第一篇:第二章立体几何小结
第二章小结
-----本章主要问题方法总结
1、证线在面上:
⑴公理1 数学符号
⑵面面垂直的性质2 数学符号
2、确定一个平面的方法:公理2及其三个推论
公理2: 推论1 推论2 推论3
3、证点在线上的方法:公理3 数学符号
4、空间两直线平行的证明方法:
⑴公理4 数学符号
⑵线面平行的性质定理 数学符号
⑶面面平行的性质定理 数学符号 ⑷线面垂直的性质定理 数学符号
5、证明线面平行的方法:
⑴线面平行的定义
⑵线面平行的判定理 数学符号
⑶面面平行的性质定理补充定理:两平面平行,其中一个平面内的任意直线平行与另一个平面。
数学符号 6:、证线面相交得方法:
⑴定义法:
⑵反证法:
7、证面面平行的方法:
⑴面面平行的定义即两个平面没有公共点。
⑵面面平行的判定定理
数学符号
⑶面面平行的判定定理推论:一个平面内的两相交直线分别平行于另一个平面内的两 1 相交直线那么着两个平面平行。
数学符号 ⑷垂直于同一条直线的两平面平行。
数学符号
⑸平行于同一个平面两平面平行。
数学符号
8、线面垂直的判定方法:
⑴定义法
⑵线面垂直的判定定理
数学符号
⑶两直线平行,其中一条直线垂直一个平面另一条直线也垂直于这个平面。
数学符号 ⑷面面垂直的性质定理
数学符号
9、求空间角的问题:异面直线所成的角、直线与平面所成的角、二面角。
一般步骤: A、找出或作出有角的图形 B、证明它符合定义
C、计算角的大小(解三角形)
⑴求异面直线所成角两条思维途径:
第一条:以两条异面直线四个顶点中的一个端点为顶点作角。
第二条:以两条异面直线所在的两个平面的交线上的一点为顶点作角 说明:第一条是本质,第二条是第一条的特殊情况。
⑵直线与平面所成的角
作角的关键:通常取斜线上某个特殊点作平面的垂线段,连接垂足和斜足,是产生线面所成角的关键。作垂线时常在这个面的垂面内作垂线。⑶二面角的求法: 定义法
垂面法 垂线法
回顾性练习:
练习1 如图,三棱锥S-ABC四个面都是正三角形,已知E、F分别是棱SC、AB的中点,试求异面直线EF和SA所成的角。
SECFA
B
练习2 已知ABCD-A1B1C1D1是长方体,且ABCD是边长为a的正方形,E是D D1的中点,O是正方形ABCD的中心,直线EO与B1D1所成的角是45度,如图,求直线EO与BC1所成的角。
D1A1EB1C1DOA
CB
练习3 如图 ,∠BAD=90度的等腰三角形⊿ABD与底面正⊿CBD所在平面互相垂直,E是BC的中点,则AE与平面BCD所成的角是多少?
ABEC
练习4 如图,在三棱锥S-ABC中,SA⊥平面ABC,AB⊥BC,DE垂直平分SC且分别交AC、SC于D、E两点,又SA=AB,SB=BC.求二面角E-BD-C的大小.D
SEADBC
第二篇:高中立体几何初步小结(定稿)
立体几何证明初步总结
①、三个公理和三个推论:
这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一。②、证明线线平行的方法
1.平行于同一直线的两条直线平行; 2.垂直于同一平面的两条直线平行;
3.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和这条直线平行;
4.如果两个平行平面同时和第三个平面相交,那么它们的交线平行。5.在同一平面内的的两条直线,可依据平面几何的定理证明(如三角形中位线定理;平行四边形对边平行;平行线分线段成比例定理的逆定理等)③、证明线面平行的方法
1.由定义:一条直线和平面无公共点;
2.如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行;
3.两平面平行,则其中一个平面内的一条直线必平行于另一个平面; ④、证明面面平行的方法
1.由定义:没有公共点的两个平面平行;
2.如果一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行; ⑤、证明线线垂直的方法
1.定义:两直线相交成90角,或经过平移后相交成90角(异面垂直); 2.直线和平面垂直,则该直线和平面内的任一直线垂直; 3.一条直线和两平行线中的一条垂直,也和另一条垂直;
4.平面几何中常用的定理:菱形、正方形的对角线互相垂直;等腰三角形“三线合一”;圆的直径所对的圆周角是直角;勾股定理。⑥、证明线面垂直的方法
1.定义:如果一条直线和平面内的任意一条直线都垂直,则这条直线和平面垂直; 2.如果一条直线和平面内的两条相交直线都垂直,则这条直线和这个平面垂直; 3.如果两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;
4.如果两个平面垂直,那么在第一个平面内垂直于它们交线的直线,也垂直于另一个平面;
⑦、证明面面垂直的方法
1.证明两个平面的二面角为90角。
2.一个平面经过另一个平面的一条垂线,则这个平面垂直于另一个平面。大策略 空间平面平行关系垂直关系 小策略平行转化 线线平行 线面平行面面平行 垂直转化 线线垂直 线面垂直面面垂直
二、有“心”的三角形
1.内心:内切圆圆心,是各角平分线的交点; 2.外心:外接圆圆心,是各边垂直平分线交点;
3.重心:各边中线交点,重心将所在中线分成两段比值为2:1; 4.垂心:高的交点。
第三篇:立体几何2018高考
2018年06月11日青冈一中的高中数学组卷
一.选择题(共11小题)
1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()
A. B. C. D.
2.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12π B.12π C.8
π
D.10π
3.在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A. B. C.
D.
4.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=成角的余弦值为()A. B. C.
D.,则异面直线AD1与DB1所5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
第1页(共23页)
A.2 B.4 C.6 D.8
6.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6 C.8
D.8
7.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9A.12,则三棱锥D﹣ABC体积的最大值为()B.18 C.2D.54
8.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()
A.1 B.2 C.3 D.4
9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()
第2页(共23页)
A.2 B.2 C.3 D.2
10.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A. B.
C.
D.
11.已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()
A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ
1二.解答题(共8小题)
12.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;
(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.
13.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.
第3页(共23页)
14.如图,在三棱锥P﹣ABC中,AB=BC=2(1)证明:PO⊥平面ABC;,PA=PB=PC=AC=4,O为AC的中点.
(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.
15.如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.,∠BAD=90°.
16.如图,矩形ABCD所在平面与半圆弧的点.
(1)证明:平面AMD⊥平面BMC;
所在平面垂直,M是上异于C,D(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.
第4页(共23页)
17.如图,边长为2的正方形ABCD所在的平面与半圆弧上异于C,D的点.
(1)证明:平面AMD⊥平面BMC;
所在平面垂直,M是(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.
18.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1. 求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.
19.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;
(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.
第5页(共23页)
第6页(共23页)
2018年06月11日青冈一中的高中数学组卷
参考答案与试题解析
一.选择题(共11小题)
1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()
A. B. C. D.
【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.
故选:A.
2.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12π B.12π C.8
π
D.10π
【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=,第7页(共23页)
则该圆柱的表面积为:故选:D.
=10π.
3.在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A. B. C.
D.
【解答】解:以D为原点,DA为x轴,DC为y轴,坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),=(﹣2,2,1),=(0,﹣2,0),设异面直线AE与CD所成角为θ,则cosθ===,sinθ==,∴tanθ=.
∴异面直线AE与CD所成角的正切值为.
故选:C.
第8页(共23页)
1为z轴,建立空间直角DD
4.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=成角的余弦值为()A. B. C.
D.,则异面直线AD1与DB1所【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,),D(0,0,0),∴A(1,0,0),D1(0,0,B1(1,1,),),=(﹣1,0,=(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ=
=
=,. ∴异面直线AD1与DB1所成角的余弦值为故选:C.
5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
第9页(共23页)
A.2 B.4 C.6 D.8
【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.
如图所示:故该几何体的体积为:V=故选:C.
.
6.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6 C.8
D.8
【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1=可得BB1=
=
2.=8
.
=2
.
所以该长方体的体积为:2×故选:C.
第10页(共23页)
7.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9A.12,则三棱锥D﹣ABC体积的最大值为()B.18 C.2D.54
【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图: O′C==,OO′=
=2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:故选:B.
=18
.
8.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()
第11页(共23页)
A.1 B.2 C.3 D.4
【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,可得三角形PCD不是直角三角形. PC=3,PD=2所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD. 故选:C.
9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()
第12页(共23页)
A.2 B.2 C.3 D.2
【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:
圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:故选:B.
10.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A. B.
C.
D.
=2.
【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长故选:A.
明明就的最大值为:6×
=
.
11.已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()
A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1
第13页(共23页)
【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心. 过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO. 显然,θ1,θ2,θ3均为锐角. ∵tanθ1=∴θ1≥θ3,又sinθ3=∴θ3≥θ2. 故选:D.,sinθ2=,SE≥SM,=,tanθ3=,SN≥SO,二.解答题(共8小题)
12.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;
(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.
【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,第14页(共23页)
∴圆锥的体积V==
=.
(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ==
=
.
∴θ=arccos.
∴异面直线PM与OB所成的角的为arccos
.
13.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.
第15页(共23页)
DF为折痕
【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,由于四边形ABCD为正方形,所以EF⊥BC. 由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.
又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面DEF中,过P作PH⊥EF于点H,联结DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.
在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故VF﹣PDE=,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.
设正方形边长为2a,则PD=2a,DE=a 在△PDE中,所以故VF﹣PDE=,,第16页(共23页)
又因为所以PH==,=,. 所以在△PHD中,sin∠PDH=即∠PDH为DP与平面ABFD所成角的正弦值为:
14.如图,在三棱锥P﹣ABC中,AB=BC=2(1)证明:PO⊥平面ABC;
(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.,PA=PB=PC=AC=4,O为AC的中点.
【解答】(1)证明:∵AB=BC=2角形,AC=4,∴AB2+BC2=AC2,即△ABC是直角三又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=在△COM中,OM=S,=
.
=××=,第17页(共23页)
S△COM==.,设点C到平面POM的距离为d.由VP﹣OMC=VC﹣POM⇒解得d=,. ∴点C到平面POM的距离为
15.如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.,∠BAD=90°.
【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;
(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=∴异面直线BC与MD所成角的余弦值为
;
.
(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,第18页(共23页)
又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角. 在Rt△CAD中,CD=在Rt△CMD中,sin∠CDM=,.
. ∴直线CD与平面ABD所成角的正弦值为
16.如图,矩形ABCD所在平面与半圆弧的点.
(1)证明:平面AMD⊥平面BMC;
(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.
所在平面垂直,M是
上异于C,D
【解答】(1)证明:矩形ABCD所在平面与半圆弦半圆弦所在平面,CM⊂半圆弦
所在平面,所在平面垂直,所以AD⊥∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CD⊥平面AMD,CD⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:
连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,第19页(共23页)
所以MC∥平面PBD.
17.如图,边长为2的正方形ABCD所在的平面与半圆弧上异于C,D的点.
(1)证明:平面AMD⊥平面BMC;
(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.
所在平面垂直,M是
【解答】解:(1)证明:在半圆中,DM⊥MC,∵正方形ABCD所在的平面与半圆弧∴AD⊥平面BCM,则AD⊥MC,∵AD∩DM=D,∴MC⊥平面ADM,∵MC⊂平面MBC,∴平面AMD⊥平面BMC.(2)∵△ABC的面积为定值,∴要使三棱锥M﹣ABC体积最大,则三棱锥的高最大,此时M为圆弧的中点,建立以O为坐标原点,如图所示的空间直角坐标系如图 ∵正方形ABCD的边长为2,∴A(2,﹣1,0),B(2,1,0),M(0,0,1),则平面MCD的法向量=(1,0,0),设平面MAB的法向量为=(x,y,z)
第20页(共23页)
所在平面垂直,则=(0,2,0),=(﹣2,1,1),由•=2y=0,•=﹣2x+y+z=0,令x=1,则y=0,z=2,即=(1,0,2),则cos<,>=
=
=,则面MAB与面MCD所成二面角的正弦值sinα=
=
.
18.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1. 求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.
【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,⇒AB∥平面A1B1C;
(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.
第21页(共23页)
在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC. ∴
⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.
19.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;
(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.
【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;
(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;
同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,第22页(共23页)
由PA⊥PD,可得平面PAB⊥平面PCD;
(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.
第23页(共23页)
第四篇:教案 立体几何
【教学过程】 *揭示课题 9 立体几何 *复习导入
一、点线面的位置关系 点与直线的位置关系:Aa Aa 2.点与面的位置关系: A A 3.直线与直线的位置关系:平行 相交 异面 4直线与平面的位置关系: 在平面内 相交平行
二、线面平行的判定定理
1.线线平行:平行于同一条直线的两条直线互相平行
2.线面平行:如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行
3.面面平行:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行
三、线面平行的性质定理
1.线线平行:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等
2.线面平行:如果一条直线和一个平面平行,并且经过这条直线的平面和这个面相交,那么这条直线和交线平行
3.面面平行:如果两个平行平面同时和第三个平面相交,那么它们的交线平行
四、线面垂直的判定定理
1.线面垂直:如果一条直线与一个平面内的两条相交直线垂直,那么这条直线与这个平面垂直
2.面面垂直:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
五、线面垂直性质定理
1.线面垂直:如果两条直线垂直于同一个平面,那么这两条直线平行
2.面面垂直:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面
六、柱、锥、球 1.棱柱、圆柱
S侧=底面周长高V体=底面面积高2.棱锥、圆锥
1底面周长母线2 1V体=底面积高3S侧3.球
S表=4r243 V体=r3*练习讲解 复习题A组 *归纳小结
本章立体几何部分概念偏多,需要着重分辨判定定理与性质定理的适用范围,将点线面位置关系化为最简单的线线判断,由此可提高位置判定的速度,能够更加地熟练运用各大定理。
第五篇:高中立体几何
高中立体几何的学习
高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难学”。但很多学好这部分的同学,又觉得这部分很简单。那么,怎样才能学好立体几何呢?我这里谈谈自己的认识。
一.空间想象能力的提高。
开始学习的时候,首先要多看简单的立体几何题目,不能从难题入手。自己动手画一些立体几何的图形,比如教材上的习题,辅导书上的练习题,不看原图,自己先画。画出来的图形很可能和给出的图不一样,这是好事,再对比一下,那个图更容易解题。
二.逻辑思维能力的培养。
培养逻辑思维能力,首先是牢固掌握数学的基础知识,其次掌握必要的逻辑知识和逻辑思维。
1.加强对基本概念理解。
数学概念是数学知识体系的两大组成部分之一,理解与掌握数学概念是学好数学,提高数学能力的关键。
对于基本概念的理解,首先要多想。比如对异面直线的理解,两条直线不在同一个平面是简单的定义,如何才能不在同一个平面呢,第一是把同一个[平面上的直线离开这个平面,或者用两支笔来比划,这样直观上有了异面直线的概念,然后想在数学上怎么才能保证两条直
线不在一个平面,那些条件能保证两条直线不在一个平面。我们多去想想,就可以知道,只要直线不平行,并且不相交,那么就异面,对于不平行的条件,在平面几何中我们已经知道,如何能保证不相交呢,想象延长线等手段能不能得到证明呢,如果不能,那么把其中一条直线放在一个平面,看另外一条直线和这个平面是否平行,这样我们对异面直线的概念就比较容易掌握。
这在立体几何“简单几何体”部分的学习中显得尤为突出,本章节中涉及大量的基本概念,掌握概念的合理性,严谨性,辨析相近易混的概念。如:正四面体与正三棱锥、长方体与直平行六面体、轴截面与直截面、球面与球等概念的区别和联系。
2.加强对数学命题理解,学会灵活运用数学命题解决问题。
对数学的公理,定理的理解和应用,突出反映在题目的证明和计算上。需要避免证明中出现逻辑推理不严密,运用定理、公理、法则时言非有据,或以主观臆断代替严密的科学论证,书写格式不合理,层次不清,数学符号语言使用不当,不合乎习惯等。
(1)重视定理本身的证明。我们知道,定理本身的证明思路具有示范性,典型性,它体现了基本的逻辑推理知识和基本的证明思想的培养,以及规范的书写格式的养成。做到不仅会分析定理的条件和结论,而且能掌握定理的内容,证明的思想方法,适用范围和表达形式.特别是进入高中学习以后所涉及到的一些新的证题的思想方法,如新教材上的立体几何例题:“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.”此定理的证明就采用了反证法,那么反
证法的证题思想就需要去体会,一般步骤,书写格式,注意要点等.并配以适当的训练,以初步掌握应用反证法证明立体几何题.(2)提高应用定理分析问题和解决问题的能力.这常常体现在遇到一个几何题以后,不知从何下手.对于习题,我们首先需要知道:要干什么(要求的结论是什么),那些条件能满足要求,这样一步一步往前找条件。当然这要根据具体情况,需要多看习题,我反对题海,但必要的练习是不可以缺少的。