第一篇:红外热像仪学习总结讲解
红外热像仪的学习总结
制冷及低温工程
经历了几周对本课程的学习,发现自学到了很多东西,现将本课程最基本的知识整理如下:
1.红外线的发现与分布
1672年人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿作出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。1800年,英国物理学家F.W.赫胥尔从热的观点来研究各种色光时发现了红外线。他在研究各种色光的热量时,有意地把暗室的唯一的窗户用暗板堵住,并在板上开了一个矩型孔,孔内装了一个分光棱镜。当太阳光通过棱镜时,便被分解为彩色光带,并用温度计去测量光带中不同颜色所含的热量。为了与环境温度进行比较,赫胥尔用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其它温度的批示数值高。经过反复试验表明这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的热线,这种看不见热线位于红色外侧,叫做红外线。红外线是一种电磁波,具有与无线电波及可见光一样的本质,红外线的发展是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。
红外线的波长在0.76--100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一 一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。热像仪为非接触式测量,这是它的优点。如果为接触式测量,一个大的缺点就是破坏了原来的温度场。
2.红外热像仪的原理
红外热像仪由红外探测器、光学成像物镜和处理电路组成。早期的热像仪由于焦平面技术的限制,一般是线阵或×
4、×6阵列的,需要光机扫描系统,目前基本为凝视型焦平面所代替,省略了光机扫描系统。利用物镜将目标的红外辐射能量分布图形成像到红外焦平面上,由焦平面将红外能量转换为电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。
这种热像图与物体表面的分布场相对应实;际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩,描绘等高线和直方进行运算、打印等。
3.红外热像仪的主要参数
(1)工作波段:工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm(短波,医疗)或8~14μm(长波,工业)。如美国FLIR的非制冷产品和制冷型QWIP系列都工作在长波8~12μm,制冷型产品MCT系列工作在中波3~5μm。
(2)探测器类型:探测器类型是指使用的一种红外器件。如采用单元或多元(×
2、×4等)、面阵等。可分为非制冷和制冷型2大类型。非制冷主要有热释电、多晶硅(α-Si,以法国sfradir为代表)、氧化钒(VOx,以美国FLIR为代表)等材料,目前,热释电热像仪基本被淘汰;制冷型主要有碲镉汞(PbCdTe,简称MCT)、量子阱(QWIP)、锑化铟(InSb,该产品对中国禁运)等。
(3)视频制式:我国标准电视制式,PAL制式,美国标准电视制式是NTSC制式。目前先进的热像仪同时还提供数字视频,有8位、10位及14位的。
(4)显示方式:指屏幕显示是黑白显示还是伪彩显示。
(5)温度测定范围:指测定温度的最低限与最高限的温度值的范围。
(6)最大工作时间:红外热像仪允许连续的工作时间。
4.红外热像仪的分类
红外热像仪一般分光机扫描成像系统和凝视型成像系统.。光机扫描成像系统采用单元或多元(元数有 8、10、16、23、48、55、60、120、180甚至更多)光电导或光伏红外探测器,用单元探测器时速度慢,主要是帧幅响应的时间不够快,多元阵列探测器可做成高速实时热像仪。
非扫描成像的热像仪,如今几年推出的阵列式凝视成像的焦平面热像仪,在性能上大大优于光机扫描式热像仪,已基本取代光机扫描式热像仪。其关键技术是探测器由单片集成电路组成被测目标的整个视野都聚集在上面,并且图象更加清晰,使用更加方便,仪器非常小巧轻便,同时具有自动调焦图像冻结、连续放大,点温、线温、等温和语音注释图像等功能。
目前,热像仪主要是高端的制冷型热像仪(碲镉汞MCT、量子阱QWIP)、低端的非制冷热像仪(氧化钒、多晶硅热像仪)。
美国的Honeywell公司在九十年代初研发成功非制冷型氧化钒热像仪,目前其专利授权FLIR-INDIGO、BAE、L-3/IR、DRS、以及日本NEC、以色列SCD等几家公司生产。法国的CEA/LETI/LIR实验室在九十年代末研发成功非制冷型多晶硅热像仪,目前主要由法国的SOFRADIR和ULIS公司生产,也是中国市场的供应商。在非制冷热像仪领域,也主要是美国FLIR的氧化钒技术和法国SOFRADIR的多晶硅技术的竞争。
5、红外热像仪的应用
热像仪作为一种红外成像仪器,不但在军事应用中占有很重要的地位在民用方面也具有很强的生命力。热像仪在军事和民用方面都有广泛的应用。随着热成像技术的成熟,各种低成本适于民用的热像仪的问世,它在国民经济各部门发挥着越来越大的作用。
在工业生产中,许多设备常处于高温、高压和高速运行状态,应用红外热像仪对这些设备进行检测和监控,既能保证设备的安全运转,又能发现异常情况以便及时排除隐患。同时,利用热像仪还可进行工业产品质量控制和管理。例如,在钢铁工业中的高炉和转炉所用耐火材料的烧蚀磨损情况,可用热像仪进行观测及时采取措施检修防止事故发生。又如,在石化工业中,热像仪可监视生产设备和管道的运行情况,随时提供有关沉淀形成、流动阻塞、漏热温度隔热材料变质等数据。再如,在电力工业中,发电机组、高压输电和配电线路等可用热像仪沿线扫查,找出故障隐患,及时排除以利于杜绝事故的发生。在电子工业中,也可用热像仪检查半导体器件、集成电路和印刷电路板等的质量情况,发现其他方法难以找到的故障。
此外,红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域均有重要的应用。如建筑物漏热查寻、森林探火、火源寻找、海上救护、矿石断裂判别、导弹发动机检查,公安侦查以及各种材料及制品质无损检查等。
6.红外热成像系统的主要技术指标
1).f/数
f/数是光学系统相对孔径的倒数。设光学系统的相对孔径为A=D/f(D为通光孔径,f为焦距),1/A=f/D,则数f/D 是表示系统的焦距f为通光孔径的多少倍。例如,f/3 表示光学系统的焦距为通光孔径的三倍。f/数代表的是红外系统接收红外热能量的能力。f/数越低,接收热能量越高,但镜头口径就越大。
2).视场
视场是光学系统视场角的简称。它表示能够在光学系统像平面视场光阑内成像的空间范围,当目标位于以光轴为轴线,顶角为视场角的圆锥内的(任一点在一定距离内)时候被光学系统发现,即成像于光学系统像平面的视场光阑内。即使物体能在热像仪中成像的空间的最大张角叫做视场。
3).光谱响应
红外探测器对各个波长的入射辐射的响应称为光谱响应。一般的光电探测器均为选择性的探测器。
4).空间分辨率
应用热像仪观测时,热像仪对目标空间形状的分辨能力。本行业中通常以mrad(毫弧度)的大小来表示。mrad的值越小,表明其分辨率越高。弧度值乘以半径约等于弦长,即目标的直径。如 1.3 mrad的分辨率意味着可以在100m的距离上分辨出 1.3×10-3 ×100=0.13m=13厘米的物体。
5).温度分辨率
温度分辨率 :可以简单定义为仪器或使观察者能从背景中精确的分辨出目标辐射的最小温差△T。一般的△T<0.1℃。一般的温度分辨率为环境为30℃时探测器的最小可变温差,而不是整机的分辨率。
6).最小可分辨温差
分辨灵敏度和系统空间分辨率的参数,而且是以与观察者本身有关的主观评价参数,它的定义为:在使用标准的周期性测试卡(即高宽比为 7:1的4带条图情况下),观察人员可以分辨的最小目标、背景温差。上述观察过程中,观察时间、系统增益、信号电平值等可以不受限制的调整在最佳状态。
7).探测识别和辨认距离
探测、识别和辨认距离;这些是使用者很关心的性能指标。为每个使用者自身素质和仪器给出的图像质量的差异以及严格定义的困难(探测性能是一个多种因素的复合函数)这里只给出大致形象的定义; 探测距离是能将目标与背景及一些引起注意的目标清晰分别开来的最大临界;识别距离是将探测的目标能大致分出种类的距离,如是车辆还是舰船;辨认距离是在分别出种类的基础上的细分。读书感想:(1)红外线的发现,任何物体都无时无刻(温度在绝对温度之上)不在向外发射出红外线。红外线是一种人眼看不到的热线,但却在1800年,被英国物理学家F.W.赫胥尔研究可见光时意外的发现了。这让我明白了,生活之中充满了科学色彩,我们做学问,搞科研要严谨,细心,这样我们才有可能发现生活中科学的魅力所在。我们都知道:红外线的发展是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。这一次飞跃在现在看来好像是很简单,但是对于当时,一片黑暗的情况下研究出红外线应该是多么的困难,很佩服以前那些在黑暗中探索出光明道路的科学家们,我们要好好学习科学知识。
(2)其实有了红外线的发明,红外热像仪的原理就很好理解了:红外探测器(探测物体表面辐射的红外线)、光学成像物镜(目标的红外辐射能量分布图形成像到红外焦平面上,由焦平面将红外能量转换为电信号)和处理电路(处理电路处理后显示到显示屏上)。任何一个仪器,使用之前一定要搞明白它的原理,如果原理都不知道就去使用就会措手不及。
(3)我想把红外热像仪的主要参数和技术指标一起来总结。主要参数是对某一个热像仪说的,而技术指标是对总体来说的。一个热像仪有其主要参数,比如说:我买的这台热像仪工作波段是3~5μm,主要用于医疗,这是参数,你买的热像仪工作波段是8~14μm,主要用于工业。但是对于我们这两台热像仪,其技术指标,比如空间分辨率,算法都是一样的。对于技术指标,要好好掌握这项指标,对于以后应用热像仪有很大的帮助。比如一般的红外探测器在环境温度为三十度时,其温度分辨率最小温差一般为:ΔT<0.1℃,这可以作为以后校验数据的依据。
(4)分类:对于品种繁多的红外探测器,有各种不同的分类方法。根据响应波长,可以分为近红外、中红外、远红外和极远红外探测器;根据工作温度和致冷需求,可以分为低温致冷和室温非致冷红外探测器;根据结构可分为单元、线阵和焦平面红外探测器;就探测机理而言,又可分为光子和热敏红外探测器。以后再学习工作中会更加深刻的理解这些分类。
(5)我最佩服红外热像仪的就是其应用了。现罗列一下应用:
1)微电子器件的故障排除,一些微电子器件如果温度过高会失去作用,从而使机器停止运转。而用热像仪就可以发现微电子器件的温度分布,发现其不正常之处,提早排除故障。
2)高压线缆的安全检测。3)化工设备的检测。
4)医学检测:检测外表面的,比如头疼,检测额头,胸部的乳腺癌等。5)建筑物漏热查寻,比如窗口的严密性。
6)森林探火、火源寻找。比如大兴安岭的火源寻找,提早发现隐患,解决问题。
除此之外还有海上救护、矿石断裂判别、导弹发动机检查,公安侦查以及各种材料及制品质无损检查等。
总之,以后只要是想通过辨别温度场的差异来检测其是否正常的,优先考虑热像仪。
小结:纸上谈兵终觉浅,绝知此事要躬行。以后要熟练掌握使用热像仪,把其作为生活中解决问题的工具。
第二篇:20170122气体泄漏检测用红外热像仪的应用行业总结
气体泄漏检测用红外热像仪的应用行业总结
当我们在漫天雾霾里痛苦不堪的苟且愤慨时,这位中科院院士从他的专业视角,一语道破问题的实质所在„(视频)
从丁院士身上我看到了支撑中国发展的脊梁,正是有无数默默无闻的奉献的学者才让我们看到了中国的未来。向他们致敬!其实看完了这个视频之后最大的感触不是关于环境问题,而是丁对于地球环境发展的理解已经到了一个普通人甚至难以理解的高度。关于文明的意义的又一番振聋发聩的思辨。但今天我们的主题还是要讲环境,只说我们普通人能理解的环境污染问题中的一个分支,气体泄露问题。
先说说OGI是什么,OGI检测利用红外热成像原理,能在企业不停止作业的情况下准确找到挥发性有机物泄漏点,具有检测距离远、安全性高的特点。
那么,气体泄漏检测用红外热像仪适合那些行业呢?小编整理了以下七种行业:
一、炼油
典型的炼油厂包括两种类型的工艺流程:分离和转化。分离工艺流程将原油裂解为有用的组分,或是作为燃料直接销售或是用作下个工艺的原料。转化工艺流程修改分子结构,提供具有合适特性的产品,适合于与成品燃料混合。
红外热像仪可以对燃料加工厂生产的“轻组分”和中间体做出出众的响应。一般的经验法则是,红外热像仪可以检测原油分馏组分,从汽油到煤油均可。
二、石化
生产烃类物质的行业,其原料来自石油炼制的分离工艺或转化工艺,一般不再在炼油厂加工。使用气体泄漏检测用红外热像仪,可以观测到石化行业中使用的或生产的化学品。
三、化工
从基本原料生产非烃类或无机化学品。化工行业通常是批量生产和连续工艺生产,产品纯度很高。气体泄漏检测用中波红外热像仪对该行业的一些化学物质具有良好的响应能力。
四、发电和配电
气电站通常使用天然气作为燃料。气体泄漏检测用中波红外热像仪非常适用于这个行业的检漏。
五、天然气
天然气的生产、储存、运输和配送。天然气主要由甲烷和乙烷组成,中波红外热像仪可以清楚地检测到这两种气体。它适用于从天然气生产到配送网络再到终端消费者的所有环节的检漏。
六、服务提供商
越来越多的公司将泄漏检测和维修(LDAR)的业务外包给服务提供商。目前使用非成像气体检测方法的LDAR服务提供商,如果转为使用气体泄漏检测用红外热像仪,生产效率和气体检测能力一定突飞猛进。
七、环保执法
许多国家普遍是由政府机构而不是由行业监管执法。这些机构应用气体泄漏检测用红外热像仪监控各行业,确保其遵守法规,并负责审计其减排绩效。
气体泄漏检测用红外热像仪技术有着广泛的潜在用途,能令工厂业主显著受益。它比传统的VOC检测仪或嗅探器方法更具时间和成本上的优势。它可以在一定距离内识别泄漏,不必对所有可疑的泄漏到场逐一确认,降低了泄漏检测的成本。
最后再以丁院士的话作为结尾,“地球不需要被拯救,需要被拯救的是人类自己。能够拯救人类的也只有人类自己,那就是在这个和而不同的世界产生更具包容性的文明,唯有这样才能够做到不会一叶障目不见泰山”。
第三篇:YRH250矿用本质安全型红外热像仪辐射率确定方法
一。测温目标大小与测温距离的关系
在不同距离处,可测的目标的有效直径是不同的,因而在测量小目标时要注意目标距离。红外测温仪距离系数K的定义为:被测目标的距离L与被测目标的直径D之比,即K=L/D
二。选择被测物质发射率
红外测温仪一般都是按黑体(发射率ε=1.00)分度的,而实际上,物质的发射率都小于1.00。因此,在需要测量目标的真实温度时,须设置发射率值。物质发射率可从《辐射测温中有关物体发射率的数据》中查得。
如果无法确定物体的辐射率,可以用以下方法:
用黑色的胶布(推荐3M牌)贴到待测物体的表面上,将热像仪的辐射率设置为0.75。待黑色胶布的温度和物体基本一致时(热传递),测量黑色胶布的温度,此温度即可作为待测物体的温度。
三。强光背景里目标的测量
若被测目标有较亮背景光(特别是受太阳光或强灯直射),则测量的准确性将受到影响,因此可用物遮挡直射目标的强光以消除背景光干扰。
四。瞄准目标的方向
红外测温仪在测量时的最佳方向是与被测目标表面成垂直状态,若不能保证垂直,最好与垂线夹角小于45o,否则将会影响测量精度。
由于灰尘一般会下落,因此不要把红外测温仪从下向上瞄准目标;
由于热流一般向上流动,因此不要将红外测温仪安装在被测目标的上方;
选择适当的瞄准方向,避免其他高温物体的反射。
强光直射被测目标会影响测温稳定性,即便目标还未加温也会让仪器在测温下限附近波动,因此应当用遮挡物挡住直射强光。
五。空气质量
传感头与目标之间允许存在一般的空气介质,如果传感头与目标之间存大量的水蒸汽、粉尘、烟雾等物质,将会影响测量精度,为了减小测量误差,避免红外镜头损坏建议使用空气吹扫器。
第四篇:傅立叶变换红外光谱仪学习总结
傅立叶变换红外光谱仪学习总结
1.机前准备
开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温为21±5℃左右,湿度≤65%才能开机。2.开机
2.1开机时,首先打开仪器电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台spectrum软件,弹出登录端口,用户名输入:user 密码输入perkinelmer 在设置管理菜单栏中可以设置仪器是否设置开机密码。若不设置开机密码,下次进入时必须以管理员的身份进入才能打开此页面。2.2 检查仪器稳定性 在主菜单栏中单击测量,选择湿度屏蔽(查看湿度是否正常,如果不正常需要更换干燥剂)3.制样
根据样品特性以及状态,制定相应的制样方法并制样。4.监测
在测量的菜单栏下选择监测,观察能量值是否正常。红外光谱仪共有两种扫描方式:ATR(衰减全反射)能量值一般为159左右;滑动夹具(透射附件)能量值一般为1299左右。
能量值会随使用时间增长而逐渐变小,若短时间内发生明显降低,可能是仪器湿度过高。4.扫描背景(ATR)1)进入设置仪器菜单栏,选择设置仪器基本功能,设置分辨率、横坐标单位、扫描积累量(扫描次数);固体,液体的分辨率设为
4、气体的分辨率设为0.5。扫描次数越多,信噪比越小。2)进入设置仪器高级功能,勾选CO2/H20,作用是扣除空气中CO2和空气中的H20 3)进入仪器的数据收集,将图谱的保存位置保存到自己的文件夹 4)然后将ATR表面擦拭干净,勾选预览点击基底开始扫描背景图。5.扫描样品
根据自己样品特性以及状态选择对应的压头,将样品放入样品池内,保持设置仪器的基本功能栏里的参数和测背景时的参数一致,将样品的ID改为自己的样品名,开始扫描。转动能量加压器,调节能量值,观察光谱图的变化,能量值为30左右为宜。待扫描结束后再次点击扫描,如果中间中止扫描了需要去选预览再次扫描。6.图谱处理
图谱处理的命令都在处理菜单栏下,如数据调整(调整平滑因子可以将杂质小峰进行平滑)、差异(可以将两个不同光谱中的峰相减)、算术(可以将两个不同的光加减乘除)、比较(可以把已知图谱与单光谱比较、也能与光谱图汇总文件进行比较)、导数(可以将光谱进行一阶导、二阶导、三阶导以直观显示光谱图)、搜索(可以把已知光谱与光谱库中的信息比较检测相似度)
对图谱观察的命令在视图菜单栏下:可以对图谱峰放大或缩小,视图样品表在数据浏览器下,可以新建或者删除样品表 标记峰:在设置菜单栏下的峰值检测可以设置标记峰的信息和透光率,阈值越小,标记的峰越多。
手动保存图:在图谱名称上单击右键,数据保存有两种方式,一种是保存二元图,另一种是保存ASC(word、excel能打开)根据需要,打印或者保存红外光谱图。并可以根据自己需要对图谱进行比较,方法是打开图谱,处理,比较,添加自己需要的图谱。7.实验完成后,将自己实验及仪器运行情况记录到登记本上。
第五篇:红外波谱知识总结
红外光谱的分类:近红外区(泛频区):12820~4000;中红外区(基本转动-振动)4000~400;远近红外区(骨架振动区)400~20.说明:
从IR谱的整个范围来看,可分为4000~1350cm-1与1350~650 cm-1两个区。
4000~1350cm-1区域是由是伸缩振动产生的吸收带,光谱比较简单但具有很强的特征性,称为官能团区。其中:
4000~2500cm-1高波数一端有与折合质量小的氢原子相结合的官能团O—H、N—H、C—H、S—H键的伸缩振动吸收带;
2500~1900cm-1波数范围出现力常数大的三键、累积双键,如—C三C—、—C三N,—C二二C二C—、—C二C二O—、—N二C二O—等的伸缩振动吸收带;(三为三键,二为双键)
1900cm-1以下的低波数端有碳碳双键、碳氧双键、碳氮双键、及硝基等伸缩振动和芳环的骨架振动;
1350~650cm-1区域,有C—O、C—X的伸缩振动和C—C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。该区域中的各峰的吸收位置受整体分子的结构影响较大,分子结构稍有不同,吸收,吸收就有细微差异,称为指纹区。指纹区对于用已知物来鉴别未知物十分重要。
依照图记忆:
第一,4000~2500cm-
1C—H:(3000~3300)
—C—H:2960~2850(强)<3000
二C—H:3100~3010(中)<3100C—H都是<3300的;
三C—H:3310~3300(强)~3300
苯环上的氢:3110~3010(中)和烯氢相似;
N—H:(3300~3500)
一级胺:(游离)3490~3400(中)处有两个吸收峰;缔合的减少100;(和炔氢相似)二级胺:(游离)3500~3300有一个吸收峰
O—H:(3600)(3100-3700)
酚羟基:(游离)3611~3603(峰尖);
(缔合)3500~3200(峰替较宽);
醇羟基:(游离)3650~3610(峰尖);
(缔合)3500~3000:二聚在3600~3500;多聚3400~3200(峰替较宽);
醚:无O—H峰
醛羰基中C—H在2720
第二,2500~1900cm-1
C三C键:RC三CH,2140~2100(弱),三C—H:3310~3300(强),在700~600有三C—H弯曲振动,有用;
RC三CR’:2260~2190
乙炔和对称二取代乙炔,因为对称没有。
第三,1900cm-1以下
碳碳双键:1680~1620;
碳氧双键:
(1)羰基1750~1680(强)
醛羰基和酮羰基差别不大,但醛羰基中C—H在2720有吸收峰;
羰基与双键共轭时,会向低波位移,与苯环在1600区域分裂为俩峰,在1580有出现新峰;
(2)羧酸:羰基(单体1770~1750,二缔合1710)
酯:1735(强)
酰卤:脂肪酰卤1800;芳香酰卤1785~1750和1750~1735;
酸酐,酰胺等。
其实我就是觉得先几个大致的范围,如上面的4000~2500cm-
1、2500~1900cm-
1、1900cm-1以下、1350~650cm-1然后,肯定不是一个区同时出现好几个特殊官能团吧,那样化合物也不可能啊,至少少见,再记点每个官能团的确定峰,如醛基。这样就差不多了。我觉得《基础有机化学》(邢其毅、第三版)讲的简单实用!