有更深刻的理解.(2)4x290. 作业:
第三篇:关于一元二次方程教案
关于一元二次方程教案大全
一元二次方程是初中数学的主要内容,在初中代数中占重要地位。学生积极动手、动脑、动口为主线来完成。在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。以下是东星资源网小编整理的关于一元二次方程教案,欢迎查阅!
一元二次方程教案1
启发探究,获取新知
上面的三个方程这两个方程是一元一次方程吗?它们与一元一次方程的区别在哪里?它们有什么共同特点呢?(学生分组讨论,然后各组交流)
共同特点:(1)(2)(3)
(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程。
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
【设计意图】通过上述情景分析,让学生小组合作,列出方程。在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。
(三)例题解析,练习反馈
例题解析(投影展示)
例1:下列方程中哪些是一元二次方程?试说明理由。
例2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项
说明:一元二次方程的一般形式(≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。
此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。
例3:已知关于x的方程(k2-1)x2+(k+1)x-2=0
(1)当k取何值时此方程为一元一次方程?
(2)当k取何值时此方程为一元二次方程?并写出该一元二次方程的二次项系数,一次项系数,常数项。(同学先讨论,同桌交流再进行归纳)
【设计意图】通过例题,使学生巩固一元二次方程的概念,把握概念的实质。
练习反馈
1、课本第32页1、
2、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请尽可能多的写出满足条件的不同的一元二次方程?
【设计意图】开放题可以使学生开阔思维,进一步巩固概念。
(四)小结归纳,上升理性
引导学生从以下3个方面进行小结,(1)本节课我们学习了哪些知识?(2)学习过程中用了哪些数学方法?(3)确定一元二次方程的项及系数时要注意什么?
【设计意图】主要由学生进行总结和互相补充,以培养学生的归纳概括能力。
(五)作业布置
1、教材P34 习题22.1
2、选用作业设计。
板书设计
一元二次方程教案2
教学目标:
1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点
1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点
1、建立一元二次方程实际问题的数学模型.
2、把一元二次方程化为一般形式
教学方法:指导自学,自主探究
课时:第一课时
教学过程:
(学生通过导学提纲,了解本节课自己应该掌握的内容)
一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)
1、请认真完成课本P39—40议一议以上的内容;整理化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?
你能把这些特点用一个方程概括出来吗?
3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?
二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?
4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?
5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?
三、总结反思:(学生总结,进一步加深本节课所学内容)
这节课你学到了什么?
四、自查自省:(通过当堂小测,及时发现问题,及时应对)
1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个
(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.
作业:必做题:习题7.1
选做题:(挑战自我)p41随堂练习
1、已知关于的方程是一元二次方程,则为何值?
2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?
3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?
4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?
(1)(2)
板书设计:一元二次方程
定义:一个未知数整式方程可以化为
一般形式ax2+bx+c=0(a、b、c为常数,a≠0)
二次项一次项常数项
系数为a系数为b
教学反思
这次我参加了区里组织的优质
课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的.挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。
首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,提供有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间
其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。
再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。
我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。
一元二次方程教案3
一元二次方程的概念
教材分析:1.本节以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本节内容是在前面所学方程、一元一次方程、整式、方程的解的基础上进行学习,也是后面学习二次函数的一个基础。
2.这些概念是全章后继内容的基础。
3.让学生体会数学来源于生活,又服务于生活的基本思想。
学情分析:1.授课班级学生基础较差,学生成绩参差不齐,差生较多。教学中应给予充分思考的时间,注意讲练结合,以学生为本,体现生本课堂的理念。
2.该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的
优势,从而充分调动学生主动性和积极性,使课堂气氛活跃,让学生在愉快的环境中学习。
3.作为该班的班主任,同时又担任该班的数学教学,对学生学习情况有比较深入地了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的设计上要针对学生的差异采取分层设计的方法,着重加强对学生的双基训练。
教学目标:
一 知识与技能:
1.理解一元二次方程的概念,能判断一个方程是一元二次方程。
2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
二 过程与方法:
1.引导学生分析实际问题中的数量关系,组织学生讨论,让学生类比、抽象出一元二次方程的概念 。
2.培养独立思考,合作交流学,分析问题,解决问题的能力。
三 情感态度与价值观:
1.培养学生主动探究知识、自主学习和合作交流的意识.
2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
3.让学生体会数学来源于生活,又服务于生活的基本思想,从而意识到数学在生活中的作用。
教学重点:一元二次方程的概念及一般形式,利用概念解决实际问题。
教学难点:1.由实际问题向数学问题的转化过程.2.正确识别一般式中的“项”及“系数”.
3.一元二次方程的特点,如何判断一个方程是一元二次方程。
教学过程:
一、创设情境,引入新课
1.问题1:广安区为增加农民收入,需要调整农作物种植结构,计划20**年无公害蔬菜的产量比20**年翻一番,要实现这一目标,20**年和20**年无公害蔬菜产量的年平均增长率是多少?(通过放幻灯片引入)
设无公害蔬菜产量的年平均增长率为x,20**年的产量为a(a≠0),翻一番的意思就是a变为2a,那么
(1)用代数式表示20**年的产量;
(2)20**年蔬菜的产量比20**年增加了2x,对吗?为什么?你能用代数式表示出来吗?
学生思考交流得出方程 a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通过幻灯片引入情境,提出问题:
问题2:广安市政府在一块宽200m、长320m的矩形广场上,修筑宽相等的三条小路(两条纵向、一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛,要使花坛的总面积为57000m2,问小路的宽应为多少?
设小路的宽为x m,则横向小路的面积如何表示?纵向的呢?重叠部分的面积是多少?小路所占的面积用x的代数式如何表示?
这个问题的相等关系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
谁还能换一种思路考虑这个问题?
把6个小花坛拼起来是一个多长多宽的矩形,由此你会得出什么样的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比较一下,哪种方法更巧妙?
3.通过幻灯片引入情景。问题3:广安重百商场销售某品牌服装,若每件盈利50元,则每月可销售100件。若每件降价1元,则每月可多卖出5件,若每月要盈利6000元,则商场决定每件服装降价多少?
设每件降价x元,则现在的盈利为(50-x)元,降价后销售量为(100+5X)件。可列方程为:(50-x)(100+5X)=6000
教学总结:尽量让学生duodu多多参与,多鼓励学生积极回答问题。
第四篇:一元二次方程实际问题
例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.
(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]
(3)月销售成本不超过10000元,那么销售量就不超过10000=250kg,在这个提前下,40
•求月销售利润达到8000元,销售单价应为多少.
解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元
(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60
当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.
当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).
例4.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x
则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2=
答:所求的年利率是12.5%.
1=0.125=12.5% 8
第五篇:一元二次方程应用2010
1、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
2、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月的利润恰为2200元?
3、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子,可以使橙子的总产量达到60400个?
4、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请售答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过1000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
5、某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.求y关于x的二次函数关系式,并注明x的取值范围;
6、(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2
间包房租出,请分别写出y1、y2与x之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式。
7、(2009年甘肃庆阳)(8分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
8、(2009年湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.9.建造一个面积是140平方米的仓库,要求其一边靠墙,墙长16米,在与墙平行的一边开一道2米宽的门。现人32米长的材料来建仓库,求这个仓库的长是多少米?
10、如图在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。点P从A点开始,沿AB方向以每秒1厘米的速度移动,同时点Q从点B开始,沿BC方向以每秒厘米移动。问几秒时△PBQ的面积等于8平方厘米?
11.(2009年甘肃庆阳)若关于x的方程x2
2xk10的一个根是0,则k.
12.、(2009威海)若关于x的一元二次方程x2
(k3)xk0的一个根是2,则另一个根是______.、(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价P 13由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.