第一篇:Ag基材料烧结技术研究进展范文
Ag基材料烧结工艺研究进展
李岩 1600516 摘要:银基材料广泛应用于工业生产中,许多研究者对于银基材料的烧结工艺也进行了探索。本文总结了近二十多年来Ag基材料的烧结工艺,并对其未来的发展前景进行了展望。
关键词:Ag
烧结工艺
粉末冶金
1.前言
单质银是面心立方晶体,具有良好的塑变能力和优良的电学热学性能。银的磁化系数小,是反磁性物质,银的标准电极电位比氢高,具有稳定的化学性能,同时抗腐蚀性也相对较好。所以在银基合金基体中添加高强度增强体,既可保持银合金原有良好导电、抗强磁场等性能的同时,又提高了银基合金的应变强度、抗摩擦磨损性能等,进一步满足电子电路、电器系统及和导电有关的其他领域的需要。
银粉是电气和电子工业的重要材料,是电子工业中应用最广泛的一种贵金属粉末,为厚膜、电阻、陶瓷、介质等电子浆料的基本功能材料[1,2]。近年来,纳米微粒和纳米材料已成为材料科学领域的研究的热点之一。纳米级银粉,除了具有常规银粉的一些性能外,还具有特殊的性能,可用作导电银浆,在化纤织物中添加纳米银,可改变其导电性能,并使化纤织物有很强的杀菌能力;纳米银晶体,作为稀释致冷机的热交换器,效率比传统材料高30 %,纳米银粉还是有机合成中非常好的催化剂。
目前银基粉末复合材料包括热电材料、陶瓷复合材料及电触头材料等,所利用的仍然是银所具有的良好的导电性和导热性[3]。随着科技的发展和理论基础的进步,依托先进设备,银基粉末复合材料的制备工艺越来越多,比如快速热压法,高分子网络凝胶法和放电等离子烧结技术,溶液浸泡法等。本文总结了一些Ag基材料烧结工艺的研究现状,并对其未来发展前景进行了展望。
2.工艺
早期的银基材料多采用传统的粉末冶金法,即将粉末机械混合、压制、烧结。采用这种方法,设备简单,添加元素容易控制,可以在较大范围内调整合金的成分,但是制备的材料密度较低,氧化物质点较粗大,耐电弧腐蚀性较差。为提高材料的密度与性能,几十年来新工艺、新技术不断涌现,如熔渗法、快速热压法等。
曾德麟[4]采明粉末烧结冷轧的复合工艺制得的人Ag-Cu双金属片材,其物理力学性能二接近用其它方法得到的致密双金属材料,而且具有复层晶粒细、界面结合力强的优点,塑性性质可完全满足进一步加工的要求。张万胜[5]研究了双层挤压和烧结复压及粉末的混合方式对制备的AgSnO2触头材料的性能比较,发现制造工艺和所用粉末的类型可引起材料接触电阻、熔焊力和电损蚀等性质方面发生很大变化。
刘想梅等人[6]采用溶胶-凝胶法制备了SnO2-TiO2混合纳米粉末,把制得的纳米粉末用化学镀的方法进行包覆后与纯银粉按90 :10(质量比)混合,将粉末放入模具中,对压制成型的试样采用分级保温烧结的热处理方法,制成Ag-SnO2-TiO2触头材料。研究发现溶胶-凝胶法制得的粉末比机械混合法制得的颗粒小,达到了纳米级,且Ti4+进入到了SnO2的晶格中,提高了导电率,而机械混合法不能使Ti4+进入SnO2的晶格中。
石宇等人[7]研究了利用快速热压法制备N型Ag0.8Pbm SbTem +2热电材料,采用很快的升温速度,比较短的保温时间,抑制了晶粒长大。通过降低烧结时间,提高烧结温度等措施可以使热电材料达到一种理想的状态:声子散射加强的同时,载流子迁移率却不受影响。按化学计量比,把PbTe粉末、A g粉(纯度99.999 %)、Sb粉(纯度99.999 %)和Te粉(纯度99.999 %)混合均匀,放入石英玻璃管内,抽到气压<1.33 ×10-2Pa封管,熔10h,熔炼温度1273K。对熔炼得到的合金锭进行高能球磨,球磨介质为乙醇,在转速200r/min的行星球磨机上球磨20h,干燥后得合金粉。把合金粉装入石墨磨具,利用高频快速热压烧结装置,升温速度为70K/mim,在673K,压力为20MPa下,烧结30min,随炉冷却至室温。通过物相分析发现,衍射峰的位置向衍射角增大方向略有偏移,说明Ag、Sb离子形成了掺杂。球磨之后具有较高的表面能。经烧结后形成的试样孔隙率低,晶粒细小。通过对其热电性能的测试,合金材料获得了很高的Seebeck 系数。
宋英等人[8]研究了Ca3Co4O9/Ag陶瓷复合材料的制备及其热电性能。以分析纯Co(Ac)24H2O和Ca(Ac)22H2O为原料,按照一定化学计量比溶于水中,与金属离子以摩尔比1.1∶1加入络合剂乙二胺四乙酸(EDTA)溶液,搅拌溶解后加入NH3H2O调整溶液的pH值在6左右时,加入丙烯酰胺和N,Nˊ亚甲基双丙烯酰胺。当温度至80℃时,加入偶氮二异丁腈引发剂,几分钟后形成均匀的紫色湿凝胶。将湿凝胶放入微波炉中加热,快速脱去水分,形成干凝胶。将干凝胶在750℃煅烧4 h后,获得Ca3Co4O9粉体,再与不同摩尔比的AgNO3溶液充分搅拌混合,在此过程中,缓慢加热将水分蒸除,最后在750℃的条件下复煅烧1 h。将Ca3Co4O9 /xAg(x =0、0.1、0.2、0.3,尔分数)复合粉体置于石墨模具中,在800℃下进行SPS烧结,烧结压力15.7kN,保温时间为5min,升温速度为140℃/min,获得Ca3Co4O9/Ag陶瓷复合材料。XRD发现单质Ag的衍射峰随着Ag复合量的增加而逐渐增强。对Ag 复合Ca3Co4O9陶瓷的热电性能研究表明,复合Ag均使试样的电导率有所提高,但Seebeck系数却随着,复合量的增加而降低。由于电导率增加的幅度要大于Seebeck系数降低的程度,故而材料的功率因子所增加。
刘心宇等人[9]研究了利用溶液浸泡法制备Ag/BaSn1-xSbxO3CuO触头材料。将BaSn1-xSbxO3粉末经醋酸铜溶液浸泡后烘干,并在550℃下,经固相反应后制备出BaSn1-xSbxO3CuO复合粉末,然后与Ag粉混合,经滚筒球磨、高能球磨、过筛后即制备出Ag/BaSn1-xSbxO3CuO复合粉末。压制成形后置于马弗炉中于900℃下烧结3h后,得到触头材料Ag/BaSn1-xSbxO3CuO试样。经过实验测试发现用醋酸铜溶液浸泡BaSn1-xSbxO3粉末,经固相反应制备的BaSn1-xSbxO3CuO复合粉末比机械混粉法制备的复合粉末均匀。与机械混粉法相比,溶液浸泡法可明显改善Ag/BaSn1-xSbxO3CuO触头材料的显微组织,提高了触头材料的力学和电学性能。刘想梅等人采用溶胶-凝胶法制备了SnO2-TiO2混合纳米粉末,对压制成型的试样采用分级保温烧结的热处理方法,制得的触头材料的电导率为66.9 %IACS,密度为9.63g cm3,硬度为92.3kg cm2,性能符合国标且优于美国和日本同类产品的,具有良好的应用前景。
徐国财等人[10]利用微波合成纳米银/PAMPS复合材料。在不加还原剂的条件下,采用微波辐射双原位聚合方法合成了纳米银/2-丙烯酰胺基-2-甲基丙磺酸均聚物(PAMPS)复合材料。微波作为一种新颖的合成技术手段,具有加热均匀、粒子在微波作用下易于成核等优点。通过UV-Vis、XRD、FRIP、TEM、XPS和TG分析方法对其进行分析和表征。结果表明:纳米银粒子具有面心立方结构,且均匀地分散在聚合物基体中;微波辐射时间不影响纳米银粒子的形态;纳米银与基体PAMPS中的氮原子和羰基氧原子存在相互作用,降低了PAMPS基体的热稳定性。
范莉[11]利用化学共沉淀法制备了Ag-ZnO复合材料。将银、锌(镍)溶于浓度为30%的硝酸生成硝酸盐溶液,经过滤、稀释与可溶性碳酸盐水溶液反应生成沉淀物,沉淀物溶液pH值≥10,用去离子水洗涤,经烘干、焙烧分解后得到银和氧化锌的混合粉末。按上述方法制备的Ag-ZnO复合粉末,采用压制-烧结-复压工艺。经实验测定,利用化学共沉淀制备的复合材料中,ZnO粒子细密,分布均匀。添加少量镍有利于提高耐磨和耐电弧腐蚀性。
Moon等人[12]研究了多脉冲闪光烧结制备Ag网膜的导电电极。闪光烧结技术具有与基于R2R的印刷速度兼容的非常快的烧结时间。通过金属纳米粒子的等离子体共振将吸收的光能转化为热能。
黄平等人[13]研究了SrBi4Ti4O15/Ag复合材料的制备及其介电特性,他们采用固相烧结工艺制备了SrBi4Ti4O15(SBTi)/Ag铁电复合材料。在烧结过程中,当温度达到300℃时,Ag2O将分解为Ag,SBTi 基体中形成金属Ag颗粒。根据XRP衍射图像分析:复合材料由SBTi和Ag两相组成,没有出现其它相;与Ag有关的衍射峰的相对强度随着Ag体积分数的增加而增大。Ag的加入可以起到促进烧结的作用。通过在SBTi 铁电陶瓷中加入微量Ag颗粒,使SBTi铁电陶瓷的烧结温度从1120℃降低到950℃。对材料的介电特性研究的发现,Ag的加入可以适当提高铁电陶瓷从室温到200℃的介电常数,但对材料的介电损耗影响很小。同时Ag的加入抑制了介温曲线上的介电常数的Curie峰。
王松等人[14]利用化学沉积包覆和粉末冶金法相结合的方法,研制一种新型的Ag-CNTs电接触材料。与相同工艺制备的Ag-Ni、Ag-SnO2传统电接触材料比较,新材料具有更好的耐电弧侵蚀性能和电寿命。DC(25V/15 A)电接触条件下,经10000次分断操作,其质量损失仅为102 mg。试验设定的4种电接触条件下,新材料的电寿命均为Ag-Ni和Ag-SnO2材料的2倍。
陈晓华等人[15]研究了烧结温度对SPS制备Ag/ La2O3触点材料的影响。采用放电等离子烧结(SPS)技术制备了Ag/ La2O3触点材料,研究了烧结温度对其致密度、显微结构及力学性能的影响。Ray等人[16]研究了一种新的放电等离子烧结Ag-WC电接触材料的方法。在放电等离子体烧结中,致密化主要以固态进行,从而将烧结温度限制在粉末混合物的液相线上,否则会导致液相在该过程中渗出,多相的均匀化为固态扩散。在SPS期间,所生产的触点已经结合到铜型材上,以消除额外的加工步骤。SPS复合材料具有更均匀的微观结构,并且比通过常规压坯烧结渗透产生的材料更硬和柔软。渗透的触点具有较低的电弧侵蚀,由两个工艺产生的触点具有类似的接触电阻。切换后的微观结构证实,SPS材料具有多孔接触表面层,与其冲压烧结渗透等效物相反,无裂纹。
Wang等人[17]研究了Ag纳米颗粒的无压低温快速烧结技术,吸附在纳米颗粒表面的有机层使其产生一层薄的保护层。通过对银颗粒的烧结生成了高密度的孪晶和大量的共格孪晶界,有效地降低了晶界散射效应,从而导致超高导热率。通过稀释有机壳,烧结时间大大缩短,烧结形态从松锥状变为网状。
3.展望 银粉是电子工业中应用最为广泛的一种金属粉末。近几十年来,随着科学技术的进步,特别是电子工业的高速发展,银粉的制备无论在技术还是设备上都取得了长足的进展,已经相当成熟。银基通断接触材料是银消费的主要领域,开发新的导电系数高、抗电磨损性能和抗熔焊性好、接触电阻低、有灭弧作用、加工性能好的银基合金接点材料,是取得良好经济效益的重要途径。现在,银基材料烧结工艺多种多样,有借助于传统的烧结工艺,也有新发展的工艺。总的来说,如何控制烧结温度和时间,制取优良性能的材料依然存在问题。随着科技的发展,对烧结机理的深入研究,必将会发展出更佳的工艺。
参考文献:
[1]何发泉,李勇军.银粉的用途和制备[J].中国粉体技术,2001, 7(3):45-47.[2]王成刚,赵西成,彭济时,薛娟琴.洪涛银及银基材料的应用现状及发展趋势[J].有色金属, 2002,54增刊:98-100.[3]陈晓华,贾成厂,刘向兵.粉末冶金技术在银基触点材料中的应用[J].粉末冶金工艺,2009,19(4):41-46.[4]曾德麟.轧制粉末Ag-Cu双金属材料的研究[J].稀有金属材料与工程,1984,6:12-19.[5]张万胜.不同工艺制造的A gSnO2触头材料性能比较[J].电工合金,1997,4:29-34.[6]刘想梅,郑冀, 李松林, 李群英, 李玉桐, 吕克泰.纳米Ag-SnO2-TiO2触头材料的制备工艺及性能研究[J].材料开发与应用,2003, 18(3):4-6.[7]石宇,蒋阳,苏煌铭,韩领,仲洪海,余大斌.Ag0.8PbmSbTem+2热电材料的快速热压法制备及性能表征[J].功能材料,2010, 41(9):1581-1584.[8]卢艳,宋英,孙秋,王福平.Ca3Co4O9 /Ag陶瓷复合材料的制备及其热电性能[J].金属热处理,2009, 34(8):4-6.[9]蔡定云,刘心宇,袁昌来,李波,王炜,高攀.溶液浸泡法制备Ag/BaSn1-xSbxO3CuO触头材料[J].稀有金属与硬质合金,2015, 43(6):52-55.[10]高圣涛,徐国财,姚宝慧,邢宏龙,张晓梅.纳米银/PAMPS复合材料的微波合成及表征[J].复合材料学报, 2012, 29(3):54-58.[11]范莉.化学共沉淀法制备Ag-ZnO复合材料的显微组织和性能[J].粉末冶金工业,2013, 23(5):26-29.[12]Chang-Jin Moon,Inyoung Kim,Sung-Jun Joo,Wan-Ho Chung,Taik-Min Lee,Hak-Sung Kim.Flash light sintering of ag mesh films for printed transparent conducting electrode[J].Thin Solid Films,629(2017): 60–68.[13]黄平,徐廷献.SrBi4Ti4O15/Ag复合材料的制备及其介电特性[J].硅酸盐学报,2004, 32(9):1045-1049.[14]王松,谢明,李爱坤,朱刚,王塞北,杨有才,陈松.新型Ag-CNTs电接触材料的制备及其性能[J].有色金属科学与工程,2015, 6(5): 40-45.[15]陈晓华,贾成厂,刘向兵.烧结温度对SPS制备Ag/ La2O3触点材料的影响[J].2007, 25(6):420-424.[16]Nachiketa Ray,Bernd Kempf,GuntherWiehl,Timo Mützel,Frank Heringhaus,Ludo Froyen,Kim Vanmeensel,Jef Vleugels.Novel processing of Ag-WC electrical contact materials using spark plasma sintering[J].Materials and Design,121(2017): 262-271.[17]Shuai Wang,Mingyu Li,Hongjun Jia,Chunqing Wang.Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging[J].Scripta Materialia,69(2013): 789-792.
第二篇:生物基环氧树脂研究进展
国内生物基环氧树脂研究获新进展,各项性能达到或优于石油基产品。研究人员将阻燃性好、又能与碳碳双键反应的9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)引入到了衣康酸环氧结构中,得到了含磷衣康酸基环氧树脂(EADI)。其固化物性能与双酚A环氧相当,并表现出优异的自阻燃性。用EADI改性的双酚A环氧也具有非常好的阻燃效果。研究人员将衣康酸基环氧树脂的双键变成环氧基团的环氧单体,合成了高环氧值(1.16)、低黏度、高固化活性的环氧树脂,并在某些领域表现出比双酚A环氧更加优异的加工性能。衣康酸又名亚甲基丁二酸,是一种重要的生物基原料,可由生物发酵技术制备得到.由于具有广阔的应用前景和较低的价格,衣康酸已被美国能源部评选为最具发展潜力的12种生物基平台化合物之一。占全球环氧树脂市场90%左右的双酚A环氧,其原料双酚A被证明具有很强的生理毒性,目前已被多个国家禁用于人体接触的领域。衣康酸在替代双酚A合成环氧树脂方面具有巨大的潜力和发展空间。
第三篇:淀粉基泡沫材料的研究进展
淀粉基泡沫材料的研究进展
随着聚合物工业发展,其所导致的环境污染引起 了人们对聚合物废弃物处理问题的关注。泡沫塑料密度小、体积大、不便于集中和运输,而且本身化学性质稳定,具有耐老化、抗腐蚀等特点,日益增长的泡沫塑料垃圾对生态系统的威胁越来越大,引起 了严 重的 “白色污染 ”,世 界上许 多 国家均已立法禁止生产难降解的泡沫塑料产品”。近年来我国泡沫塑料产量每年以约 10%的速度增加。据估算,我国仅电视机用泡沫包装材料每年废弃量就达1.5万t。此外,随着关税壁垒的逐渐弱化,国产商品的出口开始受到“绿色贸易壁 垒”的 困扰。在 这些 “绿 色贸易 壁 垒”中,由于我国的包装材料不合格而被拒之在他 国门外的占相当大的一部分。因此开发并应用具有良好环境相容性的“绿色环保缓冲材料”已成为 21世纪的必然趋势。
淀粉是绿色植物光合作用的最终产物,是生物合成的最丰富的可再生资源,具有品种多、价格便宜等特点。此外,淀粉还具有挤出膨胀性 能和抗静 电作 用,可 以用于包 装运输等领域。淀粉易受微生物侵蚀,具有优 良的生物降解性能。因此,开发淀粉基可降解泡沫塑料不仅为更好地利用丰富的天然资源开辟了一条新的途径,而且还可以解决“白色污染”,给我们现有的生活环境和可持续发展提供良好的“沃土”,另外还能缓解生化能源紧缺的危机。笔者现就国内外淀粉基可降解泡沫塑料的成型方法作一综述,以期为进一步开展绿色缓冲材料的研究提供指导。
1天然淀粉泡沫塑料
天然淀粉包括玉米淀粉,土豆淀粉,小麦淀粉,蜡质玉米淀粉,高度支化土豆淀粉,木薯淀粉以及西米淀粉等[1,2]。一般呈粒状,含有不同比例的直链和支链结构。普通淀粉泡沫塑料大都是开孔结构,泡孔均匀性差,较脆; 而高直链淀粉泡沫塑料则形成闭孔结构,泡孔小而且比较均匀,压缩强度较普通淀粉泡沫塑料小,脆性明显降低。
2变性淀粉泡沫塑料
淀粉是一种强极性的结晶性物质,热塑性差,同时淀粉是亲水生物质,由纯淀粉制备的泡沫塑料不适宜在有水或湿度较大的环境中使用,因而 要对淀粉进行改性,以适应生产和应用的要求。改性淀粉包括酯化淀粉,醚化淀粉,接枝共聚改性淀粉,酸水解淀粉,交联淀粉和酶转化淀粉等[3],其中酯化淀粉,醚化淀粉和接枝共聚改性淀粉较为常见。
3淀粉/合成树膳复合泡沫塑料.1与合成树脂共混
B.Ca rla[4] 等 均 各淀粉与聚合物共混挤出,其中包括聚合物A 可以与淀粉兼容; B 可以与淀粉反应,制得密度为5-1 3 k g/mol的泡沫塑料。A.Y o s h i m i等[5],用淀粉与合成树脂PVA 和E V O H 共混,在非离子表面活性剂,增稠剂及填充材料的存在下,由水发泡制备的淀粉泡沫塑料,具有密度小和表面性能优良等特点。3.2 与PVA 共混
R.L.Shogzen 等[6] 研究 了由淀粉/P V A共混烘焙制备泡沫塑料 的工艺,结果表明,在较低湿度时,8 8 % 醇解的 P V A强 度的提高较大,而在湿度较高时,9 8 % 醇解的P V A 较大弯曲强度[P V A 的 分子量的提高而增大; 交联剂的加入可以进一步提高耐水性I 微观结构分析发现,膨胀的淀粉颗粒镶嵌在P V A 中,淀粉在烘焙过程中发生凝胶化,P V A 向更高程度的结晶转变。.3与EVOH 共混
J.Y.Chat1等[7]研究了挤出温度及原料湿含量对淀粉基泡沫塑料物理 性能的影响,组分为4 9 % 的小麦或玉米淀粉,3 3% E VOH,1 0.5% 水,7 %发泡剂及0.5%的成核剂,由单螺杆挤出,螺杆转速为1 0 0 r mp。结果表明,体积密度随挤出温度的升高而降低,最大膨胀出现140℃,密度是聚苯乙烯的4 — 8 倍。
3.4 与商业化生物降材料共混
Q i F a ngI等[8]用普通(含直链2 5 %)玉米淀粉和蜡质玉米淀粉与E a s tarBioCopolyeste 14766(E B C)以各种 比例相混合,双螺杆挤出。研究表明,普通玉米淀粉的水溶性指数低于蜡质玉米淀粉,但两种淀粉制得的泡沫塑料具有相似的机械性能; 含EBC10% 的泡沫塑料的 压缩强度大于含EBC 25% 的 压 缩强度; 含水19% 和22%的泡沫制品膨胀率大于含水25%的泡沫制品,含水22%的泡沫制品具有较低的水溶性指数。
4、淀粉基泡沫塑料的成型 挤出发泡
20世纪 80年代末,人们开始利用挤出发泡成型工艺制备淀粉基泡沫塑料,以代替聚苯乙烯(Ps)作松散填充物。其中加工条件、淀粉组成、发泡剂、含水量等对淀粉在挤出机中的发泡行为有很大影响。R.Chinnaswamy等[9] 指出几乎所有的最大膨胀都出现在直链淀粉质量分数为 50%的淀粉中。J.Y.Cha等 发现淀粉基泡沫塑料的性能与发泡时淀粉的含水量及挤出条件有很大关系。V.D.Miladinov等[10]用乙酞化淀粉为原料制备泡沫塑料时发现,成型温度为 120~C时比 160℃ 时所得制 品的弹性 和吸水性 指数低,而压缩 强度 和密度则较大。V.D.Miladinov等[11] 还发现以乙醇为塑化剂和发泡剂挤出发泡乙酞化淀粉时,所得制品的密度较低,弹性指数较高。B.Sandeep等[12] 以淀粉与 Ps及聚甲基丙烯酸 甲酯共混挤 出制得松 散填充 物。结 果发 现,除 密度外,填充物的性能与商业化的同类产品相似。G.M.Ganjyal等[13] 将玉米茎纤 维素填充 到经 乙酰化而具有热塑性质的玉米淀粉中挤 出发泡,发现纤 维素在低含量时能显著提高泡沫塑料的物理性能,但当纤维素质量分数超过 10%时,泡沫塑料的发泡倍率开始降低,密度增加。GuanJunjie等[14] 用双螺杆挤出机挤出淀粉和乙酸淀粉共混物制得了具有高发泡倍率、高可压缩性和低吸水性等特性的发泡材 料。QiFang等[15] 发现聚乳酸(PLA)的加入明显提高了规整淀粉(含 25%直链淀粉)和蜡质淀粉挤出发泡产品的物理力学性能。增加 PLA的含量,泡沫的发泡倍率和弹性指数增加,其密度和可压缩性降低,但对水溶性没有影响。QiFang等 还利用取代度为 1.78的 乙酸淀 粉和 聚 四亚 甲基 一己二酸 一对苯二酸酯(EBC)挤出得到可生物降解的泡沫塑料,利用红外光谱分析、差示扫描量热分析和扫描电子显微镜表征泡沫的化学结构、热性能及微孔结构。结果表明,EBC含量较低时两种组分具有较强的可混合性,并且具有较高的发泡倍率、弹性指数,较低的密度及可压缩性。EBC含量的增加能降低泡沫塑料的生物降解性。超临界流体挤出发泡
超临界流体挤出发泡是一种新近发展起来的新方法,可以应用于生产淀粉基泡沫塑料。该方法通过向熔体中注入超临界 CO 以形 成微孔结构。G.M.Glenn等[16] 采用 以下两种方式来改善发泡状态:①提高成核率从而提高泡孔的密度;②降低熔体温度。其中方法①通过降低挤出口模直径以提高淀粉/CO:流经挤出口模时的压力 ;而方法②主要是通过引入冷却装置而达到要求。研究表明,当挤出口模直径从 3mm降低到 1.5mm时,泡孔密度增加了4倍。泡孔密度的增加能在较大程度上阻止 CO:逃逸到环境中去,并使发泡倍率提高了 160%。当熔体温度从 60~C降低到40℃时,泡沫的发泡倍率增加了34%。N.Soykeabkaew[17]等” 运用超临界流体挤 出法获得 了泡孔直径为 50—200nm的泡沫,泡孔密 度为 1×10个/cm3利用超临界流体挤出所得淀粉基泡沫塑料的泡孔大小和发泡倍率主要受原料和成型]_艺参数等的影响。超临界CO,作为发泡剂具有表面张力小、类似液体的溶解度和类似气体的扩散系数、易在淀粉熔体中迅速溶解等一系列优点。在气体与淀粉熔体问扩散、混合形成均相体系的过程中,由于螺杆挤出的作用从大的气泡逐渐破裂成小的气泡,气体与淀粉熔体经不断的混合、对流和扩散最终形成均相体系。从加工工艺看,压力、温度和发泡剂浓度也是影响淀粉熔体发泡成型的重要因素。
在发泡过程中,饱和压力高和环境 压力 低造 成了活化 能垒 低,从而 成核率高,易于形成 高密度泡孔。另外,温度对泡孑L密度的影响与气体浓度变化有关,随着温度升高,气体的溶解度降低,使得泡孑L密度降低。但淀粉熔体在高温下粘度降低,对泡孑L长大的阻力减小,因此在较 高的温度 下泡孑L更大,泡孑L密度更低。3 烘培发泡
淀粉的烘焙发泡成型工艺是指将淀粉与发泡剂及其它助剂的混合物在烘焙模型中加热发泡的成型方法。此过程一 般需加入硬脂酸、瓜尔胶等脱模剂,使制品易于脱模。同样,淀粉的组成及加工条件对淀粉烘培发泡成型也有很大影响。J.W.Lawton等 认 为高直链 淀粉具 有最短 的烘焙 时间并能制得密度相对 较低的泡沫塑料。P.Dujdao等[18]将淀粉与聚己内酯(PCL)共混物通过烘焙发泡制得共混物泡沫。PCL的加入增加了泡沫的拉伸强度、断裂伸长率、抗吸水性及生物降解性。P.Dujdao等[19]还研究了淀粉/PLA混合 物与 相关 添IIII的烘 培发 泡 条件,认为相对湿度、保存时间、PLA含量及增塑剂的种类和含量对所制得的泡沫的吸水性、力学性能和酶降解性都有很大的影响。用纯淀 粉生产 的泡 沫塑料 具有 易脆 和低力学 性能 的特点。J.Shey等[20]利用烘焙 发泡 工艺生产 出纤维增 强的谷物和块茎淀粉低密度泡沫塑料,具有和商 业用食 品容器一 样 的弯曲性能。N.Soykeabkaew等[21]认为 5% ~10%的黄麻或亚麻纤维素的加入均能显著提高淀粉基烘培发泡泡沫塑料的弯曲强度和弯曲弹性模量。研究表明,淀粉基泡沫塑料力学性能的大幅度提高主要归功于纤维和淀粉的强相互作用。R.L.Shogren等[22]的研究表明,添加 5% ~10%的纤维就能制备较高强度的泡沫塑料,尤其在湿度较高及温度较低时。另外,随着纤维用量增大,烘焙时间增加使得泄沫塑料 的粘度及耐膨胀率增大。4 模压发泡
G.M.Glenn等[23] 研究 了一种加 压/放气 模压发 泡成 型工艺,具体流程为:将淀粉原料在一定条件下置于铝制模具中加热到 230~C,并在 3.5MPa压力下压缩 10s,然后释放压力,气体溢出使淀粉膨胀并填满模具。结果表明,小麦、玉米和土豆淀粉在含水量分别为 17%、17%和 14%时所得制品的某些物理力学性能与商业化食品包装产 品相似,外貌与PS相似。G.M,Glenn等[24]研究了一次性在制品表面形成包覆膜的模压发泡成型方法。此工艺是将原料放于两层聚氯乙烯薄膜之间,然后在 160~C模压成型。结果表明,该制品与未包覆膜的制品相比,具有较高的密度、拉伸强度、断裂伸长率和弯曲强度。同时,制品的耐水性也有很大提高。上述方法中,挤出发泡研究最早,工艺已经成熟;超临界流体挤 出发泡是 目前研究的热点和前沿,可以提高发泡倍率 ;烘焙发泡与挤出发泡只能生产条状和片状的淀粉基泡沫塑料;而模压发泡得到的材料的表面层具有较高密度,内部则具有较高空隙率,可以用来制备形状较为复杂的缓冲发泡材料。
5、结语
近年来,淀粉作为一种比较理想的原材料,在发泡材料领域已经开始被人们重视。采用纯天然材料淀粉及农作物秸秆制备绿色泡沫塑料,是制备 Ps等泡沫塑料的理想的代替品。相信在不久的将来,随着发泡技术的成熟,完全降解的淀粉基泡沫塑料制品将在塑料应用中占有一席之地,为缓减环境污染和发展农村经济做出应有的贡献。今后淀粉基泡沫塑料 的研究工作主要是解决如下几个方 面的问题 :
(1)设计新的成型工艺,生产预期板状和块状淀粉基泡沫塑料,替代电器和仪表包装中大量使用的 Ps泡沫塑料。
(2)开发完全生物降解的淀粉基泡沫塑料。目前淀粉基泡沫塑料依然含有大量的难以降解的 Ps等原料,有的甚至含量达 70%以上。我国秸秆资源丰富,且大部分都作为燃料烧掉了。可以在淀粉里适当添加秸秆、木粉等原料来制备完全降解泡沫塑料。
(3)进一步研究淀粉的发泡和流变机理,改善淀粉的流变性能,制 备性 能更优的泡沫塑料。
参考文献
[1] BastioliC,eta1.BiodegradableFoamedPlasticMaterials:US,5736586[P].1998-04-07.
[2] 中国石油和化学工业协会中国石油和化工经济数据快报2006(18):73. [3] 张绍华.中国包装,2001,4(1):51—55.
[4] 刘德桃,等.包装工程,2007,28(4):15—18.
[5] BibyG,et1a.Water—resistantdergadablefoamandmethodofmak— ingthesame:US,6184261[P].2001—10—17.
[6] BastioliC,eta1.CerealChem,1998,65:138—143. [7] ChinnaswamyR,et1a.jFoodSci,1998,53:834—836. [8] ChaJY,eta1.IndCropsProds,2001,14:23—3O.
[9] MiladinovVD,et1a.IndCorpsPords,2001,13:21—28. [10] MiladinovVD,eta1.IndCropsProds,2000,11:51—57. [11] SandeepB,eta1.IndCropsProds,1995.4:71—77.
[12] GanjyalGM,eta1.Jounrla fo AppliedPolymerScience,2004,93:2627—2633.
[13] GuanJunjie,et1a.Biomacormolecules,2004,5(6):2329—2339. [14] QiFang,eta1.BioresourceTechnology,2001,78(2):115一l22. [15] QiFang,eta1.1ndCorpsProds,2001,13:219—227. [16] GlennGM,eta1.CereaChem,1994,71(6):587—593.
[17] SoykeabkaewN,eta1.CarbohydratePolym,2004,58(1):53一63. [18] LawtonJW,eta1.CerealChem,1999,76:682—687.
[19] DujdaoP,et1a.PolymerTesting,2004,23(6):651—657.
[20] DujdaoP,eta1.CarbohydratePolymers,2005,59(3):329一337. [21] SheyJ,et1a.IndCropsProds,2006,24:34—40.
[22] SoykeabkaewN,eta1.CarbohydratePolymers,2004,58(1):53一63. [23] ShogrenRL,eta1.Polymer,1998,39(25):6649—6655. [24] GlennGM,et1a.IndCorpsProds,2001,13:135—143.
第四篇:聚合物基纳米复合材料研究进展
聚合物基纳米复合材料研究进展
摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。关键词 : 复合材料;纳米材料;聚合物;功能材料 引言
复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料)是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。
纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。1 纳米增强复合材料
纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。1.1 碳纳米管纳米复合材料
碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石相当(约 1.8 TPa)[1]。如何使碳纳米管的优异性能在复合材料中充分体现发挥已成为新的研究热点。自由悬空条件下单壁碳纳米管的拉伸强度(45±7)GPa,是高强钢的 20 倍[2]。由于碳纳米管具有很好的柔韧性,其最大的弯曲角度超过 110◦,因此被认为是理想的聚合物复合材料的增强填料[3]。
目前,碳纳米管/聚合物复合材料的制备方法主要有溶液共混法、固相加热共融法和原位聚合法等。这些制备方法面临的主要技术难点是纳米管的分散性、稳定性与取向问题,以及碳纳米管之间的团聚和滑移使碳纳米管不能起到有效的增强作用。增加表面活性剂可以起到分散和增塑的效果,如 Gong 等[4]的研究表明加入表面活性剂后,添加质量分数为 1% 的碳纳米管可使聚合物的玻璃化温度从 63 ◦C 提高到 88 ◦C,弹性模量增加 30%。采用“roping andwrapping”方法分MWNTs,可以使得最终溶液稳定数月[5]。通过机械拉伸的方法可获得线性取向的纳米复合材料。Andrews 等[6]将质量分为 5% 的 SWCNTs 散到各向同性的沥青中,制备出碳纳米管线性取向的沥青基碳纤维,与未添加碳纳米管的沥青碳纤维相比,其拉伸强度增加了 90%,弹性模量提高了 150%,电导率提高了 340%,这为设计和制备硬度高且柔软的碳纤维提供了一个新的方法。1.2 石墨烯纳米复合材料
石墨烯是一种只有单原子层厚度的二维碳纳米材料。2004 年,英国曼彻斯特大学的Novoselov 等[7]采用胶带反复粘贴剥离石墨的方法,首次获得了完美的单层石墨烯。石墨烯本身拥有优异的电性能、力学性能和热性能,如其杨氏模量和断裂强度分别高达 1 100 和125 GPa[8]。单层石墨烯的出现在纳米材料领域掀起了轩然大波,也因此带动了树脂基纳米复合材料的快速发展。
相比于其他维度的碳纳米材料,高模量石墨烯的加入可以显著改善树脂基体的弹性模量。已有研究发现,添加质量分数为 0.1% 的石墨烯能够使环氧树脂弹性模量提高约 31%[9];对于石墨烯质量分数为 0.25% 的硅酮泡沫塑料其模量提高200%[10]。石墨烯的填充也能够明显改善聚合物基体韧性[9,,11-15]。0.1% 的石墨烯可使环氧树脂的临界应力强度因子提高约 53%,优于MWCNTs 和 SWCNTs,这与石墨烯较高的比表面积以及石墨烯在还原过程中表面形成的旋涡和褶皱结构有关。Ramanathan 等[16]证实,石墨烯表面的旋涡和褶皱结构可以提高其粗糙度,有效改善石墨烯与聚合物链段之间的机械咬合效应及附着力,从而大幅提高材料的力学性能。
目前,大量制备石墨烯复合材料还存在很大的技术难度,石墨烯碳结构的完整性使其与树脂基体之间的浸润难以实现,这大大制约了石墨烯在树脂基复合材料领域的发展,降低了复合材料的最终性能。石墨烯的团聚严重制约了复合材料力学性能的改善,因为石墨烯与基体间的界面结合较差会导致二者之间发生脱粘,使应力得不到有效传递。1.3 纳米线增强复合材料
碳纳米管具有优异的力、热、电等功能特性,如何在宏观尺度上充分发挥和利用碳纳米管的优异性能是近年来相关研究的主要热点之一。碳纳米管宏观聚集体主要包括碳纳米管线、碳纳米管薄膜、碳纳米管纸、碳纳米管阵列等。
宏观碳纳米管聚集体中,一维碳纳米管纤维可以充分利用碳纳米管优异的轴向力学性能。2000 年 Brigitte等[17]首次利用凝聚的方法,通过碳纳米管的自组装制备出了较长的纳米带和纳米纤维,碳纳米管纤维的拉伸强度和杨氏模量可分别达到 300 MPa 和 40 GPa。当碳纳米管在苯乙烯树脂基体中任意分布时,其复合材料弹性模量的增长率为 10%,而定向分布的碳纳米管增强复合材料的弹性模量提高了 50%。拉伸测试结果证明,定向 MWCNTs 复合材料的拉伸强度和模量分别提高为其基体材料的 237% 和 149%[18]。
目前,多种物理化学方法可用来定向和制备长碳纳米管纤维。Ericson 等[19]将SWCNTs 分散在体积百分比为 102% 的浓硫酸中,使得碳纳米管的表面带有电荷,并在电荷的作用下使碳纳米管排成有序的阵列。将这种溶解的液晶溶液纺丝后浸在无水乙醇与 5% 硫酸的混合液或水中形成凝结溶液,可以制备出直径约为50 µm,长度约为 30 m 或更长的纯净的碳纳米管纤维。纯净的碳纳米管纤维的杨氏模量为 120 GPa,拉伸强度约为 116 MPa。Davis等[20]报道了一种在没有强酸存在的条件下制备 MWCNTs 纤维的方法: 首先将碳纳米管分散在乙二醇中形成液晶分散液,然后将其注射到乙醚浴中;分散液中的乙二醇会迅速地溶解到乙醚中,反之乙醚扩散到碳纳米管纤维中; 将浸有乙醚的碳纳米管纤维加热到280 ◦C,除去多余的乙二醇,得到了 MWCNTs 纤维。文献 [21] 报道的类弹簧结构的碳纳米管纤维呈现出了优异性能。这种螺旋结构极大地提高了拉伸时断裂的应变,其应变高达 285%。随着应变的增加,螺旋逐渐打开,直至断裂,自由状态下的形貌呈现为弯曲的直丝。基于如此高的拉伸应变,其韧度高达 28.7 J/g,是已有报道结果(14 J/g)的 2 倍。值得一提的是,“麻花”纤维断裂行为分成两次断裂,并且具有良好的弹性,显示出超高的拉伸应变(高达 985%),并且拉伸过程可以重复。将这种结构的纺丝制备成旋转制动器,其转速可达 900 r/min,可以循环使用,旋转解开的丝可以再次形成乱码结构[22-23]。纳米功能复合材料
纳米相的引入可以极大地改性基体材料的物理和化学结构,从而极大地改变纳米复合材料的各种功能特性,使材料的热、光、电、磁等性能差异巨大。这些光、电、磁方面的奇异性能 和应用引起了各国学者的高度重视。比如在纳米相尺寸小于 5 nm 时,它可有效加速聚合物基体材料的催化速度; 小于 20 nm 时,对基体材料的磁学性能产生影响; 小于 50 nm 时,会影响反射系数;而小于100 nm对基体材料的机械强度和阻尼特性会产生决定性作用[24]。2.1 碳纳米纸及其复合材料
碳纳米纸最早由诺贝尔奖获得者 Smaley 提出,命名为 buckypaper,是由碳纳米管组成的具有微观空隙的准二维薄膜材料。碳纳米纸不仅继承了碳纳米管优异的性能,如导电、导热、耐高温等,同时具有巨大的比表面积及大量的微观空隙,可以用作电池、超级电容器的电极材料、场发射材料、催化剂载体材料等,还可用于改善复合材料的力学及导电、电加热、电磁屏蔽、导热等功能。实验结果表明,当碳纳米管的质量分数达到 8.13% 时,二维碳纳米管膜增强复合材料的杨氏模量和强度较其基体材料分别增了 347% 和 145%。这是由于二维纳米薄膜中的每一个碳纳米管都起着承载作用,可有效地分散复合材料的外力载荷,从而提高其力学性能[25]。美国佛罗里达州立大学的 Gou 等[26-27]通过物理气相沉积技术制备 SWCNTs 纳米纸,并与环氧树脂合成复合材料,其储存模量增加了 200%∼250%。美国Pham 等[28-29] 对 buckypaper 及其复合材料的制备工艺及其性能等方面进行了深入研究。将碳纳米管溶解在水中配制成分散均匀的碳纳米管悬浮水溶液,通过负压抽滤的方法将碳纳米管沉积在过滤膜上,干燥后形成碳纳米纸。并在制备过程中同时对其施加高强磁,使得碳纳米纸中的碳纳米管沿外磁场方向产生取向,从而提高了取向方向上的性能。以环氧树脂为基体制备的导电纳米复合材料,其电阻率为 36.7×10−3 Ω·cm,在防雷击和阻燃等方面有很好的应用前景[30-32]。将碳纳米纸作为导电功能层加入复合材料中,可提高复合材料导电性。同时,由于碳纳米纸为多孔性微观结构,树脂可以进入碳纳米纸中,使得碳纳米纸与复合材料有很好的粘结界面性能[33-34]。Chu 等[35-37]利用碳纳米纸及其复合材料电加热来除冰和驱动形状记忆聚合物材料。2.2 光电纳米复合材料
碳纳米管不仅具有优异的力学性能,而且还具有很多优异的物化性能和独特的光电性能。将少量的碳纳米管掺入到共轭发光聚合物中,可使碳纳米管/聚合物的电导率提高 8 个数量级,用较小的电流密度就可使之发出荧光。碳纳米管能防止由光学和电学作用产生的大量热聚集,用碳纳米管复合材料制成的有机光二极管发射层具有很好的电致发光性能,而且制成的场致发光显示器的稳定性比原聚合物提高了 5 倍以上。用碳纳米管取代传统氧化铟锡导电薄膜,作为聚合物太阳能电池中的透明电极,具有良好的透光性、化学稳定性和柔韧性。随着碳纳米管制造成本的逐渐降低,碳纳米管已实现大规模制备。
有关碳纳米管/半导体纳米复合材料的研究与发展正成为相关研究领域的重要研究内容和方向之一,可以预见其在光电器件、太阳能有效利用及环境净化等方面的应用具有广泛前景和较高价值。2.3 磁性纳米复合材料
纳米磁性颗粒在复合材料中的形式主要包括 4 类: ①任意分散纳米磁性颗粒类的复合材料;②纳米磁性颗粒果核类的复合材料;③有序分散纳米磁性颗粒类的复合材料;④蛋黄-蛋壳类复合材料。磁性纳米复合材料是伴随着磁性纳米材料的发展而发展的,而传统的铁基磁性纳米材料往往聚集成大的集合体,从而不具有独立的纳米磁性颗粒所具备的独特性能,因此对于该材料的应用,首先需解决的问题是实现其不可逆的纳米材料分散。在此研究基础上,对磁性纳米材料进行表面修饰时增加 SiO2 官能团,可制备出果核型、蛋黄-蛋壳型等新型磁性纳米材料。
对磁性硅纳米复合材料作为药物和基因载体的研究工作已经取得了较大的进展。Liu 等[38]报道了一种多功能磁性纳米复合材料,可同时提供两类模型的影像,对磁场成像及其光度都有显著的提升作用,这是因为磁性纳米颗粒较大的比表面积放大了成像目标。随着磁性纳米复合材料的快速发展,其在生物酶输运、细胞吸附和肽分离等医学领域都取得了举世瞩目的科研成绩。
在水处理领域,利用具有巯基、硫醚基、氨基等官能团的聚合物可去除有毒的金属离子,而通过纳米磁性颗粒复合成有机聚合物纳米复合材料,可以提升对毒性金属离子的吸附能力和选择识别能力。Cuo 等[39]研究发现,当通过磁性纳米颗粒与硫醚基有机聚合物制备果核型纳米复合材料时,其对金属 Hg2+的选择吸附能力可得到显著提升,并且其吸附能力可达21 mg/g。从而在磁场作用下, Hg2+ 随着磁性纳米复合材料与水分离,使其质量浓度得以降低。在催化化工领域,类似的磁性分离技术可用于分离催化剂及提高其耐久性。结 束 语
通过对部分纳米复合材料的分析与评述,可以看出低维化、纳米化与复合化是材料不断进步和实现性能革命性跃迁的重要技术途径。纳米复合材料面临着重要的发展机遇,但同时也存在着很多具有挑战性的科学与技术问题。纳米相的引入提高和改善了复合材料的力学性能和物理性能。纳米复合材料是目前复合材料研究、应用和发展的重要方向之一。纳米复合材料仍处于实验室和小批量生产阶段,但是随着需求的增加和纳米复合材料技术本身的发展,其工程化和产业化将不断推进,全球纳米复合材料市场的需求预计将以每年近20% 的速度增长。由于纳米相的引入,带来的主要问题如下: ① 纳米尺度材料的组织调控机理和性能演变的规律还呈现出明显的多尺度和多物理场特征,如何控制纳米相形态、尺寸和分布并定量分析其对纳米复合材料性能的影响极具难度,因此必须加强基础理论研究,以揭示机理并掌握规律;② 先进和科学的表征与测试手段需要进一步完善和发展,以实现从更微观的层面研究和表征纳米复合材料性能,并掌握其优越性能的本质; ③ 纳米复合材料的多功能特性涉及多个学科,因此必须关注纳米复合材料研究中的交叉学科和融合问题。参考文献
[1] 朱绍文,贾志杰。碳纳米管及其应用的研究现状 [J]。功能材料,2000,31: 119-120。[2] Treacy M M, Ebbesen T W, Gibson J M.Exceptionally high Young’s modulus observed for individual carbon nanotubes [J].Nature, 1996, 381: 678-680.[3] Iijima S.Helical microtubules of graphitic carbon [J].Nature, 1991, 354(6348): 56-58.[4] Gong X, Liu J, Baskarm S, et al.Surfactant-assisted processing of carbon nanotube/polymer composites [J].Chemistry of Materials, 2000, 12(4): 1049-1052.[5 ] Zou Y B, Feng Y C, Wang L.Processing and properties of MWNT/HDPE composites
[ J].Carbon, 2004, 42(2): 271-277.[6] Andrews R,Jacques D,Rao A M,et al。Nanotube composite carbon bers [J]。Applied
Physics Letters,1999,75(9): 1329-1331。
[7] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films [J].Science, 2004, 306(5696): 666-669.[8] Lee C, Wei X, Kysar J W.Measurement of the elastic properties and trinsic strength of monolayer graphene [J].Science, 2008, 321(5887): 385-388.[9] Rafiee M A, Rafiee J, Wang Z, et al.Enhanced mechanical properties of nanocomposites at low graphene content [J].ACS Nano, 2009, 3(12): 3884-3890.[10] Verdejo R, Barroso-Bujans F, Rodriguez-Perez M A, et al.Functionalized graphene sheet lled silicone foam nanocomposites [J].Journal of Materials Chemistry, 2008, 18(19):
2221-2226.[11] Rafiee M A, Rafiee J, Srivastava I, et al.Fracture and fatigue in graphene nano-composites [J].Small, 2010, 6(2): 179-183.[12] Zaman I, Kuan H C, Dai J F, et al.From carbon nanotubes and silicate layers to graphene
platelets for polymer nanocomposites [J].Nanoscale, 2012, 4(15): 4578-4586.[13] Jiang T, Kulia T, Kim N H, et al.Enhanced mechanical properties of silanized silica nano-
partical attached graphene oxide/epoxy composites [J].Composites Science and Technology, 2013, 79: 115-125.[14] Ma J, Meng Q, Michelmore A, et al.Covalently bonded interfaces for polymer/graphenecomposites [J].Journal of Materials Chemistry A, 2013, 1(13): 4255-4264.[15] Rafiq R, Cai D Y, Jin J, et al.Increasing the toughness of nylon 12 by the incorporation of functionalized graphene [J].Carbon, 2010, 48(15): 4309-4314.[16] Ramanathan T, Abdala A A, Stankovich S.Functionalized graphene sheets for polymer
nanocomposites [J].Nature Nanotechnology, 2008, 3(6): 327-331.[17] Brigitte V, Alaon P, Claud E C, et al.Macroscopic fibers and ribbons of oriented carbon nanotubes [J].Science, 2000, 290(5495): 1331-1334.[18] Thostenson E T, Chou T W.Aligned multi-walled carbon nanotube-reinforced composites:pr ocessing and mechanical characterization [J].Journal of Physics D: Applied Physics, 2002, 35: L77-L80.[19] Ericson L M, Fan H, Peng H.Macroscopic, neat, single-walled carbon nanotube fi
bers [J].Science, 2004, 305(5689): 1447-1450.[20] Davis V A, Parra-Vasquez A N G, Greeb M J, et al.True solutions of single-walled carbon nanotubes for assembly into macroscopic materials [J].Natural Nanotechnology, 2009, 4(12): 830-834.[21] Shang Y Y, He X D, Li Y B, et al.Super-stretchable spring-like carbon nanotube ropes [J].Advanced Materials, 2012, 24(21): 2896-2900.[22] Shang Y Y, Li Y B, He X D, et al.Highly twisted double-helix carbon nanotube yarns [J].ACS Nano, 2013, 7(2): 1446-1453.[23] Li Y B, Shang Y Y, He X D, et al.Overtwisted, resolvable carbon nanotube yarn entanglement
as strain sensors and rotational actuators [J].ACS Nano, 2013, 7(9): 8128-8135.[24] Lassagen B, Tarakano V Y, Kinaret J, et al.Coupling mechanics to charge transport in
carbon nanotube mechanical resonators [J].Science, 2009, 325(5944): 1107-1110.[25] Gao Y, Li J Z, Liu L Q, et al.Axial compression of hierarchically structured carbon nanotube
fiber embedded in epoxy [J].Advanced Functional Materials, 2010, 20(21): 3797-3803.[26] Gou J H.Single-walled nanotube bucky paper and nanocomposites [J].Polymer International, 2006, 55(11): 1283-1288.[27] Gou J,Braint S O,Gu H,et al。Damping augmentation of nanocomposites using carbonnanofiber paper [J]。Journal of Nanomaterials,2006(1): 1-7。
[28] Pham G T, Park Y B, Wang S R, et al.Mechanical and electrical properties of polycarbonate
nanotube buckypaper composite sheets [J].Nanotechnology, 2008, 19(32): 325705.[29] Park J G, Smithyman J, Lin C Y, et al.Effects of surfactants and alignment on the physical
properties of single-walled carbon nanotube buckypaper [J].Journal of Applied Physics, 2009,106(10): 104310.[30] Chang C Y, Phillips E M, Liang R, et al.Alignment and properties of carbon nanotubebuckypaper/liquid crystalline polymer composites [J].Journal of Applied Polymer Science, 2013, 128(3): 1360-1368.[31] Wu Q, Zhang C, Liang R, et al.Fire retardancy of a buckypaper membrane [J].Carbon, 2008,46(8): 1164-1165.。
[32] Fu X, Zhang C, Liu T, et al.Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites [J].Nanotechnology, 2010, 21(23): 235701.[33] Park J G, Yun N G, Park Y B, et al.Single-walled carbon nanotube buckypaper and
mesophase pitch carbon/carbon composites [J].Carbon, 2010, 48(15): 4276-4282.[34] Wang Z, Liang Z Y, Wang B, et al.Processing and property investigation of single-walledcarbon nanotube(SWNT)buckypaper/epoxy resin matrix nanocomposites [J].Composites Part A: Applied Science and Manufacturing, 2004, 35(10): 1225-1232.[35] Chu H, Zhang Z, Liu Y, et al.Self-heating ber reinforced polymer composite usingmeso/macropore carbon nanotube paper and its application in deicing [J].Carbon, 2014, 66:154-163.[36] Lu H B, Liu Y J, Leng J S.Carbon nanopaper enabled shape memory polymer composites for
electrical actuation and multifunctionalization [J].Macromolecular Materials and Engineering,2012, 297(12): 1138-1147.[37] Lu H B, Liu Y J, Leng J S, et al.Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite [J].Applied Physics Letters, 2010, 96: 084102.m cells [ J].Small,2008,4(5): 619-626。
[38] Liu H M, Wu S H, Lu C W, et al.Mesoporous silica nanoparticles improve magnetic labelinge
ciency in human stem cells [J].Small, 2008, 4(5): 619-626.[39] Guo L M,Li J T,Zhang L X,et al。A facile route to synthesize magnetic particles withinhollow mesoporous spheres and their performance as separable Hg2+ adsorbents [J]。Journal of Materials Chemistry,2008,18(23): 2733-2738。
第五篇:镍基高温合金材料研究进展汇总
镍基高温合金材料研究进展
姓名:李义锋 镍基高温合金材料概述
高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。
在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。
镍基高温合金是以镍为基体(含量一般大于50)、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。
镍基高温合金的发展历程
镍基高温合金在整个高温合金领域占有特殊重要的地位,它的开发和使用始于20世纪30年代末期,是在喷气式飞机的出现对高温合金的性能提出更高要求的背景下发展起来的。英国于1941年首先生产出镍基合金Nimonic75(Ni--20Cr-0.4Ti),为了提高蠕变强度又添加铝,研制出Ni-monic80(Ni--20Cr--2.5Ti一1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基高温合金。
镍基高温合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展为炼制含高铝和钛的镍基合金创造了条件;50年代后期,采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金;60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金;为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势如图l所示。
图1 镍基高温合金的发展趋势
镍基高温合金的发展趋势是耐高温能力更强的单晶高温合金。单晶高温合金由于其优异的高温力学I生能得到了广泛应用。至今,单晶高温合金已经发展到第四代。使用温度接近合金熔点80-90%的第三代镍基单晶高温合金代表了上个世纪末高温合金发展的最高水平。目前,更加优良的第四代单晶的研制已经取得了初步进展[3]。2000年后出现了第四代单晶高温合金,例如MC-NG,EPM-102和TMS-162,它们的特征是都添加了钌元素[4]。一个现代单晶涡轮叶片的成本是等重量的微合金钢的数百倍,不仅反映出构成单晶高温合金元素}向贵重或稀缺,更显示出所用工艺的先进程度。镍基高温合金的性能研究
(一)力学性能
20世纪70年代,B.H.Kean等做持久实验时发现,以挤压比16:1挤压In-100合金,在1040℃ 的实验温度下得到1330%的延伸率,并认为这与合金中析出的第二相粒子控制晶粒长大有关。粉末高温合金由于其细晶组织而较易得到超塑性,如In-l00、In-713、U-700等镍基高温合金可以通过粉末冶金的方法获得超塑性,其延伸率可以达到1000%[5]。利用快速凝固法也可以实现高温合金晶粒的微细化,从而得到组织超塑性现象。
毛雪平等[6]在500~600℃高温条件下对镍基合金C276进行了拉伸力学试验,并分析了温度对弹性模量、屈服应力、断裂强度以及延伸率的影响,发现镍基合金C276在高温下具有屈服流变现象和良好的塑性。
(二)氧化行为
在高温条件下,抗氧化性靠Al2O3。和Cr2O2。保护膜提供,因此镍基合金必须含有这两种元素之一或两者都有,尤其是当强度不是合金主要要求时,要特别注意合金的抗高温氧化性能和热腐蚀性能,高温合金的氧化性能随合金元素含量的不同而千差万别,尽管高温合金的高温氧化行为很复杂,但通常仍以氧化动力学和氧化膜的组成变化来表征高温合金的抗氧化能力。赵越等[7]在研究K447在700~950℃ 的恒温氧化行为时发现其氧化动力学符合抛物线规律:在900℃以下为完全抗氧化级,在900~950℃为抗氧化级,而且K447氧化膜分为3层,外层是疏松的Cr2O3。和TiO2。的混合物,并含有少量的NiO及NiCr2O4尖晶石;中间层是Cr2O3;内氧化物层是Al2O3。并含有少量TiN,随着温度的升高,表面氧化物的颗粒变大,导致表面层疏松,氧化反应加速进行。
(三)疲劳行为
在实际应用中,各种零部件在承受着高温、高应力的作用时,尤其在启动、加速或减速过程中,快速加热或冷却引起的各种瞬间热应力和机械应力叠加在一起,致使其局部区域发生塑性变形而产生疲劳影响零件寿命,故要研究其高温疲劳行为。何卫锋等在研究激光冲击工艺对GH742镍基高温合金疲劳性能的影响时发现,激光冲击强化能延长镍基高温合金抗拉疲劳寿命316倍以上,延长振动疲劳寿命214倍,强化后残余压应力影响层深度达110mm。郭晓光等在研究铸造镍基高温合金K435室温旋转弯曲疲劳行为时发现,在应力比R=-1,转速为5000r/min(8313Hz)和实验室静态空气介质环境下,K435合金室温旋转弯曲疲劳极限为220MPa,裂纹主要萌生在试样表面或近表面缺陷处,断口主要由裂纹萌生区、裂纹稳态扩展区和瞬间断裂区组成。黄志伟等在研究铸造镍基高温合金M963的高温低周疲劳行为时发现,由于高温氧化作用在相同的总应变幅下,M963合金在低应变速率下具有较短的寿命;因为该合金的强度高、延性低,形变以弹性为主,M963合金具有较低的塑性应变幅和较低的过渡疲劳寿命。于慧臣等[8]朝在研究一种定向凝固镍基高温合金的高温低周疲劳行为时发现,由于合金在不同温度范围内具有不同的微观变形机制,温度对合金的变形有明显影响,在760℃以下合金呈现循环硬化,而在850℃和980℃时则表现为循环软化。
(四)高温蠕变行为
当温度T≥(0.3~0.5)Tm时,材料在恒定载荷的持续作用下,发生与时间相关的塑性变形。实际上是因为在高温下原子热运动加剧,使位错从障碍中解放出来从而引起蠕变。水丽等在对一种镍基单晶合金的拉伸蠕变特征进行分析时发现,在980~1020℃、200~280MPa条件下蠕变曲线均由初始、稳态及加速蠕变阶段组成;在拉伸蠕变期间γ′强化相由初始的立方体形态演化为与应力轴垂直的N-型筏形状;初始阶段位错在基体的八面体滑移系中运动;稳态阶段不同柏氏矢量的位错相遇,发生反应形成位错网;蠕变末期,应力集中致使大量位错在位错网破损处切人筏状7相是合金发生蠕变断裂的主要原因。李楠等在研究热处理对一种镍基单晶高温合金高温蠕变性能的影响时发现,尺寸为0.4 m左右、规则排列的立方γ′相具有较好的高温蠕变性能,而较小的γ′相和较大的γ′相均不利于合金在高温下的蠕变性能,二次时效处理对提高合金高温蠕变强度的作用不大,筏形组织的完善程度影响合金高温下的蠕变性能,二次γ′相不利于提高合金高温蠕变性能。镍基高温合金的强化研究
(一)热处理
热处理对合金第二相粒子γ′相的形成、形态和稳定性有重要影响,探索合适的热处理制度对控制和稳定合金的微观组织、提高合金的高温性能有着积极的意义。经过长期反复研究证实,时效强化的实质是从过饱和固溶体中析出许多非常细小的沉淀物颗粒,形成一些体积很小的溶质原子富集区。在时效处理前进行固溶处理时,必须严格控制加热温度,以便使溶质原子能最大限度地固溶到固溶体中,同时又不致使合金熔化。在进行人工时效处理时,必须严格控制加热温度和保温时间,才能得到比较理想的强化效果;生产中有时采用分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间。
(二)表面处理
由于镍基高温合金成分十分复杂,含有铬、铝等活泼元素,高温合金零件表面在氧化或热腐蚀环境中表现为表面化学不稳定,同时经机械加工而制成的零件表面留下加工硬化或残余应力等表面缺陷,这对高温合金零件的化学性能和力学性能都带来十分不利的影响。为了消除这些影响,常采用表面防护、喷丸处理、表面晶粒细化以及表面改性等措施。喷丸强化是工业上常用的提高疲劳性能的表面改性工艺技术。高玉魁等发现喷丸强化可以延长DD6单晶高温合金在高温下的疲劳寿命,而且随着温度升高,疲劳寿命增益系数下降。在实际应用中发现喷丸处理对材料强化效果不佳,对合金疲劳性能改善甚微,现急需一种效果更好的强化方法来取代喷丸,随着高能脉冲激光器制造水平的提高而发展起来的激光冲击强化技术无疑是一种理想的替代方式,通过强激光诱导的冲击波在金属表层引入残余压应力,从而抑制疲劳裂纹的萌生和发展,是一种新型的金属表面强化技术。
(三)合金元素
镍基高温合金能溶解较多的合金元素,如Cr、W、Mo、Co、Si、Fe、A1、Ti、B、Nb、Ta、Hf等。这些合金元素加入到基体中可以产生合金强化效应,影响镍基高温合金的性能,改善合金的组织。
在镍基合金中添加微量稀土元素,能提高合金的热加工性能和抗氧化性能。周永军等I-在研究稀土对镍基高温合金性能影响的电子理论中发现,稀土与杂质硫相互吸引,其结果是分散和固定部分杂质,可以改善合金高温性能。
最近的研究发现,加入碳可以净化合金液,改善合金的抗腐蚀性能,并且可以减少再结晶的几率,碳的微量加入还有利于降低合金缩孔含量。刘丽荣等在研究碳对一种单晶镍基高温合金铸态组织的影响时发现,随着碳含量的增加,合金的初熔温度逐渐降低,共晶数量和尺寸减小,碳化物数量逐渐增多,碳化物的形态从斑点状变为斑点状和骨架状相结合的网状结构,一次枝晶间距变化较大,而二次枝晶间距变化不大,W和AI元素的偏析降低,Ta和Mo元素的偏析增大。
为了保持合金的组织稳定性,第二、三代单晶高温合金在提高难熔金属元素的同时不得不降低元素Cr的含量,含量的持续降低会损害合金的抗氧化、抗腐蚀性能,在第四代镍基单晶高温合金中,引入新的合金元素Ru,能够提高镍基高温合金的液相线温度,提高合金的高温蠕变性能和组织稳定性,与第三代单晶高温合金相似,第四代单晶高温合金中Cr的质量分数仍然较低,为2 ~4。目前国内外对高Cr+Ru镍基高温合金的研究还非常有限。石立鹏等[9]在研究高Ru和高 对镍基高温合金组织稳定性的影响时发现,高Cr能促进TCP相形成,而高Ru的添加在高合金中可以有效地抑制TCP相的析出,从而提高组织稳定性。
Al、Ti和Ta元素都是近年来发展的单晶高温合金中的重要元素。A1和Ti是 相形成元素,同时Ti也是MC碳化物形成元素;Ta能置换一部分Al和Ti而进入γ′相,同时也与碳形成稳定的TaC,在只有微量碳的单晶高温合金中绝大多数Ta几乎都进入γ′相。因此,A1、Ti和Ta是γ′相形成和强化元素,其含量能够决定合金的强化相7 的百分含量及其强化程度。镍基高温合金的发展趋势
从用途和发展的角度分析,镍基高温合金的发展趋势必向高强度、抗热腐蚀性、密度小的方向发展。
(1)追求高强度。通过添加适量的Al、Ti、Ta,保证γ′强化相的数量.加人大量的W、Mo、Re等难熔金属元素,也是提高强度的有效途径。但是为了维持良好的组织稳定性,不析出σ、υ等有害相,而在新一代合金中通过加入Ru来提高合金的组织稳定性。
(2)发展抗热腐蚀性能优越的单晶合金。通过添加适量的W、Ta等难熔金属,保证高的Cr含量。
(3)发展密度小的单晶合金。从航空发动机设计的角度考虑,密度大的合金难有作为,特别是对动叶片,在非常大的离心力下是不适合的。为此,要发展密度小的单晶高温合金,如CMSX-
6、RR2000、TMS-61、A
3、ONERA M-3等,其中的RR2000单晶合金实际上是在IN100(K17)合金基础上发展的,密度为7.87g/cm3[10]。参考文献
[1] C.T.Sims.Superalloys:Genesis and Character.Superalloy Ⅱ .New York:John
Wiley&Sons,1987.3—26.
[2] 黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000.1.
[3] 殷凤仕.熔体处理和热处理对M963合金微观结构及力学性能的影响.[学位论文].中国科
学院研究生院.2003 [4] R.C.Reed.The Superalloy Fundamentals and Applications.Gambridge University Press,2006.19—20.
[5] 汪大年.金属塑性成形原理EM].北京:机械工业出版社,1982 [6] 毛雪平,王岗,张立殷,等.镍基合金C276高温拉伸力学性能的试验分析[J].动力工程,2009,29(7):699 [7] 赵越,杨功显,袁超,等.铸造镍基高温合金K447的高温氧化行为口].腐蚀科学与防护
技术,2007,27(1):1 [8] 于慧臣,李影,张国栋,等.一种定向凝固镍基高温合金的高温低周疲劳行为[J].失效分
析与预防,2008,3(1):1 [9] 石立鹏,王万波,冯强,等.高Ru和高cr对镍基高温合金组织稳定性的影响[J].北京科技
大学学报,2008,30(12):1362 [10] 谢锡善,董建新,胡尧和,等.铁镍基高温耐蚀合金的研究与发展_J].世界钢铁,2009(1):50