第一篇:新人教版五年级数学《位置》教学设计(第2课时)
《位置》教学设计(第2课时)
教学内容:人教版小学数学教材五年级上册第20页例2及“做一做”,练习五第6~8题。
教学目标: 1.在经历把具体情境中的物体抽象成点的过程中,在方格纸上用数对表示物体的位置,知道数对与方格纸上点的对应关系。
2.在综合应用位置的知识解决问题的过程中,发现点与数对的一一对应关系,渗透平面直角坐标系。
3.渗透数形结合的思想,感受数学的简洁美。教学重点:在方格图上用数对准确表示点的位置。教学难点:发现同一行、同一列等特殊数对的特征。
教学准备:将本课教学内容制成PPT课件。教学过程:
一、回顾旧知,引入新课
(一)回顾旧知 1.教师谈话:这是我们昨天留给大家的一道利用数对涂色的练习题,你们都完成了吗?(PPT课件出示练习五第3题)
2.提问:题中小精灵说“(9,8)这个格已经涂好了”,请回答下面两个问题:(1)这里的“(9,8)”表示什么意思?
(2)你能在图中指出第9列吗?能指出第8行吗? 3.呈现涂色完成后的结果。(PPT课件演示)
(二)引入新课
1.教师谈话:动物园里有许多动物场馆,为了便于游客找到各个场馆的位置,绘制了下面的示意图。在这幅示意图里用一定大小的方格来统一距离,用格点(方格纸上竖线和横线的交点)来表示场馆。(PPT课件出示“动物园示意图”)
2.质疑:在这幅示意图中,哪些是它的列?它的第1列在哪里?哪些是它的行?它的第1行在哪里?
3.揭示课题:今天这节课我们继续学习有关数对与位置的知识。(板书:位置)【设计意图】利用教材上的一道趣味练习,帮助学生回顾上节课学习的列、行的概念和用数对表示位置的方法,既订正了上节课留下的作业练习,又为新课的学习做了必要的铺垫,有利于学生在新课的学习中进行比较和迁移。在引入新课时,直接利用例2的“动物园示意图”作为问题情境,帮助学生理解示意图的实际作用和表现形式,并借助刚刚回顾过列、行概念的时机,引导学生顺势联想新情境下关于列、行的老问题,这其实就是在发展学生的数学思考,就是在培养学生的推理能力和创新意识。
二、迁移类推,探究新知
(一)教学例2
1.认识“动物园示意图”中的列与行,明确起点。
(1)观察比较:这幅“动物园示意图”和我们上节课认识的涂色方格图有什么不同?(PPT课件演示)
(2)引导归纳(着重归纳以下几点)。
①示意图中每条竖线都按顺序标上了数,而涂色方格图中是把每竖条(列)小方格标上数,说明在示意图中是把每条竖线看作列。(PPT课件演示)②示意图中每条横线也都按顺序标上了数,而涂色方格图中是把每橫行(行)小方格标上数,说明在示意图中是把每条横线看作行。(PPT课件演示)
③示意图中的0既是列的起点,也是行的起点,说明列的顺序还是从左往右,行的顺序还是从前往后。(PPT课件演示)
④涂色方格图中的每个小方格都可以用数对来确定它的位置是在第几列第几行,示意图中每条竖线和横线都有一个交点,每个交点也可以用数对来确定位置。
(3)教师概括:通过观察和比较,我们发现示意图就是要我们在方格纸上用数对确定点的位置,它把用数对表示物体位置的实际问题通过方格纸转化成了用数对表示平面上点的位置的数学问题。(PPT课件演示)
【设计意图】通过比较“动物园示意图”与涂色方格图的不同,引导学生把方格纸的竖线和横线分别与涂色方格图的列和行建立起联系,感受到方格纸上每条竖线和每条横线的交点都能用数对确定其位置,明确“0”既是列的起点,又是行的起点,既使学生初步感受到直角坐标系的思想,又使学生明确在方格纸上用数对表示位置的含义,即把用数对表示物体位置的实际问题抽象成用数对表示平面上点的位置的数学问题。
2.理解数对表示的含义和方法。
(1)引导学生观察大门在方格纸上的位置。(2)组织学生交流如何用数对表示大门的位置。
(3)呈现教材中用数对表示大门位置的情境。(PPT课件演示)
(4)结合情境交流反馈:这位小朋友和我们很多同学一样,用数对(3,0)表示大门的位置。这里的“3”表示什么?“0”表示什么?为什么用数对(3,0)来表示?(PPT课件演示)
(5)归纳小结:大门的位置在第3列的起始行,也就是第0行,所以用数对(3,0)来表示大门的位置。“0”既是行的起点,也是列的起点。3.在方格纸上用数对表示熊猫馆的位置。
(1)引导:在方格纸上,第3列的起始行是大门,看一看在第3列的其他行有没有什么动物场馆呢?(PPT课件演示)
(2)提问:你能用数对表示熊猫馆的位置吗?(PPT课件演示)(3)组织交流:你是怎样表示的?为什么这样表示? 4.在方格纸上用数对表示其他场馆的位置。
(1)提问:我们已经用数对表示了大门和熊猫馆的位置,你能用数对表示其他场馆所在的位置吗?(PPT课件演示)
(2)组织交流:你是怎样表示的?为什么这样表示? 【设计意图】为了让学生掌握在方格纸上用数对表示点的位置的方法,针对各场馆所在位置的特点,让这些场馆分别承担三个不同层次的教学作用。首先以“大门”为例(其位置最具有本节课的特点,即起始位置),组织学生观察大门的位置,交流用数对表示位置的方法,理解数对中每个数的含义,既突出了本节课的教学重点,又使学生在具体情境中进一步明确“0”既是列的起点,又是行的起点。然后,指定熊猫馆(其位置与“大门”联系最为紧密,都是第3列,再由起始行接着往上数),既引导学生进一步体会在方格纸上怎样用数对表示点的位置,又沟通特殊点与一般点的关系。最后,让学生用数对表示其他场馆所在的位置,使学生达到熟练应用的程度。
(二)应用延伸
1.根据给出的数对标出场馆的位置。
(1)在示意图中标出飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)的位置。(2)组织交流:你是怎样确定这些场馆的位置的? 2.看图讨论同列数对的特点。(PPT课件适时演示)
(1)请同学们看示意图,我们已经知道大门和熊猫馆都在第3列,你发现它们的数对有什么特点?
(2)这一列上还有许多其他的点,它们的列数都是3,但它们的行数没有确定,你能用一个数对来表示这一列上所有点的位置吗?〔可以用(3,a)、(3,y)表示〕
3.看图讨论同行数对的特点。(PPT课件适时演示)
(1)请同学们再看示意图,比较大象馆和海洋馆的位置,你又有什么发现呢?
(2)这一行上同样也有许多点,它们的行数都是4,但列数不确定,你用一个什么样的数对来表示这一行上所有点的位置呢?〔可以用(b,4)、(x,4)表示。〕
(3)猩猩馆(0,3)和狮虎山(4,3)在同一行吗?你是怎样判断的? 4.看图讨论行、列交换数对的特点。(PPT课件适时演示)
(1)我们比较了猩猩馆和狮虎山的位置,再来比较猩猩馆和大门的位置,你发现它们的数对又有什么特点呢?
(2)讲述:用数对表示位置时,一定要按照规定先写列数,后写行数。如果把列数和行数的位置写反了,表示的实际位置也就不同了。
【设计意图】本环节的教学主要有两个意图。一是逆向进行用数对确定位置的应用,帮助学生感悟数对与场馆位置的一一对应关系,进一步体会数形结合的思想;二是引导学生通过观察示意图比较一些特殊数对之间的位置关系,探究相应数对的特点和规律,加深对在方格纸上用数对确定位置的理解。
三、综合应用,解决问题
1.第20页“做一做”第1题。
(1)学生独立完成,教师巡视。
(2)反馈交流:引导学生观察A、C点的数对以及B、D点的数对,体会图形特点和数对特点之间的联系。
2.第20页“做一做”第2题。
(1)学生独立完成,教师巡视。
(2)反馈交流:让学生说一说是怎样根据A、B、C、D、E各点的数对找到相应位置的?
(3)展示学生作业并进行评价。3.练习五第8题。
(1)引导学生理解题意:明确学校的位置为(0,0),方格图中每一格表示的实际距离是100 m,理解图书馆所在位置(4,3)的含义。
(2)学生自由选择一个建筑物进行描述,进行反馈。
(3)独立完成第(2)、(3)两问,指名回答,并组织全班反馈交流。
四、课堂小结
(一)学生小结
1.这节课学习了哪些内容?
2.通过这节课的学习,你有什么收获?
(二)教师归纳
1.学会了用数对表示位置。
(1)根据点的位置用数对表示出来;(2)根据给出的数对寻找点的位置。
2.找到了数对中数的特点跟位置变化之间的关系。3.用数对描述建筑物的方位及行走路线。
五、作业练习
1.课堂作业:练习五第7题。2.课外作业:
(1)练习五第6题;
(2)阅读本单元“生活中的数学”;
(3)回顾本单元的学习内容,你有哪些收获?
第二篇:《位置》教学设计(第2课时)
教学目标:
1.明确方位词语左右表示的意思,能够用左右描述物体的位置。
2.通过生活中经验认识自身的左右,以自身的左右为标准,描述物体的位置,并解决简单的实际问题。
3.通过生动有趣的数学活动,使学生体会到学习数学的乐趣,增强对数学学习的兴趣。
目标分析:
本课教学目标是明确方位词语左右的意思,能用准确的语言表述物体的位置,初步体会位置与顺序的相对性,初步建立空间观念。
教学重点:建立左右的标准,左、右标准描述物体所在的位置。
教学难点:能准确地用左右描述物体的位置。
教学准备:课件、水果卡片。
教学过程:
一、认识左右,体会自身存在的左右
(一)谜语引入,激发兴趣
出示谜语:两棵小树十个杈,不长叶子不开花。能写能算还会画,天天干活不说话。
揭示谜底:双手。
(二)联系左右手,认识左右方位词
1.让学生在小组内举例说一说生活中左手可以做什么?右手可以做什么?
2.学生一边汇报想法一边做动作:左手压本,右手写字、右手敬礼、左手扶碗,右手拿筷子吃饭
【设计意图:注重从学生的实际经验出发,利用生活实例让他们初步区分左右。】
二、利用汉字加深对左、右的理解
1.教师板书汉字:左、右,学生说一说怎样区分两个字。2.教师借助PPT介绍左、右汉字的演变。
左和右,是两个象形字,就像两只伸出来的手形一样。后来,人们在手形下面加一个工 字,表示左手,意思是说左手可以辅助做工。在手形下面加一个口字,表示方位名词,与左相对,凡是在左手的一边就叫左边,在右手的一边就叫右边。
【设计意图:追根溯源,了解在文字发展史的基础上来理解表示方位的词左、右。】
三、游戏激趣,区分左右
(一)在自己的身体上找左右
1.左右手是一对好朋友,配合起来力量大。让学生思考自身是否有这样的一对的好朋友。
学生汇报想法:左右耳朵、左右眼睛、左右手脚、左右胳膊、左右腿
2.小组合作交流:说说你的前、后、左、右的同学都是谁?
3.猜一猜:说说你的好朋友左边是谁?右边是谁?让大家猜猜你的朋友是谁。
(二)在摆图中认识左右
1.先摆一个苹果,苹果的左边摆一个西瓜,苹果的右边摆一个桃子,在这三个水果的最右边摆一根香蕉。
2.在这组图的最左边摆上葡萄。
3.观察这五个水果,请学生自由介绍谁在谁的左边还是右边。用左右描述每个图的位置。
【设计意图:在活动中培养学生用数学的语言去描述事物,使学生初步感知在二维空间内利用左、右这两个方位词来确定位置。】
四、体验左右的相对性
(一)体会参照物不同,表述物体的位置不同。
1.观察图,由学生介绍苹果的位置。
2.引导学生思考:
就是这个苹果,大家在介绍时为什么一会儿说它在右边,一会儿又说它在左边呢?
教师出示学生的语言:苹果在西瓜的右边;苹果在桃子的左边。能解释一下是什么原因吗?
(二)体会人所占的位置不同,左右也是相对的。
1.在握手中思考都伸的是右手,为什么不在同一侧呢?
教师组织学生每两个人握手,让学生发现问题:都伸右手,为什么不在一侧?
2.由学生尝试说明都伸右手,为什么不在一侧的道理。最终让学生认识到:由于
是面对面地站着,一个人的左手对着另一个人的右手。
3.教师小结:当我们面对面时,因为方向相对,所以伸出的右手不在同一侧。
【设计意图:组织学生开展多种生动有趣的活动,从而加深对左右的相对性的认识。在活动中教师要适时引导学生进行观察、比较、推理等思考活动,以促进学生的发展。】
四、走进生活,让学生会左右的作用。
(一)在行走中辨认左右。
说说在上下楼梯时应该顺着哪个方向走?
由学生现场演示,并由学生进行评价?
教师小结:在生活中由于人面朝的方向不同,左右也就不同,判断时,应把自己当成走路的人,平时在上下楼或在路上行驶时都应该靠右行,这样有秩序的行驶可以避免发生冲撞。
(二)对比香港和北京的行车规定有什么不同。
(三)辨认生活中的交通标志。
说一说这两个标着有什么不同,表示什么意思。
(四)在视图中运用左右。
1.看图回答问题:
小鹿的左边是(),小鹿的右边是()。
小鸭子的右边有()。小蛇的右边有(),左边有()。
2.按照要求找一找。
小帅 咪咪 甜甜 三毛 功夫小子
甜甜的左边是(),右边是()。
三毛在()的左边,在()右边。
在视图的过程中,学生往往把自己放在图中,把自己变成图中人物,在用自己的左右手进行辨认,这样的答案是错的。教师要引导学生,不能进入图中,依然用自己左右手进行辨别。
【设计意图:把左右的知识与生活经验进行对接,一方面体会在实际生活中运用到左右,同时学会用左右进行辨别。】
五、全课总结
1.生活中按照左右制定的规则的事例有很多,你知道有什么吗?大家按规则行事,生活就变得井然有序了。
2.说说这节课你有什么收获?
第三篇:人教版五年级数学《位置》教学设计(第1课时)
《位置》教学设计(第1课时)
教学内容:人教版小学数学教材五年级上册第19页例1及“做一做”,练习五第1~5题。
教学目标:
1.使学生在具体的情境中认识行、列的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。
2.使学生经历由语言描述实际情境中物体的位置抽象成用数对表示具体情境中物体位置的过程,理解用数对确定位置的方法,体会到数形结合的数学思想,发展空间观念。
3.使学生感受到数学与生活的密切联系,体会数学在生活中的广泛应用。教学重点:在具体情境中用数对确定物体的位置。
教学难点:在具体情境中理解要用两个数来表示物体在平面上的位置。教学准备: PPT课件。教学过程:
一、创设情境,激活经验
(一)激活经验
1.导入:开家长会,要求家长做自己孩子的座位,你怎样和家长说坐在那里?我们是五年一班,有两个数字,去掉一个数字可以吗?
我们在以前学习了用方位确定位置,我们在生活中还常常用“第几”来描述物体的位置。
2.提问:这有一排同学,举手的是张亮同学。你能描述张亮同学的位置吗?(演示PPT课件)
3.引导:有的同学从左往右数,还有的同学从右往左数,但都是只用一个数就表示出了张亮同学的位置,为什么只用一个数就能表示出张亮同学的位置呢?(演示PPT课件)
4.提问:怎样表示出周明同学的位置?赵雪同学的位置呢?
(二)引入新课 1.提问:如果不是只有一排同学,而是教室里的座位,你还能只用一个数就表示出某个同学的位置吗?(演示PPT课件)
2.揭示课题:这节课我们就一起继续学习“位置”。(板书课题:位置)【设计意图】创设“一排座位”的情境,激活学生“用一个数可以表示一个物体在一排物体中的位置”的生活经验,使学生直观感受到用一个数可以在直线上确定位置。在此基础上,借用“现成”的情境,由“线”扩展到“面”,将一维空间生长为二维空间,产生新的问题,引出新的学习内容,激发学生强烈的尝试和探究欲望。
二、尝试探索,感悟新知
(一)认识平面上确定位置的必要条件
1.观察:多媒体教室中学生的座位情境。(演示PPT课件)
2.思考:你现在怎样描述张亮同学的位置呢?(预设学生回答:第几组第几个;第几排第几个;第几行第几个;第几条第几个„„)
3.引导:同学们的描述各不相同,虽然说法不一样,但是有一点却是相同的,你们发现哪一点相同?(随着学生的回答,教师适时板书:两个数、确定位置)
4.揭示:要在教室平面内表示出某个同学的位置,只用一个数是不能确定的。要在教室平面内确定某个同学的位置必须要有两个数,这就是在平面上确定位置的条件。(演示PPT课件)
(二)认识行与列 1.统一行与列的名称。
(1)讲述:同学们刚才在描述张亮的位置时,所说的排、行等,都是指的横排,在数学里统一称为“行”;所说的组、条等,都是指的竖排,在数学里统一称为“列”。(教师适时板书或课件显示“行”“列”)(2)尝试:同学们,你现在能用行数和列数两个数来描述张亮同学的位置吗?
(3)预设:预设学生回答:第3行第2列;第3行第5列;第5列第3行;第2列第3行。(教师适时追问:你是怎样数的?)
2.统一行、列的顺序和方向。
(1)设疑:刚才,同学们都说张亮的位置在第3行,但有的同学是从前往后数的,还有的同学是从后往前数的;在说张亮的位置是第几列时,有同学说是第2列,也有同学说是第5列,张亮的位置到底是第几列呢?
(2)归纳:看来还需要统一行、列的顺序和方向,在确定第几列的时候,我们约定从左往右数;在确定第几行的时候,我们约定从前往后数。(演示课件)
(三)认识数对
1.自主探索表示位置的方法。
(1)提出问题:我们用行数和列数两个数描述了张亮同学的位置,也在平面图上标出了张亮同学的位置,那我们用什么方法来表示、记录张亮同学的位置呢?
(2)反馈交流:组织学生展示、交流自己的表示方法。(用黑板或投影展示学生的记录方法)
2.评价归纳:同学们的表示方法各不相同,但想法都很好,都想到了用两个数分别表示行与列。但有的是先表示行,有的是先表示列,还有的是借助文字、符号、箭头来说明行与列。但像这样表示,不仅记录麻烦,交流时还要请同学们一个一个去解释,你们有没有什么好的建议呢?(统一表示方法)
3.统一位置的表示方法。
(1)呈现统一的表示方法:对,应该用统一的表示方法!在数学里是怎样统一、怎样规定的呢?张亮的位置在第2列、第3行,在数学里就用(2,3)表示。(教师板书或演示PPT课件)
(2)理解(2,3)的含义:前面的“2”表示什么意思?后面的“3”表示什么意思?两个数中间的逗号起什么作用?外面添加的小括号起什么作用?(教师演示PPT课件,引导学生观察、思考。)
(3)揭示数对的名称:像这样用两个数分别表示列和行,前面的数表示列,后面的数表示行,两个数中间用逗号隔开,并在两个数外面添上小括号表示是一个整体,像这样的两个数称为“数对”,这节课学习的就是用数对确定位置。(教师板书或演示PPT课件)
4.数对的读法。
(1)以张亮的位置为例,可以直接读(2,3),也可以读作数对(2,3)。(2)任意举一例。
【设计意图】延伸复习导入时的情境,承接复习导入中的问题,让学生在新的情境中解决“老”问题,在解决“老”问题的过程中,产生新的收获和体会,直观感受到用两个数可以在平面上确定位置。充分利用例1的座位情境,放手学生尝试探索,让学生经历了三次“统一”的过程:统一行与列的名称、统一行与列的顺序和方向、统一位置的表示方法。在三次“统一”的过程中,引导学生不断地提出问题和解决问题,帮助学生积累数学活动经验,让学生认知的发展和数学规定相融合。
(四)在平面图上确定行与列
1.将座位情境图抽象成座位平面图。(演示PPT课件)
2.在平面图上标出张亮同学的位置。(演示PPT课件)
三、综合练习,体会联系
(一)数对与位置的对应练习
1.王艳同学的位置用数对表示是(,),赵雪同学的位置用数对表示是(,)。看一看有什么不同。
2.用数对表示出周明、张亮、赵雪三个同学的位置,你发现了什么? 3.用数对表示出李小冬、孙芳、张亮三个同学的位置,你发现了什么?
(二)体会相关数对之间的联系
数对(6,2)
(6,2)
(6,2)
(6,2)
(6,2)
(6,2)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
这些数对有什么特点?
找一找自己在班里的位置,用数对表示。
四、联系生活,实际应用
(一)生活举例(第19页“做一做”)
(二)实际应用 1.练习五第2题。
(1)理解题意:第(1)问是用数对表示指定汉字的位置,第(2)问根据数对找对应汉字。
(2)学生独立完成。
(3)组织学生交流自己的想法和思路。
(4)组织开展“根据数对找对应汉字”的游戏活动。2.练习五第5题。
五、课堂小结,提炼延伸
(一)课堂小结
1.让学生说一说本节课的学习收获。2.教师归纳本节课的主要学习内容。
(二)提炼延伸
1.引导:我们这节课从在“一排座位”里确定一个同学的位置,到在“教室平面”里确定一个同学的位置,你有什么感受?
2.提炼:在“一排座位”里确定一个同学的位置,只需要一个数;在“教室平面”里确定一个同学的位置,就需要两个数。这说明在直线上确定一个点,只需要一个数据;在平面上确定一个点,就需要两个数据,也就是我们这节课学习的“数对”。(演示PPT课件)
3.延伸:想一想,如果在一个立体空间里确定一个点,需要几个数据呢?
4.拓展。
(1)生活中的数学:经纬线的知识。
(2)知识小介绍:介绍法国数学家笛卡尔。
六、作业练习
1.课堂作业:练习五第1、4题。2.课外作业:练习五第3题。
第四篇:新人教版五年级数学《位置》教学设计(第1课时)
2016学年第一学期五年级数学上册教学设计
《位置》教学设计(第1课时)
教学内容:人教版小学数学教材五年级上册第19页例1及“做一做”,练习五第1~5题。
教学目标:
1.使学生在具体的情境中认识行、列的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。
2.使学生经历由语言描述实际情境中物体的位置抽象成用数对表示具体情境中物体位置的过程,理解用数对确定位置的方法,体会到数形结合的数学思想,发展空间观念。
3.使学生感受到数学与生活的密切联系,体会数学在生活中的广泛应用。
教学重点:在具体情境中用数对确定物体的位置。
教学难点:在具体情境中理解要用两个数来表示物体在平面上的位置。
教学准备:将本课教学内容制成PPT课件。教学过程:
一、创设情境,激活经验
(一)激活经验
1.导入:我们在以前学习了用方位确定位置,我们在生活中还常常用“第几”来描述物体的位置。2.提问:这有一排同学,举手的是张亮同学。你能描述张亮同学的位置吗?(演示PPT课件)
3.引导:有的同学从左往右数,还有的同学从右往左数,但都是只用一个数就表示出了张亮同学的位置,为什么只用一个数就能表示出张亮同学的位置呢?(演示PPT课件)
4.提问:怎样表示出周明同学的位置?赵雪同学的位置呢?(演示PPT课件)
(二)引入新课
1.提问:如果不是只有一排同学,而是教室里的座位,你还能只用一个数就表示出某个同学的位置吗?(演示PPT课件)
2.揭示课题:这节课我们就一起继续学习“位置”。(板书课题:位置)
【设计意图】创设“一排座位”的情境,激活学生“用一个数可以表示一个物体在一排物体中的位置”的生活经验,使学生直观感受到用一个数可以在直线上确定位置。在此基础上,借用“现成”的情境,由“线”扩展到“面”,将一维空间生长为二维空间,产生新的问题,引出新的学习内容,激发学生强烈的尝试和探究欲望。
二、尝试探索,感悟新知
(一)认识平面上确定位置的必要条件
1.观察:多媒体教室中学生的座位情境。(演示PPT课件)
2.思考:你现在怎样描述张亮同学的位置呢?(预设学生回答:第几组第几个;第几排第几个;第几行第几个;第几条第几个„„)3.引导:同学们的描述各不相同,虽然说法不一样,但是有一点却是相同的,你们发现哪一点相同?(随着学生的回答,教师适时板书:两个数、确定位置)
4.揭示:要在教室平面内表示出某个同学的位置,只用一个数是不能确定的。要在教室平面内确定某个同学的位置必须要有两个数,这就是在平面上确定位置的条件。(演示PPT课件)
(二)认识行与列 1.统一行与列的名称。
(1)讲述:同学们刚才在描述张亮的位置时,所说的排、行等,都是指的横排,在数学里统一称为“行”;所说的组、条等,都是指的竖排,在数学里统一称为“列”。(教师适时板书或课件显示“行”“列”)
(2)尝试:同学们,你现在能用行数和列数两个数来描述张亮同学的位置吗?(演示PPT课件)
(3)预设:预设学生回答:第3行第2列;第3行第5列;第5列第3行;第2列第3行。(教师适时追问:你是怎样数的?)2.统一行、列的顺序和方向。
(1)设疑:刚才,同学们都说张亮的位置在第3行,但有的同学是从前往后数的,还有的同学是从后往前数的;在说张亮的位置是第几列时,有同学说是第2列,也有同学说是第5列,张亮的位置到底是第几列呢?
(2)归纳:看来还需要统一行、列的顺序和方向,在确定第几列的时候,我们约定从左往右数;在确定第几行的时候,我们约定从前往后数。
(三)在平面图上确定行与列
1.将座位情境图抽象成座位平面图。(演示PPT课件)
2.在平面图上标明行、列的顺序和方向。(演示PPT课件)3.在平面图上标出张亮同学的位置。(演示PPT课件)
(四)认识数对
1.自主探索表示位置的方法。
(1)提出问题:我们用行数和列数两个数描述了张亮同学的位置,也在平面图上标出了张亮同学的位置,那我们用什么方法来表示、记录张亮同学的位置呢?(2)反馈交流:组织学生展示、交流自己的表示方法。(用黑板或投影展示学生的记录方法)2.评价归纳:同学们的表示方法各不相同,但想法都很好,都想到了用两个数分别表示行与列。但有的是先表示行,有的是先表示列,还有的是借助文字、符号、箭头来说明行与列。但像这样表示,不仅记录麻烦,交流时还要请同学们一个一个去解释,你们有没有什么好的建议呢?(统一表示方法)3.统一位置的表示方法。
(1)呈现统一的表示方法:对,应该用统一的表示方法!在数学里是怎样统一、怎样规定的呢?张亮的位置在第2列、第3行,在数学里就用(2,3)表示。(教师板书或演示PPT课件)
(2)理解(2,3)的含义:前面的“2”表示什么意思?后面的“3”表示什么意思?两个数中间的逗号起什么作用?外面添加的小括号起什么作用?(教师演示PPT课件,引导学生观察、思考。)(3)揭示数对的名称:像这样用两个数分别表示列和行,前面的数表示列,后面的数表示行,两个数中间用逗号隔开,并在两个数外面添上小括号表示是一个整体,像这样的两个数称为“数对”,这节课学习的就是用数对确定位置。(教师板书或演示PPT课件)
4.数对的读法。
(1)以张亮的位置为例,可以直接读(2,3),也可以读作数对(2,3)。(2)任意举一例。
【设计意图】延伸复习导入时的情境,承接复习导入中的问题,让学生在新的情境中解决“老”问题,在解决“老”问题的过程中,产生新的收获和体会,直观感受到用两个数可以在平面上确定位置。充分利用例1的座位情境,放手学生尝试探索,让学生经历了三次“统一”的过程:统一行与列的名称、统一行与列的顺序和方向、统一位置的表示方法。在三次“统一”的过程中,引导学生不断地提出问题和解决问题,帮助学生积累数学活动经验,让学生认知的发展和数学规定相融合。
三、综合练习,体会联系
(一)数对与位置的对应练习
1.在图中找出数对(1,2)、(5,3)的位置。
2.数对(6,4)表示的是王乐同学的位置,你能指出哪个是王乐同学吗?
(二)体会相关数对之间的联系
1.王艳同学的位置用数对表示是(,),赵雪同学的位置用数对表示是(,)。看一看有什么不同。
2.用数对表示出周明、张亮、赵雪三个同学的位置,你发现了什么?
3.用数对表示出李小冬、孙芳、张亮三个同学的位置,你发现了什么?
四、联系生活,实际应用
(一)生活举例(第19页“做一做”)
(二)实际应用 1.练习五第2题。
(1)理解题意:第(1)问是用数对表示指定汉字的位置,第(2)问根据数对找对应汉字。(2)学生独立完成。
(3)组织学生交流自己的想法和思路。
(4)组织开展“根据数对找对应汉字”的游戏活动。2.练习五第5题。
(1)理解题意,介绍国际象棋。
(2)理解国际象棋在棋盘上表示棋子位置的规则。
(3)集体完成第(1)问,让学生任意选择一个棋子并描述它在棋盘上的位置,体会数对也可以用字母表示。
(4)独立完成第(2)问,标出棋子移动后的位置,然后集体反馈交流。
五、课堂小结,提炼延伸
(一)课堂小结
1.让学生说一说本节课的学习收获。2.教师归纳本节课的主要学习内容。
(二)提炼延伸
1.引导:我们这节课从在“一排座位”里确定一个同学的位置,到在“教室平面”里确定一个同学的位置,你有什么感受?
2.提炼:在“一排座位”里确定一个同学的位置,只需要一个数;在“教室平面”里确定一个同学的位置,就需要两个数。这说明在直线上确定一个点,只需要一个数据;在平面上确定一个点,就需要两个数据,也就是我们这节课学习的“数对”。(演示PPT课件)3.延伸:想一想,如果在一个立体空间里确定一个点,需要几个数据呢?
4.拓展。
(1)生活中的数学:经纬线的知识。
(2)知识小介绍:介绍法国数学家笛卡尔。
六、作业练习
1.课堂作业:练习五第1、4题。2.课外作业:练习五第3题。
第二课时
位置
(二)课型:讲授课
教学内容:教材第20页及相关教学内容
教学目标:
知识与技能:知道在生活中如何根据示意图找到位置。
过程与方法:理解可以用一组数来确定位置关系,通过确立一个坐标图形来找准方位。
情感态度价值观:体会生活中处处有数学,产生数学的亲切感,把位置关系的学习与生活场景紧密联系起来。
教学重难点:
重点:能够通过示意图找到物体的具体位置。
难点:理解用一对数来确定位置的方法,并把它用于实践中。
教学方法:直观演示法和自主探究与小组合作的学习方式。
教学准备:多媒体课件或实物等。
教学过程
一、联系生活,引入新课。
1、谈话导入。
学生回顾在生活所见的示意图,回答教师问题。
2、引入新课,板书课题。
设计意图:通过对前面知识的复习,以及具体的直观演示和具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。
二、例题展示。
1、出示例2。
学生读题,明白示意图,初步了解题目中的每个位置是用一个坐标的形式来表示的,每一个游览区和一对数相对应。
2、学生可提问质疑,可小组讨论,可互相回答问题。全班交流。
交流时教师要引导学生认识示意图,知道它们是如何标示各区域所在位置的。
小结:横排和竖排所构成的区域就是整个动物园的范围。
每个小区域所对应的数值就是整个动物园这个大范围的一个坐标点。通过这些坐标点,我们就能够确定某个游览区的具体位置。
3、组织学生说说其他场馆的位置,同时教师板书。
4、引导学生进一步理解场馆位置与坐标中各点对应的关系。
5、练习:在图上标出这些场馆的位置。
6、小结:通过例题我们把一个区域的示意图用坐标的形式表示出来,通过对应的坐标位置就可以确定所要找的地方的位置。
三、做一做,巩固确定位置的知识。
出示练习,引导学生完成练习。
四、反馈练习。
五、课堂总结。
在练习中,要紧紧把握图形,从题目入手,寻找位置与坐标数值的对应关系,明确它们之间是一一对应的关系,可以互相判断对方。
六、作业:选用课时作业。
板书设计:
位置
第三课时
位置(练习课)
教学内容:人教版小学数学五年级教材P21——23练习五2、3、5、6、7、8题
教学目标:
1、通过练习,使学生进一步提高用数对表示、确定位置的能力。
2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。
教学重点:通过练习,使学生进一步提高用数对表示、确定位置的能力。
教学难点:发展学生的空间观念,体验数学与生活的联系。
教学过程:
一、基础性练习
1、填一填,再回答 课后小记与反思:
⑴、用数对表示平面图中的位置时,我们规定:竖排叫做(),横排叫做(),确定第几列一般从()往()数,确定第几行一般从()往()数。
⑵、○在第4列第5行,用数对表示是(,);
用数对表示是(2,7),那么它在第()列第()行,(8,7)在图中表示第()列第()行的位置。
2、动物园的平面图。
①、动态生成方格图,渗透坐标思想
②、你能用数对表示出大门的位置吗?请生汇报,说理。
③、游戏:猜景点
任选你想去的一个景点,用数对表示它的位置。小组内同学看数对说地名,看看说得对吗?全班交流。如果想去的景点是在(,4),可能是哪里?
得出:一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。
④鳄鱼潭在(2,4),请标出。图上(4,2)和(2,4)表示的位置相同吗?为什么? 得出:数对表示位置时不仅要用两个数,还要注意两个数的顺序。
⑤小强的位置在(3,1),他要去的地方位置在(6,5),你能沿着方格线画出他的行走路线吗?
过渡:数对能表示一个人的具体位置,平面图上一个地点,利用数对还能准确描述图形的具体位置。
二、巩固性练习:
书本第2、3、5、6、7、8题,学生先独立练习,老师再有选择、有重点地加以点评,指正(为节省课堂教学时间,这部分练习可以课前布置)。
三、发展性练习
1、移动图形
⑴、在格子图上画一个直角三角形ABC,并构建一个平面示意图,确定列和行,用数对表示这个直角三角形的三个顶点。
⑵、把三角形ABC向右平移5格再向上平移两格后的图形用A’、B’、C’标出对应的点,并用数对表示A’、B’、C’的位置。⑶、把三角形ABC绕B点逆时针90°,得到的图形用A”、B”、C”标出对应的点,并用数对表示A”、B”、C”的位置。
2、五子棋
明明和小强下五子棋:
明明执黑子先下,小强执白子后下。
明明和小强的落子位置用数对表示是:
明明:
1、(4,5)
2、(5,6)
3、(6,7)
4、(7,8)
5、(4,7)
6、(5,7)
小强:
1、(5,5)
2、(6,6)
3、(3,4)
4、(8,9)
5、(4,4)
6、(7,7)⑴、请你根据所给的信息,画出一个简单的棋盘,并在棋盘上画出黑子和白子。
⑵、你认为谁赢的可能性大?如果你是明明,你的下一步棋子准备放哪?请用数对表示。
3、涂色游戏
根据下面给出的数对给方格涂上相应的颜色,并说说涂出的图形是什么。
红色:(3,4),(4,5),(5,6),(6,7),(7,6),(8,5),(9,4),(4,4),(5,4),(6,4),(7,4),(8,4)。
蓝色:(4,1),(4,2),(4,3),(8,1),(8,2),(8,3)。黄色:(8,6),(8,7)。
绿色:(7,10),(8,9),(8,11),(9,9),(9,11),(10,9),(10,11),(11,10)。
四、课堂总结:
用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识?我们学好这个知识对于大家以后指导自己的生活,工作都有重要的作用。我们今天练习的这些内容?你觉得自己掌握的情况如何?有哪些地方还需要加强?
第五篇:新人教版五年级数学《位置》教学设计(第1课时)
2014学年第一学期五年级数学上册教学设计
《位置》教学设计(第1课时)
广州市番禺区石碁镇中心小学
谢春强
教学内容:人教版小学数学教材五年级上册第19页例1及“做一做”,练习五第1~5题。
教学目标:
1.使学生在具体的情境中认识行、列的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。
2.使学生经历由语言描述实际情境中物体的位置抽象成用数对表示具体情境中物体位置的过程,理解用数对确定位置的方法,体会到数形结合的数学思想,发展空间观念。
3.使学生感受到数学与生活的密切联系,体会数学在生活中的广泛应用。教学重点:在具体情境中用数对确定物体的位置。
教学难点:在具体情境中理解要用两个数来表示物体在平面上的位置。教学准备:将本课教学内容制成PPT课件。教学过程:
一、创设情境,激活经验
(一)激活经验
1.导入:我们在以前学习了用方位确定位置,我们在生活中还常常用“第几”来描述物体的位置。
2.提问:这有一排同学,举手的是张亮同学。你能描述张亮同学的位置吗?(演示PPT课件)
3.引导:有的同学从左往右数,还有的同学从右往左数,但都是只用一个数就表示出了张亮同学的位置,为什么只用一个数就能表示出张亮同学的位置呢?(演示PPT课件)
4.提问:怎样表示出周明同学的位置?赵雪同学的位置呢?(演示PPT课件)
(二)引入新课 1.提问:如果不是只有一排同学,而是教室里的座位,你还能只用一个数就表示出某个同学的位置吗?(演示PPT课件)
2.揭示课题:这节课我们就一起继续学习“位置”。(板书课题:位置)【设计意图】创设“一排座位”的情境,激活学生“用一个数可以表示一个物体在一排物体中的位置”的生活经验,使学生直观感受到用一个数可以在直线上确定位置。在此基础上,借用“现成”的情境,由“线”扩展到“面”,将一维空间生长为二维空间,产生新的问题,引出新的学习内容,激发学生强烈的尝试和探究欲望。
二、尝试探索,感悟新知
(一)认识平面上确定位置的必要条件
1.观察:多媒体教室中学生的座位情境。(演示PPT课件)
2.思考:你现在怎样描述张亮同学的位置呢?(预设学生回答:第几组第几个;第几排第几个;第几行第几个;第几条第几个„„)
3.引导:同学们的描述各不相同,虽然说法不一样,但是有一点却是相同的,你们发现哪一点相同?(随着学生的回答,教师适时板书:两个数、确定位置)
4.揭示:要在教室平面内表示出某个同学的位置,只用一个数是不能确定的。要在教室平面内确定某个同学的位置必须要有两个数,这就是在平面上确定位置的条件。(演示PPT课件)
(二)认识行与列 1.统一行与列的名称。
(1)讲述:同学们刚才在描述张亮的位置时,所说的排、行等,都是指的横排,在数学里统一称为“行”;所说的组、条等,都是指的竖排,在数学里统一称为“列”。(教师适时板书或课件显示“行”“列”)(2)尝试:同学们,你现在能用行数和列数两个数来描述张亮同学的位置吗?(演示PPT课件)
(3)预设:预设学生回答:第3行第2列;第3行第5列;第5列第3行;第2列第3行。(教师适时追问:你是怎样数的?)
2.统一行、列的顺序和方向。
(1)设疑:刚才,同学们都说张亮的位置在第3行,但有的同学是从前往后数的,还有的同学是从后往前数的;在说张亮的位置是第几列时,有同学说是第2列,也有同学说是第5列,张亮的位置到底是第几列呢?
(2)归纳:看来还需要统一行、列的顺序和方向,在确定第几列的时候,我们约定从左往右数;在确定第几行的时候,我们约定从前往后数。
(三)在平面图上确定行与列
1.将座位情境图抽象成座位平面图。(演示PPT课件)
2.在平面图上标明行、列的顺序和方向。(演示PPT课件)3.在平面图上标出张亮同学的位置。(演示PPT课件)
(四)认识数对
1.自主探索表示位置的方法。
(1)提出问题:我们用行数和列数两个数描述了张亮同学的位置,也在平面图上标出了张亮同学的位置,那我们用什么方法来表示、记录张亮同学的位置呢?
(2)反馈交流:组织学生展示、交流自己的表示方法。(用黑板或投影展示学生的记录方法)
2.评价归纳:同学们的表示方法各不相同,但想法都很好,都想到了用两个数分别表示行与列。但有的是先表示行,有的是先表示列,还有的是借助文字、符号、箭头来说明行与列。但像这样表示,不仅记录麻烦,交流时还要请同学们一个一个去解释,你们有没有什么好的建议呢?(统一表示方法)
3.统一位置的表示方法。(1)呈现统一的表示方法:对,应该用统一的表示方法!在数学里是怎样统一、怎样规定的呢?张亮的位置在第2列、第3行,在数学里就用(2,3)表示。(教师板书或演示PPT课件)
(2)理解(2,3)的含义:前面的“2”表示什么意思?后面的“3”表示什么意思?两个数中间的逗号起什么作用?外面添加的小括号起什么作用?(教师演示PPT课件,引导学生观察、思考。)
(3)揭示数对的名称:像这样用两个数分别表示列和行,前面的数表示列,后面的数表示行,两个数中间用逗号隔开,并在两个数外面添上小括号表示是一个整体,像这样的两个数称为“数对”,这节课学习的就是用数对确定位置。(教师板书或演示PPT课件)
4.数对的读法。
(1)以张亮的位置为例,可以直接读(2,3),也可以读作数对(2,3)。(2)任意举一例。
【设计意图】延伸复习导入时的情境,承接复习导入中的问题,让学生在新的情境中解决“老”问题,在解决“老”问题的过程中,产生新的收获和体会,直观感受到用两个数可以在平面上确定位置。充分利用例1的座位情境,放手学生尝试探索,让学生经历了三次“统一”的过程:统一行与列的名称、统一行与列的顺序和方向、统一位置的表示方法。在三次“统一”的过程中,引导学生不断地提出问题和解决问题,帮助学生积累数学活动经验,让学生认知的发展和数学规定相融合。
三、综合练习,体会联系
(一)数对与位置的对应练习
1.在图中找出数对(1,2)、(5,3)的位置。
2.数对(6,4)表示的是王乐同学的位置,你能指出哪个是王乐同学吗?
(二)体会相关数对之间的联系
1.王艳同学的位置用数对表示是(,),赵雪同学的位置用数对表示是(,)。看一看有什么不同。
2.用数对表示出周明、张亮、赵雪三个同学的位置,你发现了什么? 3.用数对表示出李小冬、孙芳、张亮三个同学的位置,你发现了什么?
四、联系生活,实际应用
(一)生活举例(第19页“做一做”)
(二)实际应用 1.练习五第2题。
(1)理解题意:第(1)问是用数对表示指定汉字的位置,第(2)问根据数对找对应汉字。
(2)学生独立完成。
(3)组织学生交流自己的想法和思路。
(4)组织开展“根据数对找对应汉字”的游戏活动。2.练习五第5题。
(1)理解题意,介绍国际象棋。
(2)理解国际象棋在棋盘上表示棋子位置的规则。
(3)集体完成第(1)问,让学生任意选择一个棋子并描述它在棋盘上的位置,体会数对也可以用字母表示。
(4)独立完成第(2)问,标出棋子移动后的位置,然后集体反馈交流。
五、课堂小结,提炼延伸
(一)课堂小结
1.让学生说一说本节课的学习收获。2.教师归纳本节课的主要学习内容。
(二)提炼延伸
1.引导:我们这节课从在“一排座位”里确定一个同学的位置,到在“教室平面”里确定一个同学的位置,你有什么感受?
2.提炼:在“一排座位”里确定一个同学的位置,只需要一个数;在“教室平面”里确定一个同学的位置,就需要两个数。这说明在直线上确定一个点,只需要一个数据;在平面上确定一个点,就需要两个数据,也就是我们这节课学习的“数对”。(演示PPT课件)
3.延伸:想一想,如果在一个立体空间里确定一个点,需要几个数据呢?
4.拓展。
(1)生活中的数学:经纬线的知识。
(2)知识小介绍:介绍法国数学家笛卡尔。
六、作业练习
1.课堂作业:练习五第1、4题。2.课外作业:练习五第3题。