第一篇:增量式PID算法小结
增量式PID算法小结
一、PID 算法简介
顾名思义,P 指是比例(Proportion),I 指是积分(Integral),D 指微分(Differential)。比例P:比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。偏差一旦产生,控制器立即就发生作用即调节控制输出,使被控量朝着减小偏差的方向变化,偏差减小的速度取决于比例系数Kp,Kp越大偏差减小的越快,但是很容易引起振荡,尤其是在迟滞环节比较大的情况下,Kp减小,发生振荡的可能性减小但是调节速度变慢。但单纯的比例控制存在稳态误差不能消除的缺点。这里就需要积分控制。
积分 I:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。实质就是对偏差累积进行控制,直至偏差为零。积分控制作用始终施加指向给定值的作用力,有利于消除静差,其效果不仅与偏差大小有关,而且还与偏差持续的时间有关。简单来说就是把偏差积累起来,一起算总帐。
微分 D:在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
它能敏感出误差的变化趋势,可在误差信号出现之前就起到修正误差的作用,有利于提高输出响应的快速性,减小被控量的超调和增加系统的稳定性。但微分作用很容易放大高频噪声,降低系统的信噪比,从而使系统抑制干扰的能力下降。
增量式PID算法: Ki=Kp*Ts/Ti;Kd=Kp*Td/Ts;Kp为比例项系数 ;Ki为积分项系数 ;Kd为微分项系数;Ti为积分时间常数;Td为微分时间常数 ;Ts 为采样周期常数 上述公式进一步推倒:
Δu(k)= Ka * e(k)+ Kb * e(k-1)+ Kc * e(k-2);Ka=Kp*(1+Ts/Ti+ Td/Ts)Kb=(-1)*(Kp)*(1+2Td/TS)Kc=Kp*(Td/TS)代码如下:
float PID_Dispose(flaot D_value){ static flaot Ek = 0;static flaot Ek_1 = 0;static flaot Ek_2 = 0;Ek_2 = Ek_1;Ek_1 = Ek;Ek = D_value;return((float)(Ka*Ek + Kb*Ek_1 +Kc*Ek_2));} D_value定义为float 类型(据情况而定),此变量是设定值与系统输出量的差值。PID 调试一般原则
a.在输出不振荡时,增大比例增益 P。b.在输出不振荡时,减小积分时间常数 Ti。c.输出不振荡时,增大微分时间常数 Td。
第二篇:PID控制小结
PID控制小结
在PID参数进行整定时如果能够有理论的方法确定PID参数当然是最理想的方法,但是在实际的应用中,更多的是通过凑试法来确定PID的参数。
增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。增大积分时间I有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。
增大微分时间D有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤。
PID控制原理:
1、比例(P)控制 :比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。
2、积分(I)控制 :在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
3、微分(D)控制 :在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。PID控制器参数整定的一般方法:
PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:
一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改; 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P、I、D的大小。书上的常用口诀:
参数整定找最佳,从小到大顺序查; 先是比例后积分,最后再把微分加; 曲线振荡很频繁,比例度盘要放大; 曲线漂浮绕大湾,比例度盘往小扳; 曲线偏离回复慢,积分时间往下降; 曲线波动周期长,积分时间再加长; 曲线振荡频率快,先把微分降下来; 动差大来波动慢。微分时间应加长; 理想曲线两个波,前高后低4比1; 一看二调多分析,调节质量不会低。
个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。PID参数怎样调整最佳(1)整定比例控制
将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。(2)整定积分环节
若在比例控制下稳态误差不能满足要求,需加入积分控制。
先将步骤(1)中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。(3)整定微分环节
若经过步骤(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。先置微分时间TD=0,逐渐加大TD,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数。
第三篇:LM算法小结
Matlab代码部分:
在matlab2011等以上版本中使用LM算法,请进行修改: homography2d1.m中,修改:options = optimset('LargeScale','off','LevenbergMarquardt','on');改为:options=optimset('LargeScale','off','Algorithm','levenberg-marquardt'); zhang.m中,修改:options = optimset('Display','iter','LargeScale','off','LevenbergMarquardt','on');改为:
Options=optimset('Display','iter','LargeScale','off','Algorithm','levenberg-marquardt');
第四篇:高中数学 算法案例变式练习
变式练习
一、选择题
1.用秦九韶算法求多项式
f(x)=2+0.35x+1.8x2-3.66x3+6x4-5.2x5+x6在x=-1.3的值时,令v0=a6;v1=v0x+a5;……v6=v5x+a0时,v3的值为()A.-9.8205
B.14.25
C.-22.445
D.30.9785 答案: C 2.三个数:4557、1953、5115的最大公约数是()A.31
B.93
C.217
D.651 答案:B
二、填空题
3.用冒泡法将字母“g,f,j,c,d,a,x,m”按字母顺序排序时,得到“c,d,a,f,g,j,m,x”,此过程共进行了_________趟排序.答案:3 4.11001101(2)=___________(10),318(10)=___________(5).答案:205 2233 5.用冒泡法对数据31,17,34,4,22,8,19,1进行排序,经过三趟排序后得到的数列是______________.答案:4,17,8,19,1,22,31,34 分析:第一趟后:17,31,4,22,8,19,1,34;第二趟后:17,4,22,8,19,1,31,34;第三趟后:4,17,8,19,1,22,31,34;第四趟后:4,8,17,1,19,22,31,34;第五趟后:4,8,1,17,19,22,31,34;第六趟后:4,1,8,17,19,22,31,34;第七趟后:1,4,8,17,19,22,31,34.三、解答题
6.用等值算法求下列各数的最大公约数(1)63, 84;(2)351, 513.答案:(1)21;(2)27.7.用辗转相除法求下列各数的最大公约数(1)5207,8323;(2)5671,10759.答案:(1)41;(2)53.8.求下列三个数的最大公约数.779,209,589 答案:19
54329.用秦九韶算法求多项式f(x)=7x+12x-5x-6x+3x-5在x=7时的值.答案:144468 10.将下列各数化成十进制数
(1)110100111(2);(2)76053(8);(3)2314(5).答案:(1)423;(2)31787;(3)334.11.将下列各数化为二进制和八进制的数
(1)102(10);(2)355(10);(3)60(10);(4)256(10).用心
爱心
专心 答案:(1)102(10)=1100110(2)=146(8);(2)355(10)=101100011(2)=543(8);(3)60(10)=111100(2)=74(8);(4)256(10)=100000000(2)=400(8).用心
爱心专心2
第五篇:改进PID算法在空气压缩机压力控制系统中的应用总结
第五章总结与展望
本次毕业设计已经顺利结束,这也意味着大学本科阶段的生活即将告一段落,我们将步入社会开始新的人生旅程。此次的毕业设计算是对我们整个大学所学的一次检验,也是对四年大学生活的一个诠释。此次的毕业设计,从资料的查找到方案的论证,到后来的方案确定、硬件软件的设计及流程图的制作、程序的编写等等,基本上都是在老师的指导下独立完成的,这也是大学阶段最后一次在独立判断和处理问题的能力上的培养,让我在这过程中收获良多。
下面结合我所做的设计《改进PID算法在空气压缩机压力控制系统中的应用》,对设计出的该系统是实现的基本功能做一个简单的论述。
长期以来,压缩机都是二位式起动,在工频下运行,为了保持管网的压力恒定,常常是靠人为的调整压缩机的开度,这样就需要大量的人力,而且压缩机常常在空载状态下运行,这样就造成了能源浪费,在能源问题日益严峻的今天,能够设计或改造出根据用气量变化而调节压缩机转速的控制系统显得尤为重要,会产生良好的经济效益和社会效益。
本系统中可以把(0-200)Mpa范围内的压力转换为电压信号,通过模数转换,单片机就可以对压力信号进行控制,主要是调用变速PID程序,使压缩机的转速与用气量的大小相对应,再经过数模转换,通过变频器改变电动机的转速,从而达到维持系统恒定的目的。
本设计中的不足之处就是变频部分有SA4828芯片与驱动电路、逆变电路译码编码器等组成,结构成分较多,容易出现干扰和线路问题。
总的来说,该系统有调试简单、测试精度高、有键盘和显示部分,可用于对工作压力有要求的空气压缩机压力控制系统中。