改进配矿方法先进事迹

时间:2019-05-13 14:58:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《改进配矿方法先进事迹》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《改进配矿方法先进事迹》。

第一篇:改进配矿方法先进事迹

采矿厂改进配矿方法先进事迹

陇南紫金采矿厂一直视露天采场的安全和环保为工作重点,以合理科学配矿为工作重心而开展日常工作。近年来在公司领导的正确带领下,采矿厂全体员工的努力下,我部门逐步取得了鲜明的成绩,因此在2014年度中获得公司“优秀团队”称号,这表明公司领导对我们工作的肯定,同时也鼓励我们再接再厉,再创佳绩。

2014年度,按照集团公司相关文件精神和我公司领导的一致要求,充分考虑以降本增效为原则,将配矿工作摆在突出首要的位置。因此,配矿工作全面而系列的展开了。特别制定了“配矿管理办法”,本管理条例从矿石采运全过程分为三级管理,亦称“三级管理”,具体内容

一级管理

本级管理采用现场施工管理员+现场采矿技术员的管理模式。现场施工管理员任用在该矿区具有丰富工作经验的员工,其具有较好的现场管理经验和良好的矿石辨别能力;现场采矿技术员任用具有专业采矿知识的员工,具有一定的作图、视图能力。

二级管理

本级管理采用矿山地质技术员+室内采矿技术员的管理模式。主要进行矿体圈定以及采矿月计划编制工作。

三级管理

本级管理采用采矿厂分管配矿厂长+矿台现场管理的管理模式。主要负责进行五家施工队运矿车辆之间的总体协调工作和矿台上的现场管理协调。各个采场依据“三级管理”条例,每天现场人员会向配矿人员及时报送当日采矿平台位置、矿石品位及运矿车数,配矿人员经综合分析后,原矿平台进行现场配矿,以保证品位均衡供矿。经过这一系列的工作,选厂供矿品位波动明显变缓,近于平稳。目前,我们的配矿工作也常抓不懈,相比以往有更大的改观。今后我们将一如既往地发扬我们以苦为乐的精神,努力把工作做到最好,为公司的长远发展积极工作。

矿山是男人们的世界,我们愿在我们的世界里燃烧最灿烂的青春。

第二篇:配方法专题探究

配方法专题探究

例1:填空题:

1.将二次三项式x2+2x-2进行配方,其结果为

2.方程x2+y2+4x-2y+5=0的解是。

分析:利用非负数的性质

3.已知M=x2-8x+22,N=-x2+6x-3,则M、N的大小关系为。分析:利用减法

4.用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式。

5.设方程x2+2x-1=0的两实根为x1,x2,则(x1-x2)2。

6.已知方程x2-kx+k=0的两根平方和为3,则k的值为。

分析:根与系数的关系,整体代入法

7.若x、y为实数,且x2y3(2x3),则y1的值等于。x

1分析:整理形式,非负数的应用。

拓展练习题:

***1.完全平方式是_______项式,其中有_____完全平方项,________•项是这两个数(式)

乘积的2倍.

****2.x2+mx+9是完全平方式,则m=_______.

分析:全面考虑

3.4x2+12x+a是完全平方式,则a=________.

分析:可以用判别式的方法

4.把方程x2-8x-84=0化成(x+m)2=n的形式为().

A.(x-4)2=100B.(x-16)2=100C.(x-4)2=84D.(x-16)2=8

45.已知△ABC的三边分别为a、b、c,且a2+b2+c2=ab+bc+ac,则△ABC的形状为。分析:重新组合,正确分割。

6.如果二次三项次x2-16x+m2是一个完全平方式,那么m的值是().

A.±8B.4C.-

D.±

分析:可以用代入验证法

7.用配方法解方程:(1)2x2-x=0;(2)x2+3x-2=0.

8.判断题.

(1)x2+1522x-=(x+)2+()993

3(2)x2-4x=(x-2)2+4()

(3)121y+y+=(y+1)2()2

29.已知(x2+y2)(x2+y2+2)-8=0,则x2+y2的值是().

A.-4B.2C.-1或4D.2或-

4分析:合情推理,十分重要。

10.用配方法说明:-3x2+12x-16的值恒小于0.

11.阅读题:解方程x2-4│x│-12=0.

解:(1)当x≥0时,原方程为x2-4x-12=0,配方得(x-2)2=16,两边平方得x-2=±4,∴x1=6,x2=-2(不符合题意,舍去).

(2)当x<0时,原方程为x2+4x-12=0,配方得(x+2)2=16,两边开平方得x+2=±4,∴x1=-6,x2=2(不符合题意,舍去),∴原方程的解为x1=6,x2=-6.

参照上述例题解方程x2-2│x-1│-4=0.

分析:分类讨论,是全面分析的必要方法。

12.设代数式2x2+4x-3=M,用配方法说明:无论x取何值时,M总不小于一定值,并求出该定值.

分析:极值问题,应该引起重视。

提高训练题:

1、求方程x2+y2+2x-4y+5=0 的解x, y.分析:转化成为特殊形式

2、因式分解:a2b2-a2+4ab-b2+1.对应练习:因式分解:

①x4+x2y2+y4 ;②x2-2xy+y2-6x+6y+9 ;③x4+x2-2ax-a2+1.例

3、化简下列二次根式: ①74;②2;③4322.分析:化简的关键是把被开方数配方

4、求下列代数式的最大或最小值:

① x2+5x+1;② -2x2-6x+1.对应练习:求下列代数式的最大或最小值:

①2x2+10x+1 ;②-12x+x-1.2例

5、解下列方程:

①x4-x2+2xy+y2+1=0 ;②x2+2xy+6x+2y2+4y+10=0.对应练习:解方程:

①x2-4xy+5y2-6y+9=0;②x2y2+x2+4xy+y2+1=0 ;③5x2+6xy+2y2-14x-8y+10=0.例

6、求方程 x2+y2-4x+10y+16=0的整数解

对应练习:求下列方程的整数解:

①(2x-y-2)2+(x+y+2)2=5;②x2-6xy+y2+10y+25=0.练习:

1、因式分解:①x4+x2y2+y4 ;②x2-2xy+y2-6x+6y+9 ;③x4+x2-2ax-a2+1.2、求下列代数式的最大或最小值:①2x2+10x+1 ;②-12x+x-1.23、已知:a2+b2+c2=111,ab+bc+ca=29.求:a+b+c的值.

第三篇:配方法习题

配方法习题

一、选择题

1.下列哪个不是完全平方式?()

A、2x2B、x2-6x+9C、25x2-10x+1D、x2+22x+1

212.以配方法解3x2+4x+1=0时,我们可得下列哪一个方程式?()

252121A、(x+2)2=3B、(3x+)2=、(x+2=D、(x+2=343

33.若2x2-3x+1加上一数k后,成为完全平方式,则k=()

A、18B、7C、116D、44.想将x2+32 x配成一个完全平方式,应该加上下列那一个数?()

A、34B、9994C、8、165.下列哪个不是完全平方式?()

A、x2+4B、x2+4x+4C、4x2+4x+1D、x2+x+1

4二、填空题

1.将方程式x2-4x+1=0配成(x+a)2=b之形式则a+b=___________

2.填入适当的数配成完全平方式x2-1+____________=(x-)

223.已知一元二次方程式x2-2x-1=0的解为x=a±b 则a-b=_______

三、利用配方法解下列一元二次方程式

3x2-8x+3=0。ax2-2bx+c=0(a>0,b2-ac≧0)

3x2-8x+3=03x2+11x+2=0。

x2+2x-1=03x2-8x+3=0

一、选择题(共56分,每小题14分):

1、2x^2+4x+10=12中,可以配方得到_______

A、2(x+1)^2=

3B、2(x+2)^2=

3C、(2x+1)^2=

3D、(2x+1)^2=

5.2、x^2+4x+3=-1的结果是_______

A、x=-

2B、x=

2C、无解

D、此题有两个根

.3、对于关于x的一元二次方程ax^2+bx+c=0(a不为0,a,b,c是常数)进行配方,得到_______

A、(x+b/a)^2(c/a^2)=-b/a

C、(x+b/2a)^2 =(b^2/4a^2)-c/a

D、对于不同的数字没有唯一表达式。

.4、对于关于x的方程(px+q)^2=m的根的判断,其中有可能正确的有_______

(1)x为任意实数,(2)x1=x2=q/p,(3)当m<0时,方程无解

A、没有正确的B、(2)(3)正确

C、只有(3)正确

D、(1)(3)正确

.二、解答题(共46分,第5题18分,第6题28分)

5、请用配方法解方程 x^2+4x+3=156、对于关于x的方程 mx^2+nx+q=0,将其化简成x=?的形式。

一、填空题(1×28=28)

_____ 个.2、单项式-7a2bc的系数是______, 次数是______.3、多项式3a2b2-5ab2+a2-6是_____次_____项式,其中常数项是_______.4、3b2m•(_______)=3b4m+1-(x-y)5(x-y)4=________(-2a2b)2÷(_______)=2a5、(-2m+3)(_________)=4m2-9(-2ab+3)2=_____________

1、下列代数式中:①3x+5y ②x2+2x+y2 ③0 ④-xy2 ⑤3x=0 ⑥ 单项式有 _____个,多项式有

6、如果∠1与∠2互为补角,∠1=72º,∠2=_____º ,若∠3=∠1,则∠3的补角为_______º,理由是__________________________.7、在左图中,若∠A+∠B=180º,∠C=65º,则∠1=_____º,A 2 D ∠2=______º.B C8、在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).9、在进行小组自编自答活动时,小芳给小组成员出了这样一道题,题目:我国古代数学家祖冲之发现了圆周率π=3.1415926……,取近似值为3.14,是精确到_______位,有______个有效数字,而小明出的题是:如果一年按365天计算,那么,一年就有31536000秒,精确到万位时,近似数是_____________秒,有______个有效数字.10、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则P(小明被选中)= ________ , P(小明未被选中)=________.11、随意掷出一枚骰子,计算下列事件发生的概率标在下图中.⑴、掷出的点数是偶数 ⑵、掷出的点数小于7

⑶、掷出的点数为两位数 ⑷、掷出的点数是2的倍数

0 1/2

1不可能发生 必然发生

二、选择题(2×7=14)

1、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2+3xy-y2)-(-x2+4xy-y2)=

-x2_____+y2空格的地方被钢笔水弄污了,那么空格中的一项是()

A、-7xy B、7xy C、-xy D、xy2、下列说法中,正确的是()

A、一个角的补角必是钝角 B、两个锐角一定互为余角

C、直角没有补角 D、如果∠MON=180º,那么M、O、N三点在一条直线上

3、数学课上老师给出下面的数据,()是精确的A、2002年美国在阿富汗的战争每月耗费10亿美元

B、地球上煤储量为5万亿吨以上

C、人的大脑有1×1010个细胞

D、这次半期考试你得了92分

4、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()

A、B、C、D、5、已知:∣x∣=1,∣y∣= ,则(x20)3-x3y2的值等于()

A、-或-B、或 C、D、-

6、下列条件中不能得出a‖b 的是()c

A、∠2=∠6 B、∠3+∠5=180º 1 2 a

C、∠4+∠6=180º D、∠2=∠8 5 6 b7、下面四个图形中∠1与∠2是对顶角的图形有()个

A、0 B、1 C、2 D、3三、计算题(4×8=32)

⑴-3(x2-xy)-x(-2y+2x)⑵(-x5)•x3n-1+x3n•(-x)

4⑶(x+2)(y+3)-(x+1)(y-2)⑷(-2m2n)3•mn+(-7m7n12)0-2(mn)-4•m11•n8

⑸(5x2y3-4x3y2+6x)÷6x,其中x=-2,y=2 ⑹(3mn+1)(3mn-1)-(3mn-2)

2用乘法公式计算:

⑺ 9992-1 ⑻ 20032

四、推理填空(1×7=7)

A 已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠

2E 求证:CD⊥AB

F 证明:∵DG⊥BC,AC⊥BC(___________)

D ∴∠DGB=∠ACB=90º(垂直的定义)

∴DG‖AC(_____________________)

B C ∴∠2=_____(_____________________)

∵∠1=∠2(__________________)∴∠1=∠DCA(等量代换)

∴EF‖CD(______________________)∴∠AEF=∠ADC(____________________)∵EF⊥AB ∴∠AEF=90º ∴∠ADC=90º 即CD⊥AB

五、解答题(1题6分,2题6分,3题⑴2分,⑵2分,⑶3分,总19分)

1、小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?

2、已知:如图,AB‖CD,FG‖HD,∠B=100º,FE为∠CEB的平分线,求∠EDH的度数.A F C

E

B H

G

D3、下图是明明作的一周的零用钱开支的统计图(单位:元)

分析上图,试回答以下问题:

⑴、周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?

⑵、哪几天他花的零用钱是一样的?分别为多少?

⑶、你能帮明明算一算他一周平均每天花的零用钱吗?

能力测试卷(50分)

(B卷)

一、填空题(3×6=18)

1、房间里有一个从外表量长a米、宽b米、高c米的长方形木箱子,已知木板的厚度为x米,那么这个木箱子的容积是________________米3.(不展开)

2、式子4-a2-2ab-b2的最大值是_______.3、若2×8n×16n=222,则n=________.4、已知 则 =__________.5、一个小男孩掷一枚均匀的硬币两次,则两次均朝上的概率为_________.6、A 如图,∠ABC=40º,∠ACB=60º,BO、CO平分∠ABC和∠ACB,D E DE过O点,且DE‖BC,则∠BOC=_______º.B C

二、选择题(3×4=12)

1、一个角的余角是它的补角的,则这个角为()

A、60º B、45º C、30º D、90º

2、对于一个六次多项式,它的任何一项的次数()

A、都小于6 B、都等于6 C、都不小于6 D、都不大于63、式子-mn与(-m)n的正确判断是()

A、这两个式子互为相反数 B、这两个式子是相等的C、当n为奇数时,它们互为相反数;n为偶数时它们相等

D、当n为偶数时,它们互为相反数;n为奇数时它们相等

4、已知两个角的对应边互相平行,这两个角的差是40º,则这两个角是()

A、140º和100º B、110º和70º C、70º和30º D、150º和110º

三、作图题(不写作法,保留作图痕迹)(6分)

利用尺规过A点作与直线n平行的直线m(不能用平推的方法作).A •

n

四、解答题(7×2=14)

1、若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x2、x3项,求(a-b)3-(a3-b3)的值.3、如图,已知AB‖CD,∠A=36º,∠C=120º,求∠F-∠E的大小.A B

E

F

C D

第四篇:配方法含答案

配方法

1、方程6x2=18的根是__________;已知2(x-3)2=72,则x的值是__________.2、若方程x2-6x+5=0可化为(x+m)2=k的形式,则m=__________,k=__________.

3、一元二次方程x2-2x-3=0的根是__________.

1、;9或-

32、-3;

43、x1=3,x2=-

14、用配方法解方程x2-4x+2=0,下列配方正确的是()

A.(x-2)2=2B.(x-2)2=6C.(x-2)2=-2D.(x-2)2=-65、不论x、y为何实数,代数式x2+y2+2x-4y+7的值()

A.总不小于2B.总不小于7C.可为任何实数D.可能为负数

6、将二次三项式x2+6x+7进行配方,正确结果是()

A.(x+3)2+2B.(x+3)2-2C.(x-3)2+2D.(x-3)2-

27、用配方法解下列方程:

(1)(2)5x2-18=9x7、(1)解:

(2)解:

8、用配方法证明:无论x取何实数,代数式2x2-8x+18的值不小于108、证明:2x2-8x+18=2(x2-4x)+18=2(x-2)2+18-8=2(x-2)2+10.不论x为何实数,(x-2)2≥0,∴2(x-2)2+10≥10.

即无论x取何实数,代数式2x-8x+18的值不小于10.

29、已知a是方程x2-2008x+1=0的一个根,试求

9、∵a是方程x2-2008x+1=0的一个根,∴a2-2008a+1=0, a2-2007a=a-1, a2+1=2008a 的值

且 ∴.

10、一次会议上,每两个参加会议的人都相互握了一次手,有人统计一共握了66次手,这次会议到会的人数是多少?

10、解:设这次会议到会的人数是x人.则

x2-

x=1

32∴,∴x1=12,x2=-11<0(舍去)

故这次会议到会的人数是12人.

公式法

1、下列方程有实数根的是()

A.2x2+x+1=0B.x2-x-1=0 C.x2-6x+10=0D.x2-+1=02、若关于x的方程有两个不相等的实数根,则k的取值范围是()

A.k>1B.k≥-1 C.k<1D.k>1且k≠0

答案:

1、B2、A

2、用公式法解下列方程.

(1)2x2-9x+8=0解:b2-

4ac=17

(2)9x2+6x+1=0解:b2-4ac=0,x1=x2=

(3)(x-2)(3x-5)=

1解:3x2-11x+9=0

b2-

4ac=13 .

3、解方程:.有一位同学解答如下: 这里,∴,∴

∴x1=,x2=.

请你分析以上解答有无错误,如有错误,找出错误的地方,并写出正确的解答.解:有错误,错在常数,而c应为,正确为: 原方程可化为: ∵ ∴ ∴ ∴

4、m为何值时,方程(2m+1)x2+4mx+2m-3=0.

(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根? 解:若 2m+1≠0,即 m≠,则=(4m)2-4(2m+1)(2m-3)=4(4m+3)

(1)当4m+3>0且2m+1≠0,即m>且m≠时,原方程有两个不相等的实数根.

(2)当4m+3=0即m=时,原方程有两个相等实数根.

(3)当4m+3<0即m<时,没有实数根.

5、若关于x的方程kx2-(2k+1)x+k=0有实数根,求k的取值范围.

解:(1)当k=0时,原方程可化为-x=0,此方程有实根.

(2)由题意得:,解得且k≠0.

故:综合(1)(2)得k的取值范围为.

6、求证:不论a为何实数,方程2x2+3(a-1)x+a2-4a-7=0必有两个不相等的实数根.证明:∵a=2,b=3(a-1),c=a2-4a-7.

b2-4ac=[3(a-1)]2-4×2(a2-4a-7)=a2+14a+65=(a+7)2+16≥16>0. 故不论a为何实数,方程2x2+3(a-1)x+a2-4a-7=0必有两个不相等的实数根.因式分解法

1、方程x2-4x=0的解为__________.2、请你写出一个有一根为0的一元二次方程__________.

3、方程x(x+1)=3(x+1)的解是()

A.x=-1B.x=3C.x1=-1,x2=3D.以上答案都不对

4、解方程(x+2)2=3(2+x)最适当的解法是()

A.直接开平方法B.配方法C.公式法D.因式分解法

5.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()

A.x2+3x-2=0B.x2-3x+2=0 C.x2-2x+3=0D.x2+3x+2=06、关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0,则a的值为()

A.1或-4B.1C.-4D.-1或

47、用因式分解法解下列方程:

(1)(x+3)2=2x+6(2)2(5x-1)2=3(1-5x)(3)9(x-2)2=4(x+1)

2(4)(2x-1)2-x2-4x-4=08、用适当的方法解下列方程:

(1)x2-8x-9=0(2)(x+3)(x-3)=(3)x(40-2x)=180

(4)x2+()x+=08、(1)解:(x+1)(x-9)=0x1=-1, x2=9

(2)解: ∴,(3)解:x2-20x=-90x2-20x+102=-90 +102(x-10)2=10∴x-10=∴,(4)解:(x+)(x+)=0∴x1=-,x2=-

9、若x2+xy+y=14 ①,y2+xy+x=28 ②,求x+y的值

9、解:由①+②得:(x2+y2)+2xy+(x+y)=42(x+y)2+(x+y)-42=0(x+y+7)(x+y-6)=0∴x+y=-7或x+y=6.

10、关于x的一元二次方程mx2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m的值及该方程的根

解:由已知得:

解得m=2,∴x=,∴x1=,x2= 故m的值为2,该方程的根为x1=,x2=1.

第五篇:1.2.2配方法

1.2.2配方法(1)教学案 学习目标

1、能够用配方法解二次项系数为1的一元二次方程 体验学习

一、探究新知

问题1:下面两个方程同学们愿意解哪一个?,这两个方程有联系吗?

二、课堂练习

1、若方程x2kx640的左边是完全平方式,则k的值是.2、x2y24x6y130,则x2y.3、代数式的值()

(1)x26x40

跟进练习:

1、用配方法解下列方程

(1)x22x50

(3)x210x90

(5)x24x10

2)(x3)250(2)x24x10(4)x212x130(5)x28x90A.可以等于0B.既可为正也可为负C.大于3D.不小于3

4、用配方法解一元二次方程

(1)x26x40(2)x22x4

(3)x23x20(4)x2x105、若a、b、c是ABC的三条边,且a2b2c2506a8b10c,试判断ABC的形状.6、若a、b、c是ABC的三条边,且a2b2c2abacbc0,试判断ABC的形状.三、课堂小结

四、教学反思

下载改进配矿方法先进事迹word格式文档
下载改进配矿方法先进事迹.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    配方法讲解练习

    过程 1.转化: 将此一元二次方程化为a^2;+bx+c=0的形式(即一元二次方程的一般形式) 2.移项: 常数项移到等式右边 3.系数化1: 二次项系数化为1 4.配方: 等号左右两边同时加上一次项......

    数学学习法配方法

    数学学习法——配方法 释义:在数学式变换中,根据需要把有关字母的项对照公式 (ab)2a22abb2,补上恰当的项以配成完全平方的形式,这种方法就叫做配方法,配方法的应用常见于: (1)分解因......

    配方法的应用(精选合集)

    配方法的应用 11.若把代数式x22x3化为(xm)2k的形式,其中m、 k为常数,则m+k=. 4. 用配方法将代数式a24a5变形,结果正确的是 A.(a2)21B.(a2)25C.(a2)24D.(a2)29 18. 已知二次函数y......

    配方法教案[合集五篇]

    一元二次方程的解法--配方 一 教学目标 1、了解什么是配方法; 2、会用配方法准确而熟练解一元二次方程; 3、理解配方法的关键、基本思想和步骤; 4、体会转化、类比、降次的思想......

    配方法的妙用(范文)

    配方法的妙用 1、配方的定义:配方是把一个多项式经过适当变形配成完全平方式的恒等变形,是一种很重要、很基本的数学方法;如将(a+b)2=a2+2ab+b2灵活运用,可得到多种基本配方形式......

    配方法优质课教案

    22.2.1配方法(第二课时) 一、教学目标 1、掌握配方法的推导过程,并能够熟练地进行配方. 2、用配方法解数字系数的一元二次方程. 3、在配方法的应用过程中体会 “转化”的思想,掌......

    配方法教学设计

    2.2、配方法(二) 教学目标: 1.利用方程解决实际问题. 2.训练用配方法解题的技能. 教学重点: 利用方程解决实际问题 教学难点: 对于开放性问题的解决,即如何设计方案 教学方法: 分组讨......

    用配方法证明

    用配方法证明设矩形长为x,那么宽为15-x面积S=x(15-x)=-x^2+15x=-(x-7.5)^2+56.25≤56.25所以面积最大为56.25平方米,无法达到60平方米x-12x+40=x-12x+36+4=(x-6)^2+4因为(X-6)......